DOI: https://doi.org/10.17308/geo/1609-0683/2023/2/12-20

Физико-географическое районирование ландшафтов красноцветных отложений в Оренбургском Приуралье

Н.В. Петрищева, В.П. Петрищев №

Оренбургский государственный университет, Оренбургский федеральный исследовательский центр УрО РАН, Российская Федерация (460018, г. Оренбург, пр. Победы, 13)

Аннотация. Цель статьи состоит в разработке схемы физико-географического районирования ландшафтных комплексов Оренбургского Приуралья, ведущим фактором формирования которых выступают красноцветные отложения.

Материалы и методы. Материалами и методическим обеспечением являются материалы литературных и фондовых источников, также результаты ранее проведенных полевых работ по изучению ландшафтных комплексов красноцветных отложений.

Результаты и обсуждение. Приоритетные вопросы, выставленные на обсуждение: неоднородность геоморфологической выраженности ландшафтных комплексов красноцветных отложений в пределах Общего Сырта и в пределах Предуральского краевого прогиба, различия между ними в эрозионной расчлененности и асимметрии склонов водоразделов. Ключевая особенность физико-географического районирования сыртового рельефа, сложившегося на красноцветных молассовых отложениях пермского и триасового возраста заключается в совмещении разнообразных ландшафтообразующих факторов – неотектонических, лито-фациальных и климатических – определяющих морфологическую структуру ландшафтных геосистем. Наиболее важным элементом ландшафтов, сформировавшихся на красноцветных породах, являются элювиальные и эрозионно-денудационные формы сыртового рельефа, играющего роль индикатора физико-географического районирования и типизации ландшафтов Общего Сырта и Предуралья.

Выводы. Тектогенные и климатогенные факторы имеют неравнозначное значение в формировании красноцветных ландшафтов. С запада на восток отмечается нарастание значения тектонических процессов как в целом, так и в пределах отдельных провинций и районов красноцветных ландшафтов.

Ключевые слова: красноцветные отложения, рельеф, триасовые отложения, пермские отложения, ландшафтное районирование.

Для цитирования: Петрищева Н. В., Петрищев В. П. Физико-географическое районирование ландшафтов красноцветных отложений Оренбургского Приуралья // Вестник Воронежского государственного университета. Серия: География. Геоэкология, 2023, № 2, с. 12-20. DOI: https://doi.org/10.17308/ geo/1609-0683/2023/2/12-20

ВВЕДЕНИЕ

Широко развитые в пределах Общего Сырта, Бугульминско-Белебеевской возвышенности и равнин Предуралья молассовые отложения пермо-триасового возраста со сложным лито-фациальным составом не образуют сложно дифференцированные ландшафтные геосистемы с разнообразными межкомпонентными взаимодействиями как, например, выходы галогенно-сульфатной толщи кунгурских эвапоритов или известняки верхнепермского отдела. Красноцветы образуют более стабильную и инертную литогенную основу геосистем. Термин "красноцветные ландшафты" часто используется применительно для ландшафтов, существовавших в Оренбургском Приуралье на рубеже перми и триаса. Почвы древних красноцветных ландшафтов развивались на в пределах Общего Сырта преимущественно в условиях аккумулятивной аллювиально-озерной равнины, а в Предуралье – аккумулятивной болотно-озер-

[⊠] Петрищев Вадим Павлович, e-mail: wadpetr@mail.ru

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

[©] Петрищева Н.В., Петрищев В.П., 2023

ной равнины [4, 7]. Одной из интересных черт ископаемых почв красноцветной эпохи является наличие карбонатного горизонта, что сближает их с семиаридными почвами современных степей Евразии. Однако, гумусовый горизонт отсутствовал. Слабый биопотенциал, а также широкое развитие гипсоносных и солевых кор выветривания сближал ландшафты красноцветов с пустынями тропиков и субтропиков, но по гидротермическим параметрам они были ближе современным ландшафтам степей [12, 14, 15].

Морфологическая структура ландшафтов красноцветной молассы пермского и триасового возрастает в Оренбургском Приуралье в большей степени связана с современными природными процессами, чем с унаследованным литоморфным основанием. Одним из факторов, существенно усложняющим морфологию ландшафтов красноцветов, является проявление экспозиционной неоднородности склонов [2].

