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Предмет и мотивация исследования. В статье дан стратегический разбор игры «Индонезийский 
покер» из популярного интернет-шоу «Тейбл тайм». Игроки переворачивают фишки с номерами от 
1 до 12, в зависимости от выпавших значений на двух кубиках можно переворачивать либо карточку, 
номер которой равен сумме выпавших цифр, либо пару карточек с номерами выпавших на кубиках 
цифр. Мотивация такого рода разборов состоит в идее привить широким массам населения подлин-
ный интерес к научным исследованиям, используя изначально развлекательный контекст, что до сих 
пор не было представлено в научной литературе.
Цель. Нахождение стратегии, минимизирующей среднее время до завершения игры. Отметим, что это 
не означает победу даже в среднем, ибо против найденной стратегии закрытия карточек даже в игре 
всего двух игроков оптимальным ответом может быть какая-то субоптимальная стратегия, что совер-
шенно контринтуитивно. Этот парадокс обсуждается в работе; к сожалению, найти равновесную стра-
тегию, гарантирующую победу в среднем против любой другой, авторам пока не удалось в силу значи-
тельной (дважды экспоненциальной) сложности множества всех мыслимых стратегий в этой игре.
Дизайн исследования. В работе формулируется несколько теорем, значительно сокращающих слож-
ность компьютерного перебора всех мыслимых стратегий. Затем вычисляется оптимальная стратегия, 
которая оказывается чрезвычайно запутанной в применении. Возникает вопрос о существовании 
стратегии, алгоритмически гораздо более простой, но не сильно уступающей оптимальной.
Результаты. В работе дается всестороннее описание оптимальной стратегии. Кроме того, демон-
стрируется малозаметная тонкость, заключающаяся в стратегическом пропуске хода в ряде позиций 
при определенных результатах бросков. Далее угадывается очень простая в использовании субоп-
тимальная стратегия, проигрывающая оптимальной буквально на флажке. Как оптимальная, так и 
субоптимальная простая стратегии значительно улучшают шансы на победу в игре против «болва-
на», ходящего всегда случайным образом.

Ключевые слова: теория игр, динамическое программирование, оптимальная стратегия.

Для цитирования: Крохалев, Е. М., Попов, В. С., & Савватеев, А. В. (2025). «Индонезийский покер». 
Полное решение игры из шоу «Тейбл тайм». Вестник Воронежского государственного университета. 
Серия: Экономика и управление, (4), 20–33. DOI: https://doi.org/10.17308/econ.2025.4/13355

© Крохалев Е. М., Попов В. С., Савватеев А. В., 2025
 Материал доступен на условиях лицензии CC BY 4.0

https://journals.vsu.ru/econ



 21

Вестник ВГУ. Серия: Экономика и управление. 2025. № 4. C. 20–33.
Proceedings of Voronezh State University. Series: Economics and Management. (4), 20–33.

Proceedings of Voronezh State University 
Series: Economics and Management

Mathematical and Quantitative Methods
Original article
UDC 330:51-8
DOI: https://doi.org/10.17308/econ.2025.4/13355
JEL: С73

 “Indonesian Poker”: complete game solution 
from the “Table Time” show

E. M. Krokhalev1, V. S. Popov2, A. V. Savvateev3, 4, 5, 6

1 SoftCom LLC, Saint Petersburg, Russian Federation
2 Voronezh State University, 1 Universitetskaya Sq., 394018, Voronezh, Russian Federation
3 Adyghe State University, 208 Pervomayskaya St., 385000, Maykop, Republic of Adygea, Russian Federation
4 Moscow Institute of Physics and Technology, 1A Kerchenskaya St., Bldg. 1, 
117303, Moscow, Russian Federation
5 Innopolis University, 1 Universitetskaya St., 420500, Innopolis, Russian Federation
6 Central Economics and Mathematics Institute, Russian Academy of Sciences, 47 Nakhimovsky Ave., 
117418, Moscow, Russian Federation

Subject and motivation. This article provides a strategic analysis of the “Indonesian Poker” game from 
the popular online show “Table Time”. Players fl ip numbered chips (1–12) based on outcomes from two 
dice; they may fl ip either the chip corresponding to the sum of the dice or the pair of chips matching the 
individual die values. The motivation for such analyses lies in cultivating genuine public interest in scientifi c 
research through initially entertaining context – an approach not yet documented in academic literature.
Purpose. To identify a strategy minimizing the average time to game completion. Notably, this does not 
guarantee victory even on average, as against the found chip-fl ipping strategy, even in a two-player 
game, the optimal response might be a suboptimal strategy – a highly counterintuitive outcome. This 
paradox is discussed in the paper; unfortunately, the authors have yet to fi nd an equilibrium strategy 
guaranteeing average victory against any other due to the substantial (doubly exponential) complexity 
of all conceivable strategies in this game.
Research Design. The paper formulates several theorems that signifi cantly reduce the computational 
complexity of exhaustive strategy search. The optimal strategy is then computed, proving extremely 
intricate in practice. This raises the question of whether an algorithmically simpler strategy exists that 
performs nearly as well as the optimal one.
Results. The paper provides a comprehensive description of the optimal strategy. Additionally, it reveals 
a subtle strategic nuance: deliberately skipping turns in certain positions based on specifi c dice outcomes. 
Then we proposed a very simple-to-use suboptimal strategy, that is losing to the optimal strategy by the 
narrowest margin. Both the optimal and simple suboptimal strategies substantially improve winning 
chances against a “naïve” player who always moves randomly.
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Введение
Теория игр прочно заняла центральное 

место в современной экономической науке. 
Классические модели стратегического вза-
имодействия, начиная с фундаментальной 
работы Von Neumann & Morgenstern (1944), 
сосредоточены на анализе формализованных 
ситуаций принятия решений, допускающих 
строгий математический разбор и вычисление 
равновесий в духе равновесия по Нэшу и его 
аналогов и обобщений.

