ПАЛЕОНТОЛОГИЯ, ЛИТОЛОГИЯ, СТРАТИГРАФИЯ

УДК 550.4:550.426:551.345:546.795.4

DOI: https://doi.org/10.17308/geology/1609-0691/2022/3/20-28

ISSN 1609-0691

Поступила в редакцию: 22.06.2020 Принята к публикации: 08.09.2020

Опубликована онлайн: 30.09.2020

Физико-химическая модель поведения тория в профиле выветривания

© 2022 В. А. Копейкин[⊠]

Ухтинский государственный технический университет, ул. Первомайская, 13, Ухта, 169300 Республика Коми, Российская Федерация

Аннотация

Введение: Представлены авторские и литературные данные по стандартной свободной энергии Гиббса для 60 ионов и комплексов тория в водном растворе, а также для двух минералов тория и 20 возможных его минеральных фаз.

Методика: По программе "Селектор" методом физико-химического моделирования на ЭВМ проведён анализ поведения тория в процессе выветривания филлитовидных сланцев.

Результаты и обсуждение: Содержание Th в сланцах аналогично его среднему содержанию в земной коре и равно 10^{-3} мас. %. Установлено, что в профиле выветривания содержание тория в растворе крайне мало, его вычисленная концентрация меньше 10^{-10} мол/л. Торий представлен практически только в виде гидроксокомплексов Th(OH)₄⁰, Th(OH)₅⁻ и Th(OH)₆²⁻. В процессе выветривания торий накапливается и его содержание в бокситах составляет в среднем 40 г/т при коэффициенте концентрации 4,16 [1], (3,4 по данным [2]).

Заключение: В процессах выветривания торий накапливается и в бокситах его коэффициент концентрации составляет 4,16 [1] (3,4 по данным [2]).

Ключевые слова: Торий, Th(OH)₄⁰, Th(OH)₅⁻, Th(OH)₆²⁻, $\Delta_f G^{\circ}_{(298.15)}$ Дж/моль, моделирование, ЭВМ, Селектор, профиль выветривания.

Для цитирования: Копейкин В. А. Физико-химическая модель поведения тория в профиле выветривания // Вестник Воронежского государственного университета. Серия: Геология. 2022. № 3. С. 20–28. DOI: https://doi.org/10.17308/ geology/1609-0691/2022/3/20-28

Введение

ТОРИЙ (Th) – типичный литофильный элемент и, наряду с ураном, один из двух естественных долгоживущих радиоактивных элементов, создающих радиационный фон. Однако геохимическое поведение их различно. Если в окислительной обстановке коры выветривания (KB) уран имеет валентность U^{+6} (ион UO_2^{2+}) и поэтому его оксид хорошо растворим, то в восстановительной среде, где валентность его равна U^{+4} , уранинит (UO₂) практически не растворим.

Валентность тория не меняется (всегда Th^{+4}). О накоплении тория в процессах выветривания известно давно. По данным [1, 2] со всей очевидно

стью следует, что этот элемент является весьма распространенным в бокситах. В работе [3] он определялся количественным спектральным анализом (монофракции не выделялись). По данным [4] коэффициент концентрации Th (то есть степень его концентрации в боксите по сравнению с его содержанием в материнской породе), в них равен 4.2 (по данным [3] – 3.4). При разведке бокситов КВ часто отслеживалась по её повышенной радиоактивности. При переработке бокситов Байеровским методом около 70 % тория остаётся в шламовых отходах.

При воздействии тория на организм человека отдаленные онкологические последствия могут наблюдаться через десятки лет после воздействия.

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

 \odot

^{¹²³ Копейкин Валерий Александрович, e-mail: vkopeikin.ugtu@gmail.com}

Торий поражает костный мозг, отлагается в костях, в почках, в легких, в желудочно-кишечном тракте [5, 6]. Предельно допстимая концентрация тория в воздухе – 0.05 мг/м³.

В природе торий представлен шестью изотопами, преобладает ²³²Th (период полураспада $T_{1/2} = 14.05$ млрд лет). Все изотопы тория радиоактивны, это главным образом α - и β -излучатели, продуктами их распада являются изотопы Ra и Rn. Конечным же итогом радиоактивного распада тория является ²⁰⁸Pb. Известно также девять искусственных радиоактивных изотопов тория.

В качестве ядерного топлива используется изотоп 232 Th, который в атомном реакторе превращается в изотоп 233 U. В ТВЭЛах (тепловыделяющих элементах) используется как сам торий, так и его оксид ThO₂.

Среднее содержание тория в земной коре 0.001 % (мас. %). В каменных метеоритах -4×10^{-6} , в породах: ультраосновных -5×10^{-7} , основных -3×10^{-4} , средних -7×10^{-4} , кислых -1.8×10^{-3} мас. %. [7]. По данным [8] в океанической воде растворённого тория меньше 1×10^{-9} % или 0.7 мкг/л [9]. Радиусы его атома 179.8 пм, иона Th⁺⁴ 99 пм (пикометр [10]).

Для четырехвалентного тория наблюдается совершенный изовалентный изоморфизм с U^{+4} и несовершенный с Zr^{+4} . Также отмечается и его совершенный гетеровалентный изоморфизм с Ca^{+2} и $\sum Ce^{+3}$ и несовершенный с Y^{+3} и Fe^{+3}. Главные минералы тория – торит – Th(SiO₄), торианит – ThO₂, монацит – (Ce,La)(PO₄) и лопарит – (Ce,Na,Ca)(Nb,Ti)O₃.