Анализ ландшафтных профилей с субмеридиональным простиранием показывает, что экспозиционная асимметрия склонов усиливается в связи высоким содержанием в красноцветных породах гипсов, известняков, доломитов, отражающих их аридное происхождение [18]. В пределах склонов южных экспозиций сыртовых водоразделов чаще всего обнажаются породы красноцветной молассы и формируются характерные урочища – приречные яры, яруги, лбы, кручи, увалы, сыртовые мысы, куэстообразные гряды и гривы, денудационные останцы (шиханы). Таким образом, ландшафты красноцветных пород участвуют в формировании ксеротермных, субаридных и литоморфных вариантов степных геосистем Заволжья, тем самым регрессивно возвращаясь к эпохе своего зарождения.

При физико-географическом районировании ландшафтов красноцветной молассы использованы формы районирования ландшафтов, идентичные территориально и генетически. Особое внимание уделялось классам и формам инсоляционной и циркуляционной асимметрии ландшафтных геосистем Ф. Н.Милькова [10]. Так как большинство природных комплексов на красноцветных породах в Оренбургском Приуралье представлено в рельефе резко неравносклонными водоразделами, они могут быть отнесены к классу полной или морфологической асимметрии.

Среди различных форм асимметрии морфологические черты ландшафтов красноцветных отложений определяются тектонической асимметрией, которая связана с погружением отдельных

блоков, принадлежащих структурным этажам Волго-Уральской антеклизы в сторону Прикаспийской синеклизы; при этом поднятое северное крыло блоков образует серию линейных субширотных гряд и увалов, нависающих над речными долинами и параллельно повторяющихся с севера на юг; топографической асимметрией, которая определяется направлением падения горизонтов красноцветных толщ (с севера на юг), в результате чего эрозионные врезы вскрывают обнажения красноцветов большой протяженности, мощности и выдержанности; инсоляционной асимметрией, проявляющейся с помощью гидротермического градиента на склонах разной экспозиции и при развитии склоновой микрозональности [8]. Последняя форма асимметрии наиболее ярко выражена особенно в весеннее время в связи с таянием снега, и вследствие усиления микроциркуляции воздушных масс вниз по склону, что, напротив, уменьшает выраженность микрозон [1, 5].

МАТЕРИАЛЫ И МЕТОДЫ

Выделение в отдельную категорию ландшафтных геосистем на красноцветных молассовых отложениях в Оренбургском Приуралье связано с двумя причинами: 1) сложностью терригенной толщи, накопление которой сопровождалось неоднократной сменой лито-фациальных условий в условиях разрушения Уральских гор; 2) доминированием эрозионно-денудационных форм рельефа на красноцветных отложениях, что в Приуралье создает особый тип долинно-балочного (сыртового) рельефа.

По мнению И.С. Щукина [19] мягкие формы сыртового рельефа, относительная редкость вторичных врезов сыртовых долов и логов связаны с преобладанием глинистого состава красноцветов. Данное утверждение верно только в пределах Бугульминско-Белебеевской возвышенности, где обнажаются стратиграфические комплексы биармийского отдела перми.

Геохимическая инертность и, одновременно, лито-фациальное разнообразие, кажущаяся геоморфологическая однородность определяют сложность физико-географического районирования территории распространения красноцветных пород. Среди методов ландшафтной дифференциации нами использовался метод ведущего фактора [9]. В соответствии с данным методом ландшафтные комплексы должны объединяться на основе литогенного сходства. Поскольку в области развития красноцветных отложений практически не сформировались резко контрастирующие яркие геоси-

стемы, отражающие специфику воздействия литогенной основы на морфологию ландшафта, фактор широтно-зональной дифференциации ландшафтов выступил на первое место, позволив говорить только о границах развития ландшафтов сыртовых водоразделов или ландшафтов красноцветных отложений. В пределах Общего Сырта и Бузульминско-Белебеевской возвышенности проявление литоморфных факторов ландшафтогенеза существенно слабее широтно-зональных. В связи с этим нужно говорить не о литоморфности ландшафтов на красноцветных породах, а о том, насколько вариативны геоморфологические проявления красноцветной молассы в различных неотектонических или топографических условиях, и как изменяются гидротермические и почвенно-растительные компоненты в соответствии с геоморфологическими и лито-фациальными условиями.

Очевидно, что совпадение области развития красноцветных пород и сыртового рельефа не может быть случайным. Сыртовый рельеф в соответствии с принципом генетической обусловленности сформировался в результате взаимодействия современных климатических условий умеренного пояса Евразии с древней красноцветной молассой, что может считаться уникальным случаем. Платообразные водоразделы, асимметричность склонов, высотная ярусность, широкие балочные формы — наиболее выразительные черты сыртового рельефа Заволжья, которые формируются в результате совмещения семиаридного климата с пластами красноцветной молассы.