При этом вопрос осмысленности модели 
является краеугольным камнем любого эко-
номического исследования, проводимого с 
применением математических методов, будь 
то оптимизация или теория игр. Большой 
процент даже опубликованных работ остается 
незамеченным для широкой экономической 
публики в силу фактической оторванности 
построенной модели от изначальной про-
блемной ситуации. Здесь хотелось бы пройти 
между Сциллой и Харибдой, не усложняя 
модель излишними подробностями, но и не 
игнорируя очевидно существенные сообра-
жения. Сделать это получается не у многих. 
Соответствующие модели входят в сокровищ-
ницу книг по экономике, нередко добиваются 
признания Нобелевским комитетом и т. д.

В какой-то момент был сформулирован 
«критерий качества» исследования по ма-
тематической экономике. Он состоит в том, 
что исследование либо идеально описывает 
конкретную проблемную ситуацию, возмож-
но, пожертвовав изящностью, либо содержит 
далеко идущие обобщения и математические 
результаты высокого теоретического уровня, 
достойные с чисто математических позиций.

Мы предлагаем добавить в этот критерий 
третий вариант: исследование нашумевших 
игр, которые появляются в интернете. В на-
стоящее время значительный пласт таких 
игр, возникающих спонтанно в медиасреде 
и приобретающих массовую популярность, 
продолжает оставаться за пределами акаде-
мического дискурса. Старая гвардия на них 
смотрит скептически и «свысока», не понимая 
смысла разбирать этот ширпотреб.

Между тем мы полагаем, что именно 
такие игры позволяют наблюдать живую 
экономическую логику поведения «в дикой 
природе» – вне лабораторных условий и стро-
гих экспериментальных рамок. Формальный 
анализ таких игр открывает путь к пониманию 

того, как реальные люди выбирают стратегии 
в условиях неопределенности, ограниченной 
информации и соревновательной динами-
ки. Чему-то похожему посвящена ежегодная 
конференция Fun with algoritms1, однако там 
редко встречается именно теоретико-игровой 
анализ интернет-игр.

Настоящее исследование делает шаг к за-
полнению существующего научного пробела. 
Мы переносим обсуждение игры «Индоне-
зийский покер» (появившейся в шоу «Тейбл 
Тайм»2) из плоскости фольклора медиапро-
странства в область количественного эко-
номического анализа. На открытых лекциях 
один из авторов статьи, А. В. Савватеев, не-
однократно демонстрировал разборы интер-
нет-игр как примеры применения теории игр 
в популярной форме. Однако научные работы, 
в которых подобные игры подвергаются столь 
же подробному теоретико-игровому анализу, 
пока встречаются крайне редко. Большинство 
обсуждений остается в формате популярного 
рассказа, а не строгого формального иссле-
дования. 

В этом смысле настоящая работа является 
одной из первых, показывающих, что даже 
неформальная интернет-игра способна стать 
объектом строгого математического иссле-
дования.

Интерес к подобным играм возникает есте-
ственным образом: правила просты, исходы 
подчинены случайности, а разница между ин-
туитивной и оптимальной стратегией нередко 
оказывается существенной. Именно поэтому 
важен строгий научный анализ, позволяющий 
превратить массовый интерес в демонстра-
цию того, как работают современные методы 
теории игр и оптимального поведения.

Цель данной статьи состоит в том, что-
бы провести полный теоретический разбор 
«Индонезийского покера», определить опти-
мальную стратегию игры, описать алгорит-
мические методы ее вычисления и проверить 
гипотезу о том, что следование оптимальной 
стратегии существенно увеличивает шансы 
на победу. 

Мы не только строим стратегию, миними-
зирующую математическое ожидание числа 
ходов, но и сравниваем ее с альтернативными 

1 URL: https://fun2026.limos.fr/
2 Тейбл Тайм. 3 сезон (2023). Импроком. URL: https://

youtu.be/LWGIRs5P26U (момент начала обсуждения 
игры: 5:00:58)
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стратегиями по вероятности выигрыша, тем 
самым приближая анализ к классическому 
понятию равновесия. В работе определяется 
полная оптимальная стратегия игры и строит-
ся простая в применении стратегия, не сильно 
уступающая оптимальной. Кроме того, в ста-
тье проведен всесторонний теоретический 
анализ игры и предложены алгоритмы для 
подсчета основных характеристик стратегий, 
посчитаны математические ожидания для 
всех основных стратегий, а также получены 
вероятности победы/поражения/ничьей для 
любых их пар.

Полученные результаты показывают, что 
даже в игре, кажущейся на первый взгляд «не-
серьезной», скрыты нетривиальные стратеги-
ческие эффекты, а ее изучение способствует 
развитию методов оптимизации и стохасти-
ческого моделирования, лежащих в основе 
современной экономической теории.

Обзор литературы
Игра «Индонезийский покер» органично 

вписывается в обширный ландшафт теоре-
тико-игровых исследований. Ее механизмы 
наследуют и комбинируют идеи из несколь-
ких классических разделов теории игр: игр с 
полной информацией, последовательных игр с 
принятием решений в условиях неопределен-
ности, а также комбинаторных игр.

Наиболее близкими аналогами «Индоне-
зийского покера» являются классические игры 
с костями, такие как «Яцзы» (или же покер 
на костях). Интересен тот факт, что данная 
игра также была представлена в интернете – 
в одном из следующих выпусков шоу «Тейбл 
Тайм»3.

Фундаментальную основу для анализа 
подобных игр заложили Von Neumann & 
Morgenstern (1944) в своей основополагающей 
работе, где была представлена концепция игр 
с полной информацией. Пусть «Индонезий-
ский покер» и содержит элемент случайности 
от бросков кубиков, но последовательность 
состояний игры (перевернутых фишек) из-
вестна всем игрокам, что позволяет отнести ее 
к классу игр с полной информацией и стоха-
стическими ходами. Исследованию таких игр 
посвящены работы, подобные Shapley (1953), 
где изучается существование и свойства рав-
новесий в стохастических играх.

3 Тейбл Тайм. 5 сезон (2025). Импроком. URL: https://
youtu.be/7MZZWt25HUY

Ключевым аспектом «Индонезийского 
покера» является механизм переворачивания 
фишек, что позволяет игроку переходить из 
текущей позиции в различные другие. Этот 
механизм напрямую отсылает нас к теории 
комбинаторных игр, в частности к игре «Ним» 
и ее многочисленным вариациям (Bouton, 
1901). По данному классу игр существует мно-
жество фундаментальных работ, выходящих 
и по сей день (Sprague, 1935; Grundy, 1939; 
Burke et al., 2024). Однако следует заметить, 
что в отличие от канонического «Нима» «Ин-
донезийский покер» имеет стохастический 
элемент, что выводит нас за рамки разрабо-
танной теории.

Еще одной важной теоретической паралле-
лью являются игры с управлением ресурсами. 
Игрок на каждом ходу сталкивается с дилем-
мой: перевернуть либо две «дешевые» фишки, 
либо одну «дорогую». Это напоминает задачи о 
выборе наилучшего объекта, например задачу 
разборчивой невесты (Ferguson, 1989). Работы 
Bertsekas (2005) и Puterman (1994) демонстри-
руют, как в подобных динамических системах 
формируются оптимальные стратегии, часто 
имеющие пороговый характер, что можно 
отнести в том числе и к нашей игре.

Теперь, когда мы продемонстрировали 
обширные связи нашей работы с классиче-
скими сюжетами теории игр, хочется отме-
тить, что в ней ведутся активные исследова-
ния и по сей день, в том числе разбираются 
игры из интернета. Иллюстрацией сказан-
ного является международная конференция 
Fun with Algorithms4. На этой конференции 
представлены как фундаментальные иссле-
дования, анализирующие целый пласт типо-
вых игр (Burke et al., 2022; 2024; Bagan et al., 
2024), так и разборы отдельных настольных 
и интернет-игр, таких как «Морской бой» 
(Crombez et al., 2020), Wordle (Subercaseaux & 
Lokshtanov, 2022), Magic: the Gathering 
(Churchill et al., 2019), Matching Match (Iburi & 
Uehara, 2024), Swish (Dailly et al., 2024), а также 
разборы шахмат и подобных им игр (в том 
числе режим Solo Chess с  сайта chess.com) 
(Rin & Schipper, 2024; Ambrona, 2022; Aravind 
et al., 2022). Подобные конференции и статьи 
показывают, что важен не источник игры 
для исследования, а математические идеи и 
принципы, заложенные в ней.

4 URL: https://fun2026.limos.fr/
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Несмотря на богатый арсенал существую-
щих теоретико-игровых моделей, игра «Индо-
незийский покер» до сих пор не получила систе-
матического научного осмысления. Во-первых, 
отсутствует формальная модель игры. Суще-
ствующие исследования фокусируются либо на 
чисто комбинаторных аспектах (Bouton, 1901; 
Sprague, 1935; Grundy, 1939; Burke et al., 2024), 
либо на чисто вероятностных (Ferguson, 1989; 
Bertsekas, 2005; Puterman, 1994), не затрагивая 
гибридной природы данной игры.

Настоящая статья восполняет этот про-
бел, предлагая строгое определение игры как 
стохастического процесса с управлением на 
ориентированном графе позиций.