При выделении провинций в первую очередь принимались во внимание структурно-тектонические и литолого-геоморфологические особенности территории, т.е. ключевые факторы формирование ландшафтных комплексов в области развития красноцветной молассы. В качестве основных индикаторов провинциальной дифференциации выступали [6]: основные структурно-тектонические рубежи; геохронологические границы стратиграфических комплексов красноцветных пород пермской и триасовой систем; лито-фациальный состав красноцветной молассы; морфологические особенности сыртового рельефа.

Для определения границ между ландшафтными районами были выбраны процессы, отражающие влияние красноцветных пород на межкомпонентные взамодействия в ландшафте: тип ландшафтной асимметрии и степень ее выраженности через контрастность выражения урочищ южных и северных склонов; структура проявления скло-

новой микрозональности, которая обусловлена динамикой гидротермических показателей.

Метод встречаемости доминирующих геокомплексов применялся для обоснования границ ландшафтных районов. Были выделены повторяющиеся в границах ландшафтного района типичные урочища.

Например, в Большекинельском районе типичными являются отдельные водораздельные ровняди, которые отсечены друг от друга узкими и почти не ветвящимися ресеквентными логами, выходящими между южными склонами и приречными ярами к речным долинам; для Ток-Самарского района характерны узкие и извилистые сыртовые гряды со ступенчатыми склонами и плосконаклонными вершинами, которые ограничены также ресеквентными долами, но включены в общую систему водораздельных сыртов. Бузулукский ландшафтный район выделяется протяженными линейно вытянутыми увалами, рассекаемыми широкими балками, часто со вторичным врезом и локальными террасами. В пределах Восточно-Предуральского ландшафтного района водораздельные блоки красноцветных пород представлены сыртовыми массивами и сыртовыми узлами или островными горами (Козьи Горы и урочище Бишкаин), для Подуральского района обычны узкие и очень протяженные гряды с крутым южным склоном (Донгузские и Черновские горы), для Салмыш-Каргалинского района – система плосковершинных и слаборасчлененных увалов юго-восточного простирания.

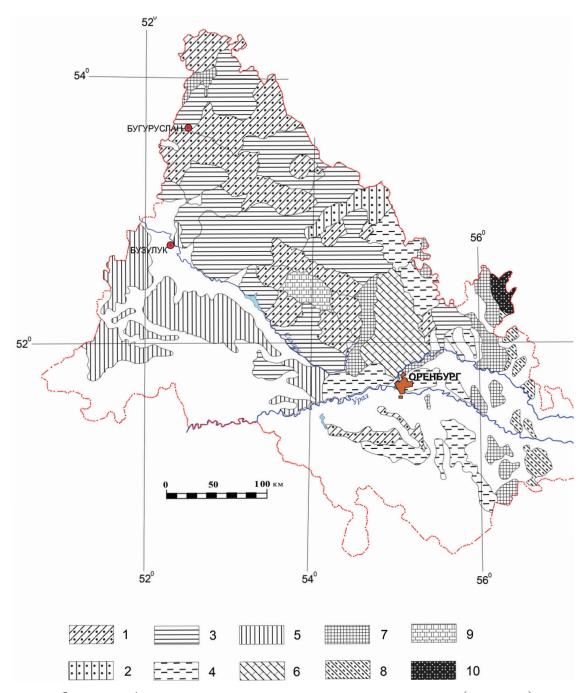
Для районов Предуралья красноцветные породы заключены в отдельные блоки между соляными антиклиналями и диапирами. При этом за счет подъема в крыльях солянокупольных структур на поверхность выходят породы даже не встречающихся на поверхности формаций красноцветной молассы.

При выделения ландшафтных границ на изучаемой территории использовался метод соотнесения и анализа различных типов тематического районирования. Сопоставлялись структурно-тектоническое, палеогеографическое, геоморфологическое, физико-географическое, почвенное районирование Оренбургского Приуралья [3, 11, 13, 16, 17].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ландшафты, литогенную основу которых составляет комплекс континентальных отложений красноцветной молассовой формации, образуют доминирующую в Оренбургском Приуралье группу геосистем. Инертные в геохимическом отношении терригенные красноцветные отложе-