Во-вторых, отсутствует полное или даже 
частичное решение игры. До настоящей рабо-
ты не были исследованы базовые вопросы: ка-
кова оптимальная стратегия в игре? Насколько 
на вероятность победы влияют умения игрока, 
важна ли удача? Как определить стратегию, 
обеспечивающую более чем 50 % вероятности 
выигрыша против любой другой (ее существо-
вание гарантируется теоремой Нэша)?

На бóльшую часть из этих вопросов полу-
чены ответы в настоящей статье.

Оптимальная стратегия. 
Математическое ожидание 

времени игры
Авторов в настоящей статье интересует 

стратегия, оптимальная в среднем, т. е. план 
действий, минимизирующий среднее время 
(в ходах) до полного переворота всех фишек. 
На первый взгляд, в этой игре речь в принципе 
не идет об игровом взаимодействии, а лишь о 
везении и умении выбрать правильный ход. 
Однако в некоторых случаях теоретически 
может оказаться стратегически выгодным 
применять иную стратегию, которая в ответ 
на используемые оппонентами стратегии 
приведет к победе с бóльшей вероятностью, 
несмотря на то, что будет по среднему време-
ни уступать какой-то иной стратегии. Данное 
весьма тонкое соображение погружает нас 
в теоретико-игровой контекст, с ходу делая 
задачу на порядок сложнее (ибо придется 
искать для любого числа игроков стратегии, 
оптимальные в ответ друг на друга – иными 
словами, искать равновесие по Нэшу в игре 
выбора стратегий поведения; кроме того, 
появляются динамические аспекты, так как 
на каждом шаге в игре видна реализация всех 

случайностей в ходах произошедших до сих 
пор). Даже поиск симметричного равновесия, 
т. е. стратегии, оптимальной в ответ на саму 
себя, нам видится за пределами наших интел-
лектуальных возможностей. Мы оставляем 
эту задачу для будущих гениев и переходим 
к вычислению стратегии, оптимальной в 
среднем.

Назовем состоянием игры  (S) множество 
уже перевернутых фишек. Для каждого состоя-
ния мы обозначим среднее время до заверше-
ния игры за t[S]. Здесь уже необходимо решить, 
допускаются ли стратегические пропуски 
ходов; вскоре мы увидим, что от этого будут 
зависеть и оптимальная стратегия, и среднее 
время протекания игры при ней. Задача с 
запретом на пропуски ходов алгоритмически 
почти тривиальна, поэтому мы сосредоточи-
ли наше внимание на варианте игры с воз-
можностью стратегического пропуска хода. 
Впрочем, основная рекуррентная формула, 
связывающая среднее время до завершения 
игры в конкретном состоянии S с временами 
в состояниях, непосредственно следующих 
за S, выглядит для двух вариантов правил игры 
одинаково; разница лишь в том, трактуем ли 
мы множество пропусков хода как множество 
позиций, где сделать ход нельзя, либо как 
множество позиций, где игрок либо не может, 
либо не хочет сделать ход в соответствии с 
выбранной им стратегией игры.

Выведем эту формулу.
На каждом ходу возможно 36 различных 

комбинаций чисел на кубиках. Игрок реаги-
рует на каждую комбинацию в соответствии 
со стратегией. Если он пропускает ход, то со-
стояние не меняется, среднее время остается 
прежним. Если он совершает ход, то состояние 
меняется, и соответствующее ожидаемое вре-
мя задается значением t для новой конфигу-
рации при нашей стратегии в игре.

Рекуррентная формула выглядит следую-
щим образом:

 
,

11 , , ,
36 a b

t S t S S a b        (1)

где  , ,S a b  – выбранное действие: либо 
множество  ,a b , либо  a b , либо пустое 
множество. Последняя ситуация имеет место 
в том случае, если ход невозможен (для вари-
анта игры с запретом на пропуски ходов). Та 
же самая ситуация для варианта игры с раз-
решением на пропуск хода имеет место тогда, 
когда ход либо невозможен, либо нежелателен.
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Теорема 1. Если стратегия в конфигурации  
S предписывает ходить ровно в n случаях из 36 
(неважно, в каком из двух вариантов игры), то

 
 

, ,

36 1 , ,
S a b

t S t S S a b
n n  

       . (2)

Доказательство начнем с общей формулы 
(1). Из 36 исходов кубиков ровно n соответству-
ют ненулевым ходам  ,  ,     S a b , а в остальных 
36 n  случаях конфигурация не меняется, 
и соответствующие слагаемые равны .t S    
Поэтому:

 
 

 
, ,

11 36 , ,
36 S a b

t S n t S t S S a b
 

 
              

 
 .

Домножая на 36 и перегруппировав члены, 
получаем:

 
 

, ,

36 , , .
S a b

nt S t S S a b
 

      
Поделив на n, получаем формулу теоремы. 

Ч.т.д.
Теорема 1 сводит задачу к динамическому 

программированию (Аннабаева, 2023): дви-
гаясь от простых состояний к более сложным, 
мы выбираем действия  , ,S a b , минимизи-
рующие ожидаемое время. Алгоритм вычис-
ления стратегии приведен в приложении 1. 
Поговорим об этом алгоритме более подроб-
но, возвращаясь к вопросу о стратегическом 
пропуске хода.

Пример. Пусть остаются фишки {1,6}. Если 
выпадает дубль (6,6) и игрок закрывает ше-
стерку, то единственным оставшимся ходом 
будет выпадение (1,1), что в среднем зани-
мает 36 бросков. Если же игрок сознательно 
пропустит ход, то он будет ждать выпадения 
одной из комбинаций (1,6), (6,1) или (1,1), что 
в среднем займет 12 ходов. В трети случаев 
(выпадение (1,1)) нужно будет дополнительно 
закрывать шестерку, но для этого подходят 
целых 6 комбинаций. В среднем на это уйдет 
еще 6 ходов. Таким образом, общее ожидаемое 
время составляет около 14 ходов вместо 36 – 
выигрыш весьма существенный.

Чтобы явным образом учесть в алгоритме 
стратегические пропуски ходов, мы ниже 
будем считать, что  , ,S a b  обозначает ход 
во всех случаях, когда он по правилам воз-
можен, и введем дополнительную функцию 
   ,  ,      0,1 S a b  , определяющую осознанный 

пропуск хода:
–  ,  ,    1 S a b  , если при выпадении  , a b  

игрок делает ход  ,  , S a b ;

–  ,  ,     0S a b  , если он сознательно пропу-
скает.

Функция  ,  , S a b  определяется только для 
таких комбинаций  ,  ,  ,S a b  в которых ход по 
правилам возможен, т. е. в которых по-ново-
му определенная  ,  ,  S a b    (эта  ,  ,  S a b  
соответствует игре с запретом на пропуски 
ходов). С учетом нововведенных обозначе-
ний формула среднего времени принимает 
следующий вид:

     

   
, ,

, ,

36 , , , ,
.

, ,
S a b

S a b

S a b t S S a b
t S

S a b
 

 

    
   




 (3)

Очевиднейшим алгоритмом, позволяю-
щим минимизировать данный функционал, 
будет полный перебор по всем возможным 
реализациям функции ρ. Их, как несложно 
видеть, 236. На практике нас интересуют только 
значения  ,  ,  ,S a b  для которых  , , ,S a b    
что, конечно, уменьшает перебор, но всё же 
оставляет нас в классе экспоненциальных 
алгоритмов (Карпов, Трифонов, 2007).

Однако следующая абстрактная теорема из 
теории оптимального управления позволяет 
свести решение к полиномиальному времени.

Теорема 2 (о монотонности). Пусть за-
даны положительные числа  1,  , .  na a  Тогда 
минимум функционала

  1
1

1

, , , 0,1
n

k kk
n kn

kk

K a p
f p p p

p





    




 (4)

достигается на пороговой комбинации

k kp a L   
для некоторого порога L.

Доказательство теоремы проведем в не-
сколько этапов.

Лемма 1 (минимум при фиксированной сум-
ме). Упорядочим числа 1 2: .k na a a a 

Среди всех наборов с фиксированной 
суммой

P p
минимальное значение функционала дости-
гается на «жадной» комбинации:

 
1,

1

,, 1

0,
k

k P
p P P k P

k P

 
   
  

где {P} – дробная часть числа P.
Доказательство Леммы 1. Пусть минимум 

достигается на каком-то наборе, отличном от 
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указанного. Тогда найдем первое k, где pk < 1. 
Так как сумма равна P, существует индекс l > k с 
pl > 0. Увеличим pk на величину d = min(1 – pk,pl) 
и одновременно уменьшим pl на d. Тогда зна-
чение функционала изменится на

 .k ld a a 
Так как 1 ka a , это изменение не увеличи-

вает значение функционала. А значит, у нас 
либо получилось уменьшить целевое значение 
(противоречие), либо за конечное число шагов 
мы сумеем достичь комбинации, удовлетво-
ряющей условию «жадности».

Введем полезную функцию g:
   1, ,min

k
kp P

g P f p p
 

  . (5)
Лемма 2 (зависимость g от P). Для целого 

P = m:

  1

m

kk
K a

g m
m




  .

Для ,P m x   1 :0,x   

  11 1
1 ,

m

k mk m m
m

K a a x A ma
g m x a

m x m x
 



  
   

 


1

m

m k
k

A K a


  .

На каждом отрезке ,  1m m     функция g 
монотонна: убывает, возрастает или посто-
янна в зависимости от знака 1 .m mA ma 

Лемма 3 (о продолжении монотонного воз-
растания). Если функционал g возрастает на 
отрезке , 1PP   , то он продолжит возрастать 
на всех следующих отрезках.

Действительно, для ,    1 B B  

   1, .B

Ag B A A a B P
B 


 

Тогда

 1 1 1

1 1 0.
B B B

B P

A Ba A B P a Ba

A Pa A Pa
  

 

    



 

   

А это и является критерием возрастания 
функции на ,    1  .B B  

Следствие. Функция g либо чисто моно-
тонная, либо унимодальна: сначала убыва-
ет, затем возрастает. Минимум достигается 
при некотором целом P. И тогда порог L = ap. 
отвечает условию теоремы 1. При этом опти-
мальная комбинация соответствует первым P 
наименьшим ak.

Из теоремы следует жадный алгоритм 
(Новиков, Поздняков, 2005): сортируем зна-
чения по возрастанию, перебираем префик-
сы и выбираем тот, где дробь минимальна. 