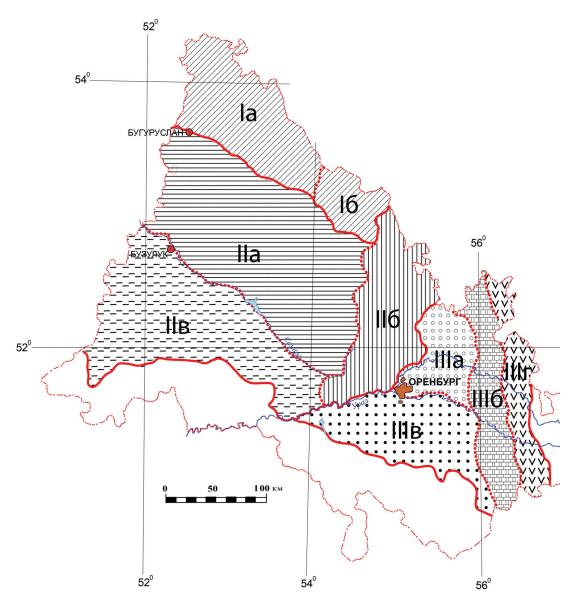
ния обусловливают доминирование при физико-географическом районировании ландшафтов Оренбургского Приуралья факторов широтной зональности, высотно-генетической ярусности и инсоляционной асимметрии склонов. В основу представляемого ландшафтного районирования геосистем красноцветных отложений в Оренбургской области положен анализ сыртового рельефа по морфодинамическим особенностям, отражающим основные факторы ландшафтной дифференциации территории.


Сложность районирования сыртовых ландшафтов Оренбургского Приуралья состоит в литологической повторяемости стратиграфических комплексов молассовых отложений, сочетающейся с различной выраженностью геоморфологических морфоструктур в пределах Волго-Уральской антеклизы и в Предуральском прогибе. Лито-фациальная повторяемость в определенной мере обусловлена закономерной сменяемостью областей седиментогенеза по отношению к области денудации – Прауралу. Существенней коррелируют ландшафты красноцветов с локальными тектогенными морфоструктурами. Например, водоразделы Общего Сырта и Бугульминско-Белебеевской возвышенности подчиняются субширотному простиранию блоковых массивов, что сопровождается небольшой мощностью осадочной толщи (до 3-4 тыс. м), а в пределах Предуральского краевого прогиба при колоссальной мощности осадочной толщи (до 16 тыс. м) водораздельные ландшафты соответствуют межсолевым субмеридиональным блокам. Однако, в обоих случаях ландшафты красноцветных отложений являются доминирующими или содоминирующими. Сыртовые водоразделы с обнажающимися в логах и ярах красноцветами придают ландшафтно-физиономическое своеобразие Оренбургскому Приуралью [16].

Классификация сыртового рельефа на красноцветной молассе, проводилась на основе выявления особенностей южных склонов междуречий (рис.1). Были выделены следующие группы рельефа: 1) асимметрично наклоненные плато с не расчлененным (сплошным) южным склоном; 2) многоярусные водоразделы с глубокими эрозионными врезами на южных склонах; 3) пологовыпуклые возвышенности без выраженной асимметрии склонов; 4) осевые субмеридиональные гряды с выраженными останцовыми формами; 5) многовершинные массивы с расходящимися узкими грядами; 6) увалы с пологим южным склоном, волнисто изрезанным широкими долами [20].

Часто встречающейся формой сыртовых водоразделов являются односторонне наклоненное плато, обрывающееся в форме ступенчатого южного склона. Первые ступени южных склонов расчленены узкими, глубокими и короткими логами, не рассекающими до конца водораздельное пространство. Собственно сыртовый водораздел в этом случае представляет собой вторую ступень плато. На междуречьях Большого Кинеля, Мочегая, Самары края асимметричных водоразделов образуют серии междуречных плато[11] и соответствуют висячим крыльям морфотектонических блоков. Наклонные плато развиты по правобережьям Сока, среднего течения Большого Кинеля, Малого Кинеля, Садака, Малого Урана, Черной, Донгуза. В целом, платообразные водоразделы развиты преимущественно в районах распространения песчаников и алевролитов татарского отдела пермской системы.

В том случае, если ресеквентные долины разделяют водораздел на отдельные сегменты, полностью его рассекая, образуется следующая широко распространенная форма сыртового рельефа — сыртовые уступы. Они плосковершинны и образуют на южных склонах водоразделов у впадения ресеквентов с субсеквенты сыртовые мысы. Предполагается, что данные особенности продиктованы ожелезнением песчаников татарского отдела пермской системы. Правобережные сыртовые уступы развиты в бассейнах рек Бугуруслан, Кутулук, Ток, Садак, Малый и Большой Уран, вдоль Самара, Дема, Чебенька.