Подробный псевдокод алгоритма приведен в 
приложении 2.

Математические ожидания, полученные с 
помощью приведенных алгоритмов5: 

1) для случайной стратегии ~ 52,33;
2) для оптимальной стратегии без пропу-

сков ~ 48,31;
3) для оптимальной стратегии с пропуска-

ми ~ 46,56.
С помощью компьютерных вычислений 

нами получено полное описание идеального 
хода для любой ситуации в игре, однако это 
описание не подходит для практического 
применения ввиду очень большого объема 
информации для запоминания. Поэтому нами 
была предложена (угадана) простая стратегия, 
которая дает примерно схожее с оптимальным 
математическое ожидание. Стратегия состоит 
всего из двух пунктов:

1) если мы можем закрыть и сумму, и пару, 
то закрываем сумму, если она больше или 
равна 8, в противном случае закрываем пару;

2) если после хода из чисел от 1 до 6 оста-
нутся только 1 или только 2, пропускаем ход.

Во всех остальных случаях, когда можем 
закрыть ровно 1 вариант и правило 2 не вы-
полняется, просто закрываем этот вариант.

При всей простоте стратегия дает весьма 
неплохой результат: среднее время ожидания 
закрытия всей доски для игрока, который ее 
придерживается, ≈46,91, что очень слабо отли-
чается от оптимальной стратегии.

Вычисление вероятностей 
для пары стратегий

Мы уже нашли среднее время до выигры-
ша для всех интересующих нас стратегий, 
однако оно не дает полного представления, 
насколько одна стратегия лучше другой. Как 
часто игрок, закрывающий доску в среднем 
за 48 ходов, будет побеждать игрока, закан-
чивающего за 52 хода? На самом деле соот-
ношение побед и поражений будет не 52 к 48, 
а заметно лучше. Поэтому дополнительная 
наша задача – выяснить, как найти эту ве-
роятность.

Постановка задачи: пусть x1 и x2 – страте-
гии, и нам нужно определить, с какой вероят-
ностью игрок, следующий стратегии x1, закон-

5  Исходный код для вычисления ожидаемых времен 
игры, а также полные таблицы для каждого из возмож-
ных состояний доступны по ссылке https://github.com/
heni/GameShastun
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чит раньше игрока, следующего стратегии x2, 
и наоборот, а также вероятность ничьей.

Вероятность ничьей будем считать из сле-
дующих соображений: ничья случается, если 
оба игрока закончили игру за одинаковое чис-
ло ходов (за 1 ход – что невозможно, за 2 хода – 
что тоже невозможно, … за 10 ходов – что уже 
происходит с положительной вероятностью, 
… за n ходов и так далее до бесконечности – 
здесь нет предела, теоретически любая стра-
тегия в применении может реализоваться 
за сколь угодно большое время). Итоговая 
вероятность представляет собой сумму беско-
нечного ряда, где каждый член – произведе-
ние вероятностей закончить на k-м шаге для 
каждой из двух стратегий. Вероятность победы 
каждого участника мы найдем схожим обра-
зом: это сумма ряда, где члены представляют 
собой произведение вероятностей того, что 
первый закончит ровно за k шагов, а второй 
более чем за k шагов, по всем k.

Всё, что осталось научиться находить, – это 
распределение вероятности для произвольной 
стратегии, чтобы точно знать вероятность 
победить на k-м шаге. 

Чтобы посчитать эту вероятность, сведем 
игру по стратегии к случайному процес-
су. Вектор состояния случайного процесса 
(4096-мерный) будет в позиции  i содержать 
вероятность нахождения в соответствующей 
позиции игры. Для изначального положения 
этот вектор содержит все нули, кроме единицы 
в позиции 4096 (все фишки открыты).

Введем также матрицу стратегии – это ква-
дратная таблица 4096 на 4096, в элементах i, j 
которой находятся вероятности перехода из 
позиции с номером i в позицию с номером j при 
следовании этой стратегии за один ход (таких 
переходов немного и матрица сильно разреже-
на). Можно заметить, что сумма каждой строки 
матрицы равна 1 – такие матрицы называются 
стохастическими (Альпин, Альпина, 2012).

Для нас полезным фактом является то, что 
данная матрица позволяет просто рассчиты-
вать состояния процесса после k итераций.

Если s0 – вектор состояния процесса в 
момент времени 0, sk – вектор состояния про-
цесса в момент времени k, M – стохастическая 
матрица процесса, то

0 .k
ks s M

Для вычисления вероятностей победы/
поражения нужно уметь вычислять значения 

вероятности закончить игру в ход с номером k 
при следовании определенной стратегии. 
Вполне очевидно, что если в ход с номером k 
вероятность оказаться в позиции 0 (конечной 
позиции) была p1, а после этого хода стала p2, 
значит, вероятность закончить игру ровно в 
этот ход – p2 – p1.

Вычислительный эксперимент показыва-
ет, что вектор состояния s достаточно быстро 
сходится к естественному стационарному 
положению (c вероятностью 1 мы находимся 
в состоянии 0 – все фишки закрыты).