Пологие симметричные возвышенности развиты в бассейне рек Салмыш, Урал, Сакмара, Боровка. Данный рельеф связан с тектоническими впадинами при небольшой активности экзогенных процессов. Субмеридиональные также симметричные сыртовые гряды сопровождают осевую часть Общего Сырта и доминируют в восточной зоне Предуральского прогиба, располагаясь вкрест речным долинам. По нашему мнению, осевая часть Общего Сырта тесно связана с тектоническими процессами, инициированными подъемом Урала. В Предуралье вследствие соляного диапиризма красноцветы не образуют сплошного чехла как на западе, а залегают блоками. Вследствие соляной тектоники красноцветные породы пермской системы выходят на поверхность в пределах речных пойм и террас. К таковым относится цепочка гряд вдоль левого берега реки Сакмара, а также гряды у сел Нежинка и Благословенка, образующие сужение долины реки Урал. Вследствие неотектонического опускания блоки красноцветов в цен-

Условные обозначения: 1. асимметрично наклоненные плато с не расчлененным (сплошным) южным склоном; 2. многоярусные водоразделы с глубокими эрозионными врезами на южных склонах; 3. увалы с пологим южным склоном, волнисто изрезанным широкими долами; 4. осевые субмеридиональные гряды с выраженными останцовыми формами; 5. многоярусные склоны ресеквентных врезов на южных склонах водоразделов; 6. куполообразные двухъярусные асимметричные слаборасчлененные плато; 7. симметричные пологие возвышенности; 8. узкие линейные гряды с ярко выраженной асимметрией; 9. островные многовершинные узлы с расходящимися узкими отрогами; 10. низкогорные грядовые массивы

[The symbols are: 1. asymmetrically inclined plateaus with an undifferentiated (continuous) southern slope; 2. multitiered watersheds with deep erosive cuts on the southern slopes; 3. cliffs with a gentle southern slope, undulately indented with wide valleys; 4. axial submeridional ridges with pronounced remnant forms; 5. multi-tiered slopes of resequent cuts on the southern on the slopes of watersheds; 6. domed two-tiered asymmetric weakly articulated plateaus; 7. symmetrical gentle hills; 8. narrow linear ridges with pronounced asymmetry; 9. island multi-vertex nodes with diverging narrow spurs; 10. low-mountain ridge massifs]

Рис. 1. Типы сыртового рельефа Оренбургского Предуралья [Fig. 1. Types of syrt relief of the Orenburg Urals]

*Сплошными линиями обозначены границы физико-географических провинций, пунктиром – ландшафтных районов

[*Solid lines indicate the boundaries of physical and geographical provinces, dotted lines – landscape areas]

Условные обозначения: І — Бугульминско-Белебеевская провинция: Іа — Большекинельский район; Іб — Придёмский район; ІІ — Общесыртовская провинция: ІІа — Ток-Самарский район; ІІб — Салмыш-Каргалинский район; ІІв — Бузулукский район; ІІІ — Предуральская провинция: ІІІа — Западно-Предуральский район; ІІІб — Цетральльно-Предуральский район; ІІІв — Подуральский район; ІІІг — Восточно-Предуральский район.

[The symbols are: I – Bugulminsko-Belebeevskaya province: Ia – Bolshekinelsky district; Ib – Pridemsky district; II – All-Syrtovskaya province: IIa – Tok-Samara district; IIb – Salmysh-Kargalinsky district; IIb – Buzuluksky district; III – Pre-Ural province: IIIa – Zapadno-Preduralsky district; IIB – Central-Preduralsky district; III – Poduralsky district; III – East Preduralsky district.]

Puc. 2. Физико-географическое районирование ландшафтов красноцветных отложений в Оренбургском Приуралье

[Fig. 2. Physical and geographical zoning of red-coloured sediments landscapes in the Orenburg Urals]

тральной части Предуральского краевого прогиба также оказались сжатыми. Восточная часть прогиба вновь представлена тектонически положительными блоками. В рельефе они представляют собой либо звездообразную систему сходящихся острых

гряд, либо отдельную линейно вытянутую гряду с короткими отрогами. Для склонов практически не отмечается асимметрия. Наиболее яркими примерами являются Козьи Горы, урочище Бишкаин, хребет Гирьял. Прямая и резкая конфигурация форм релье-

фа связана как с надвиговым давлением со стороны поднимающегося Урала и воздействием соляных антиклиналей, так и действием мощных флювиальных потоков с образованием долин прорыва.

На левобережье реки Самара красноцветные песчаники и глины триасового возраста в рельефе выражены в виде мягких сыртовых увалов, южная часть которых рассечена широкими и короткими долами. Водораздельные увалы с ресеквентными балками и долами, не сопровождающимися выходами красноцветов, протягиваются вдоль долин рек Бузулук, Чаган и Кинделя (рис.2). В процессе физико-географического районирования было выявлено далеко не полное совпадение структурно-тектонических и геоморфологических границ с границами ландшафтов, образованных красноцветными отложениями.

ЗАКЛЮЧЕНИЕ

Таким образом, изучение факторов, влияющих на физико-географическое районирование, позволяет по-новому взглянуть на роль литогенной основы в усложнении морфологической структуры геосистем и выявить морфогенетические особенности ландшафтогенеза Приуралья. Основной морфологической чертой ландшафтов красноцветных отложений являются разнообразные эрозионно-денудационные формы сыртового рельефа, имеющего ключевое значение в их районировании. Тектогенные и климатогенные факторы имеют неравнозначное значение в формировании красноцветных ландшафтов. С запада на восток отмечается нарастание значения тектонических процессов как в целом, так и в пределах отдельных провинций и районов красноцветных ландшафтов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бережной А.В. Склоновая микрозональность ландшафтов и ее варианты // Вопросы структуры и динамики ландшафтных комплексов, 1977, с. 145-151.
- 2. Беручашвили Н. Л. Четыре измерения ландшафта. Москва: Мысль, 1986, 210 с.
- 3. Геоморфологическое районирование СССР и прилегающих морей / С.С. Воскресенский, О.К. Леонтьев, А.И. Спиридонов и др. Москва: Высшая школа, 1980. 343 с.
- 4. Перельман А.И., Касимов Н.С. Геохимия ландшафта: Учебное пособие для студентов географических и экологических специальностей вузов. Москва: Астрея-2000, 1999. 762 с.

- 5. Климатическая геоморфология денудационных равнин / А.П. Дедков, В.И. Мозжерин, А.В. Ступишин, А.М. Трофимов. Казань: Издательство Казанского университета, 1977. 224 с.
- 6. Зайонц В.Н. Основные черты геоморфологии западной части Оренбургской области // Вопросы геологии Южного Урала и Поволжья, 1970, вып. 6, ч. 2, с. 43-51.
- 7. Кулева Г.В. *Верхнеказанские и татарские континентальные отложения Юго-Востока Русской платформы* / под ред. Н.С. Морозова. Саратов: Издательство Саратовского университета, 1980. 161 с.
- 8. Максютов Ф. А. Ландшафтная дифференциация склонов на Южном Урале и в Приуралье // Склоновая микрозональность ландшафтов, 1974, с. 68-73.
- 9. Мильков Ф.Н. Ландшафтная география и вопросы практики. Москва: Мысль, 1966. 256 с.
- 10. Мильков Ф. Н. Асимметрия ландшафтных комплексов // *Землеведение*, 1982, т. XIV, с. 5-15.
- 11. Очерки физической географии Чкаловской области / под ред. Ф. Н. Милькова. Чкалов: Чкаловское издательство, 1951. 212 с.
- 12. Перельман А.И. *Геохимия ландшафта*. Москва: Высшая школа, 1975. 344 с.
- 13. Русскин Г.А., Фокина Л.А., Пидорин А.В. *География Оренбургской области*. Челябинск: ЮУКИ, 1982. 80 с.
- 14. Рухин Л. Б. Основы общей палеогеографии. Ленинград: Гостоптехиздат, 1962. 628 с.
- 15. Страхов Н.М. *Основы теории литогенеза*. Москва: Издательство АН СССР, 1960. 212 с.
- 16. Чибилев А.А. Природа Оренбургской области (часть 1. Физико-географический и историко-географический очерк). Оренбург: Оренбургский филиал РГО, 1995. 128 с.
- 17. Чибилев А. А. Географический атлас Оренбургской области. Москва: Издательство ДИК: Оренбургское книжное издательство, 1999. 96 с.
- 18. Щербаков Ю. А. Из опыта изучения роли экспозиции в ландшафтообразовании // Влияние экспозиции на ландшафты, 1970, с. 3-100.
- 19. Щукин М.С. *Общая геоморфология*. Москва: Издательство МГУ, 1960. 616 с.
- 20. Дамрина Н. В. Особенности формирования природно-антропогенных ландшафтов на красноцветных отложениях Оренбургского Приуралья: автореферат дисс. ... кандидата геогр. наук. Оренбург, 2005. 22 с.

Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

> Поступила в редакцию 13.10.2022 Принята к публикации 30.05.2023

UDC 911.52
DOI: https://doi.org/10.17308/geo/1609-0683/2023/2/12-20

Physical and Geographical Zoning of Red-Coloured Sediments Landscapes in the Orenburg Urals

N. V. Petrishcheva, V. P. Petrishchev⊠

Orenburg State University,
Orenburg Federal Research Center of the Ural Branch of the Russian Academy of Sciences,
Russian Federation
(13, Pobedy Ave., Orenburg, 460018)

Abstract. The *purpose* of the article is to develop a scheme of physical and geographical zoning of land-scape complexes of the Orenburg Urals, the leading factor in the formation of which are red-colored sediments.

Materials and methods. Materials and methodological support are materials from literary and stock sources, as well as the results of previously conducted field work on the study of landscape complexes of red-colored sediments.

Results and discussion. Priority issues put up for discussion are the heterogeneity of the geomorphological expression of landscape complexes of red-colored sediments within the General Syrt and within the Pre-Ural trough, the differences between them in erosional dissection and asymmetry of watershed slopes. The key feature of physiographic zoning of the Syrtian relief, formed on red-coloured sediments of the Permian and Triassic age is the combination of various landscape-forming factors - neotectonic, litho-facial and climatic determining the morphological structure of landscape geosystems. The most important element of landscapes, formed on red-colored rocks, are eluvial and erosion-denudation forms of the General Syrt relief, playing the role of an indicator of physical-geographical zoning and typification of landscapes of the the General Syrt and Pre-Urals.

Conclusions. Tectogenic and climatogenic factors have unequal importance in the formation of red-coloured landscapes. From west to east, there is an increase in the importance of tectonic processes, both in general and within individual provinces and districts of red-coloured landscapes.

Key words: red-colored sediments, relief, Triassic sediments, Permian sediments, landscape zoning.

For citation: Petrishcheva N. V., Petrishchev V.P. Physical and Geographical Zoning of Red-Coloured Sediments Landscapes in the Orenburg Urals. Vestnik Voronezskogo gosudarstvennogo universiteta. Seria: Geografia. Geoekologia, 2023, no. 2, pp. 12-20. (In Russ.) DOI: https://doi.org/10.17308/geo/1609-0683/2023/2/12-20

REFERENCES

- 1. Berezhnoy A. V. Sklonovaya mikrozonal'nost' landshaftov i ee varianty [Slope microzonality of landscapes and its variants]. *Voprosy struktury i dinamiki landshaftnykh kompleksov*, 1977, pp. 145-151. (In Russ.)
- 2. Beruchashvili N.L. *Chetyre izmereniya landshafta* [Four dimensions of the landscape]. Moscow: Mysl', 1986, 210 p. (In Russ.)
- 3. Geomorfologicheskoe rayonirovanie SSSR i prilegayushchikh morey [Geomorphological zoning of the USSR and adjacent seas] / S.S. Voskresenskiy, O.K. Leont'ev, A.I. Spiridonov i dr. Moscow: Vysshaya shkola, 1980. 343 p. (In Russ.)
- 4. Perel'man A.I., Kasimov N.S. Geokhimiya landshafta: Uchebnoe posobie dlya studentov geograficheskikh i ekologicheskikh spetsial'nostey vuzov [Geochemistry]

- of landscape: A textbook for students of geographical and environmental specialties of universities]. Moscow: Astreya-2000, 1999. 762 p. (In Russ.)
- 5. Klimaticheskaya geomorfologiya denudatsionnykh ravnin [Climatic geomorphology of denudation plains] / A.P. Dedkov, V.I. Mozzherin, A.V. Stupishin, A.M. Trofimov. Kazan': Izdatel'stvo Kazanskogo universiteta, 1977. 224 p. (In Russ.)
- 6. Zayonts V.N. Osnovnye cherty geomorfologii zapadnoy chasti Orenburgskoy oblasti [The main features of the geomorphology of the western part of the Orenburg region]. *Voprosy geologii Yuzhnogo Urala i Povolzh'ya*, 1970, v. 6, ch. 2, pp. 43-51. (In Russ.)
- 7. Kuleva G.V. Verkhnekazanskie i tatarskie kontinental'nye otlozheniya Yugo-Vostoka Russkoy platformy [Upper Kazanian and Tatar continental deposits of the South-

[☑] Vadim P. Petrishchev, e-mail: wadpetr@ymail.ru

The content is available under Creative Commons Attribution 4.0 License.

[©] Petrishcheva N. V., Petrishchev V. P., 2023

East of the Russian Platform] / pod red. N.S. Morozova. Saratov: Izdatel'stvo Saratovskogo universiteta, 1980. 161 p. (In Russ.)