На практике 1000 итераций уже доста-
точно, чтобы вероятность незавершения 
игры была меньше 10–13, чего достаточно для 
точного вычисления 10 значащих цифр ве-
роятностей победы/поражения. Результаты 
вычисления приведены в таблице.

В процессе исследования возможностей 
для ускорения вычислений помимо примене-
ния классических подходов к перемножению 
вектора на разреженную матрицу нам удалось 
обнаружить, что и сам вектор состояния в 
процессе вычислений с некоторого момента 
приобретает некоторое количество нулей, 
которые сохраняются при любом дальней-
шем числе итераций. Это может послужить 
дополнительным источником оптимизации. 
Поэтому далее будут рассмотрены особенно-
сти изменения данного вектора.

Каждая позиция (j) (обозначающая вероят-
ность нахождения в позиции под номером j) 
вектора sk вычисляется по формуле:

1 1, 2 2, 4096 4096, .j j j jp p M p M p M  

Здесь слева – значение позиции (j) на сле-
дующей итерации вектора, а справа – значе-
ния на текущей итерации этого вектора.

Назовем позицию вектора  (j) зависимой 
от позиции  (i), если элемент матрицы ,i iM  
ненулевой. Зависимость обозначает непо-
средственное влияние на значение позиции 
на следующем шаге.

Позиция (i) косвенно зависит от (n), если 
существует набор индексов i, j, k,…, m, n такой, 
что (i) зависит от (j), (j) зависит от (k),…, (m) 
зависит от (n).

Если же , 0,i iM   тогда позиция (i) – самоза-
висимая. Самозависимые позиции обладают 
следующим свойством – если они принимают 
ненулевое (даже положительное, так как это 
вероятность) значение, они уже не примут 
нулевое значение ни на какой итерации. Так 
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как их значение на следующей итерации – 
сумма его текущего положительного значения 
с положительным коэффициентом ,i iM  и еще 
нескольких неотрицательных слагаемых.

Позиции, которые, начиная с некоторой 
итерации, никогда не принимают нулевое 
значение, назовем необнуляемыми (они не 
обязательно должны быть самозависимые). 
Позиции, которые после некоторой итерации 
всегда будут равны нулю, – обнуляемыми. 
Стоит отметить, что промежуточных позиций, 
которые через сколь угодно много итераций 
могут принимать и нулевое и ненулевое зна-
чение, в векторе существовать не может, это 
будет показано позже.

Теперь же  сформулируем  несколько 
свойств на основе введенных обозначений.

Свойство 1. Позиция, которая косвенно 
зависит от необнуляемой, – необнуляемая.

Доказательство. Сначала докажем это 
свойство для прямой зависимости. Если по-
зиция прямо зависит от необнуляемой, зна-
чит в сумме, определяющей ее значение на 
следующей итерации, всегда будет ненулевой 
элемент, а значит, она тоже необнуляемая. 
Если учесть, что косвенная зависимость – это 
конечная цепочка прямых зависимостей, 
свойство доказано.

Свойство 2. Несамозависимая позиция, 
не зависимая косвенно от необнуляемых, – 
обнуляемая.

Доказательство. Поскольку такая позиция 
зависит прямо только от обнуляемых пози-
ций, существует итерация, на которой они 

все уже обратятся в 0. А так как ее значение 
определяется только суммой их значений и 
она дополнительно не зависит от себя, то она 
тоже обнулится.

Из этих двух свойств уже следует, что все 
позиции либо обнуляемые, либо необнуляе-
мые. Чтобы показать это, мы будем постепен-
но выделять группы позиций, для которых мы 
точно знаем их обнуляемость. Если позиция 
косвенно зависит от необнуляемой, то она 
необнуляемая по свойству 1. Далее рассма-
триваем косвенно независимые от необну-
ляемой позиции. Если позиция не является 
самозависимой, она обнуляемая по свойству 2. 
Далее позиции еще и самозависимые. Если 
такая позиция хоть раз примет положительное 
значение, она останется положительной сколь 
угодно долго, значит, она необнуляемая. Если 
же она ни на какой итерации не примет поло-
жительное значение, она обнуляемая. 

Понять, какие позиции вектора обнуляе-
мые, а какие нет, можно только анализируя 
матрицу, поскольку она полностью опреде-
ляет эти свойства. Однако мы предлагаем 
следующий простой способ, привлекающий 
совсем небольшие вычислительные затраты, 
учитывая приведенное ниже свойство.

Свойство 3. Максимальная длина цепочки 
зависимостей в косвенной зависимости – 12. 
Длина – число отношений зависимости, а не 
позиций в цепочке.