- 8. Maksyutov F.A. Landshaftnaya differentsiatsiya sklonov na Yuzhnom Urale i v Priural'e [Landscape differentiation of slopes in the Southern Urals and the Urals]. *Sklonovaya mikrozonal'nost' landshaftov*, 1974, pp. 68-73. (In Russ.)
- 9. Mil'kov F.N. *Landshaftnaya geografiya i voprosy praktiki* [Landscape geography and practical issues]. Moscow: Mysl', 1966. 256 p. (In Russ.)
- 10. Mil'kov F.N. *Asimmetriya landshaftnykh kompleksov* [Asymmetry of landscape complexes]. *Zemlevedenie*, 1982, vol. XIV, pp. 5-15. (In Russ.)
- 11. Ocherki fizicheskoy geografii Chkalovskoy oblasti [Essays on the physical geography of the Chkalov region] / pod red. F. N. Mil'kova. Chkalov: Chkalovskoe izdatel'stvo, 1951. 212 p. (In Russ.)
- 12. Perel'man A. I. *Geokhimiya landshafta* [Geochemical landscape]. Moscow: Vysshaya shkola, 1975. 344 p. (In Russ.)
- 13. Russkin G.A., Fokina L.A., Pidorin A. V. *Geografiya Orenburgskoy oblasti* [Geography of the Orenburg region]. Chelyabinsk: YuUKI, 1982. 80 p. (In Russ.)
- 14. Rukhin L.B. *Osnovy obshchey paleogeografii* [Fundamentals of general paleogeography]. Leningrad: Gostoptekhizdat, 1962. 628 p. (In Russ.)
- 15. Strakhov N.M. *Osnovy teorii litogeneza* [Fundamentals of the theory of lithogenesis]. Moscow: Izdatel'stvo AN SSSR, 1960. 212 p. (In Russ.)

Петрищева Наталья Валентиновна

кандидат географических наук, старший преподаватель кафедры геологии, геодезии и кадастра геолого-географического факультета Оренбургского государственного университета, г. Оренбург, Российская Федерация, ORCID: 0000-0002-7711-8141, e-mail: knv0405@mail.ru

Петрищев Вадим Павлович

доктор географических наук, заведующий кафедрой геологии, геодезии и кадастра геолого-географического факультета Оренбургского государственного университета, г. Оренбург, Российская Федерация, ORCID: 0000-0002-7711-8141, e-mail: wadpetr@mail.ru

- 16. Chibilev A.A. *Priroda Orenburgskoy oblasti* (chast' 1. Fiziko-geograficheskiy i istoriko-geograficheskiy ocherk) [Nature of the Orenburg region (part 1. Physical-geographical and historical-geographical essay)]. Orenburg: Orenburgskiy filial RGO, 1995. 128 p. (In Russ.)
- 17. Chibilev A.A. *Geograficheskiy atlas Orenburg-skoy oblasti* [Geographical atlas of the Orenburg region]. Moscow: Izdatel'stvo DIK: Orenburgskoe knizhnoe izdatel'stvo, 1999. 96 p. (In Russ.)
- 18. Shcherbakov Yu.A. Iz opyta izucheniya roli ekspozitsii v landshaftoobrazovanii [From the experience of studying the role of exposure in landscape formation]. *Vliyanie ekspozitsii na landshafty*, 1970, pp. 3-100. (In Russ.)
- 19. Shchukin M. S. *Obshchaya geomorfologiya* [General geomorphology]. Moscow: Izdatel'stvo MGU, 1960. 616 p. (In Russ.)
- 20. Damrina N.V. Osobennosti formirovaniya prirodno-antropogennykh landshaftov na krasnotsvetnykh otlozheniyakh Orenburgskogo Priural'ya [Features of the formation of natural and anthropogenic landscapes on red-colored sediments of the Orenburg Urals]: avtoreferat diss. ... kandidata geogr. nauk. Orenburg, 2005. 22 p. (In Russ.)

Conflict of interests: The authors declare no information of obvious and potential conflicts of interest related to the publication of this article.

Received: 13.10.2022 Accepted: 30.05.2023

Natalia V. Petrishcheva

Cand. Sci. (Geogr.), Senior Lecturer at the Department of Geology, Geodesy and Cadastre, Faculty of Geology and Geography, Orenburg State University, Orenburg, Russian Federation, ORCID: 0000-0002-7711-8141, e-mail: knv0405@mail.ru

Vadim P. Petrishchev

Dr. Sci. (Geogr.), Head of the Department of Geology, Geodesy and Cadastre, Faculty of Geology and Geography, Orenburg State University, Orenburg, Russian Federation, ORCID: 0000-0002-7711-8141, e-mail: wadpetr@mail.ru