Доказательство. Вспоминаем, что пози-
ция в нашем векторе представляет состоя-
ние игры. Вероятность оказаться в текущем 

Т а б л и ц а 
Вероятности для пар стратегий

Стратегия Оптимальная 
с пропусками

«Простая» 
стратегия

Оптимальная 
без пропусков

Случайный 
выбор

Оптимальная 
с пропусками

49,2382 % 49,7463 % 51,0983 % 55,5169 %
1,5237 % 1,5014 % 1,4627 % 1,3748 %

49,2382 % 48,7523 % 47,4389 % 43,1083 %

«Простая» 
стратегия

49,2596 % 50,6160 % 55,0196 %
1,4808 % 1,4438 % 1,3600 %

49,2596 % 47,9402 % 43,6204 %

Оптимальная 
без пропусков

49,2953 % 53,6568 %
1,4093 % 1,3321 %

49,2953 % 45,0111 %

Случайный 
выбор

49,3607 %
1,2786 %

49,3607 %
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состоянии игры может зависеть только от 
вероятности быть в этом же состоянии игры 
на прошлом ходу (самозависимость) и веро-
ятностей находиться в состояниях с меньшим 
числом перевернутых фишек на прошлом 
ходу. Так как фишек у нас всего 12, значит, 
максимальная длина цепочки зависимостей 
тоже 12.

Теперь же переходим к способу поиска 
обнуляемых позиций. Мы предлагаем просто 
вычислить вектор  s12 и посмотреть, какие 
позиции равны 0. Из свойств 1 и 3 мы можем 
понять, что в s12 все необнуляемые позиции 
нашего вектора успеют принять ненулевое 
значение. Все обнуляемые позиции, в  свою 
очередь, гарантированно обнуляются через 
ход после того, как все позиции, от которых 
они зависят, обнулились (следствие свой-
ства 2). После первого хода обнулится пози-
ция с нулем перевернутых фишек, если она 
обнуляемая. После второго хода обнулятся все 
обнуляемые позиции с 1 перевернутой фиш-
кой, так как они зависят максимум от позиции 
с 0 перевернутых фишек, и т. д. Следовательно, 
все обнуляемые элементы (кроме, пожалуй, 
позиции, обозначающей конец игры, но она 
очевидно необнуляемая из-за самозависимо-
сти) успеют обнулиться.

Проведенный после этого численный 
эксперимент приводит к интересным ре-
зультатам: он показывает, что оптимальная 
стратегия весьма уникальна и разительно 
отличается от всех остальных по числу обнуля-
емых позиций: в то время как у всех остальных 
их число не превышает 10 % от общего числа, 
в оптимальной стратегии таких позиций 1682 
из 4096, около 41 %! Помимо того, что опти-
мальную стратегию считать проще остальных, 
мы получаем очень красивый факт: оптималь-
ный игрок, в отличие от всех остальных рас-
смотренных, уже через 12 ходов после начала 

игры гарантированно не окажется почти в 
половине всех возможных игровых ситуаций, 
так как тонко чувствует небольшие потери от 
перехода в «плохие» позиции.

На этом мы завершаем разбор игры, однако 
перед этим сделаем еще одно важное заме-
чание, точнее, вернемся к уже озвученной в 
начале статьи сложной проблеме: когда мы 
говорили об оптимальной стратегии, мы го-
ворили о стратегии с наименьшим средним 
ожиданием времени закрытия всех фишек. 
Однако оптимальна ли такая стратегия про-
тив любой другой стратегии по критерию 
вероятности победы в игре? Согласно общим 
теоремам существования равновесия Нэша 
и его аналогов в динамической постановке 
игры, должна существовать стратегия, не 
проигрывающая по вероятности победы всем 
остальным стратегиям (и, как следствие, наи-
лучшая в ответ на применение копии себя же). 
Как ее найти?

Этот интереснейший и сложный вопрос 
мы оставляем для будущих исследований (или 
кто-то из читателей статьи его разрешит?).
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П р и л о ж е н и е  1

Псевдокод динамического программирования для вычисления  , ,S a b

Задача: для каждого состояния S  и исхода кубиков  ,a b  выбрать действие  , ,S a b , ми-
нимизирующее ожидаемое время до победы.

function compute_strategy(): 
#  2^12  (   12  / ) 
for each state S in order of increasing |S|: 

if S = : 
t[S] = 0 
continue 

#   36   
for each (a, b) in dice_pairs: 

options = possible_moves(S, a, b) # {a+b}, {a,b} 
   
 
best_value =  

best_action =  
 
#     t 
for move in options: 

new_state = S \ move 
candidate = t[new_state] 
if candidate < best_value: 

best_value = candidate 
best_action = move 

[S, a, b] = best_action 
 

#  t[S]   1 
n = number of (a,b) with [S,a,b]   

t[S] = (36 + sum(t[S \ [S,a,b]] over [S,a,b]  )) / n 
return , t 
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П р и л о ж е н и е  2

Псевдокод жадного алгоритма для  , ,S a b

function compute_rho(S, , t): 
candidates = [] #  (t_next, (a,b)) 
 
for each (a, b) in dice_pairs: 

if (S,a,b)  : 
next_state = S \ (S,a,b) 
candidates.append((t[next_state], (a,b))) 

if candidates is empty: 
return map_all_pairs_to_zero() 
 

sort(candidates by t_next ascending) 
 
best_value =  
best_m = 1 
prefix_sum = 0 
 
for m from 1 to length(candidates): 

prefix_sum += candidates[m].t_next 
candidate = (36 + prefix_sum) / m 
if candidate < best_value: 

best_value = candidate 
best_m = m 

rho = {} 
for i, (val, pair) in enumerate(candidates): 

rho[pair] = 1 if i < best_m else 0 
return rho 