Как изоморфная примесь торий может входить в кристаллические решетки многих других минералов – в ортит, циркон, монацит. Но в процессе выветривания торий сорбируется кремнезёмом и остаётся в исходном субстрате, главным образом, в виде, плохо растворимого в воде торита, ThSiO₄. Присутствующий в субстрате торианит – ThO₂, также практически нерастворим [11].

Главный промышленный тип ториевых руд – россыпи. Кроме того, добывается торий из пегматитов, пирохлорных карбонатитов, скарнов, из карбонатных, баритовых, кварцевых жил и минерализованных зон, а также из метаморфизованных конгломератов.

Результаты и их обсуждение

Термодинамическая информация и метод моделирования.

Физико-химическое моделирование нами проводилось для 25°С и 1 атм. По программе "Селектор" [12, 13] методом физико-химического моделирования на ЭВМ проведён анализ поведения тория в процессе выветривания филлитовидных сланцев.

Минеральный состав, использованных при моделировании пород КВ филлитовидных сланцев, представлен (мас. %): иллитом (49.4); хлоритом (18); кварцем (8.1); биотитом (6); каолинитом (5); гематитом (2.5); магнетитом (2.5); кальцитом (2); пиритом (2); альбитом (1); ангидритом (1); ильменитом (1); флюоритом (0.5); апатитами – пять разновидностей [14] по 0.2 %. Всего Σ =100 %.

Необходимая для расчетов исходная термодинамическая информация собрана и согласована автором по разным источникам. Рассматриваемая исходная система учитывала 18 независимых компонентов (Th, Fe, Al, Ti, Si, Mg, K, Na, Ca, P, F, Cl, S, N, C, H, O и электрон ē). Для тория нами учитывалось возможное присутствие в растворе 60 иона и комплекса, двух его самостоятельных минералов – торита и торианита.

В справочнике [15] приведено много информации по термодинамическим свойствам соединений тория, в том числе и значение свободной энергии $\Delta G_{f(298)}^{0} Th^{4+}_{(p-p)} = -719572 \pm 8368$ Дж /мол. Это значение принято за основу для дальнейших вычислений.

Сравнение этой величины свободной энергии иона Th⁴⁺_(p-p) с данными из других источников проведём по реакции:

$$Th^{+4} + 4e = Th \tag{1}$$

Величину стандартного электродного потенциала тория в водных растворах (при 25°С, 0.1 МПа) получим из уравнения:

$$Eo = -\Delta G_{f(298)}^{0} R / nF$$
(2),

где свободная энергия реакции $\Delta G_{f(298)R}^0 = 719572$ Дж/моль, n — число участвующих в реакции электронов - 4, F — число Фарадея, равное 96487 Дж/(вольт×экв). Е^o = -1.864 Вольт.

По данным разных авторов значение окислительно-восстановительного потенциала тория в водных растворах практически совпадает: $E^{\circ} = -1.90$ Вольт [16]. В справочниках [17] -1.876 В, [18] -1.826, [19] -1.90, [10] -1.83, [20], -1.899. Ео = -1.875 Вольт [21].

(Бекман И.Н. -1.899 В.) (по ТКВ $\Delta G^0_{f(298)} = -1.899$ В.).

В работе [19] рекомендуются константы pK_n^0 ступенчатой ассоциации разных лигандов тория, авторы [22] рекомендуют константы pK_n^0 ступенчатой диссоциации тех же лигандов (сульфатов, оснований, карбонатов, гидрокарбонатов и других) для иона тория (Th4+) в водном растворе (табл. 1). Эти константы весьма близки к экспериментальным, например, для сульфатов тория pK_1^0 рекомендуемое равно 5.64, а экспериментальное 7.34; pK_2^0 рекомендуемое 4.20, а экспериментальное 4.38 [23, 24].

Диссоциация сульфата тория по первой ступени протекает по реакции:

$$Th(SO_4)^{2+}_{(p-p)} = Th^{4+}_{(p-p)} + SO_4^{2-}_{(p-p)}$$
 (3) $pK_1^0 = 5.64$.

 $\Delta G_{f(298)}^0$ SO₄²⁻ = -744459 Дж /мол (ТКВ). Отсюда получаем значение свободной энергии иона Th(SO₄)²⁺_(p-p) = -1496218 Дж/моль.

Диссоциация сульфата тория по второй ступени:

 $Th(SO_4)_2^{0}{}_{(p-p)} = Th(SO_4)^{2+}{}_{(p-p)} + SO_4^{2-}{}_{(p-p)}$ (4) $pK_2^0 = 4.2$. Значение свободной энергии иона $Th(SO_4)_2^{0}{}_{(p-p)} = -2264646$ Дж/моль.

Лиганд /pi [°]	-ΔG ^{of} _(298.15) Дж/моль [J/mol]	pK ₁ ⁰	pK ₂ ⁰	pK ₃ ⁰	pK ₄ ⁰	pK ⁰ ₅	pK ₆ ⁰
OH	157262	10.80	10.27	9.23	8.9	8.30	7.6
SO4 ²⁻	744459	5.64	4.2	2.08	0.03	-	-
HCO ₃ ⁻	586870	2.92	2.46	1.79	1.14	-	-
CO ₃ ²⁻	527983	11.03	9.3	6.78	_	-	-
Cl	131290	1.39	0.3	-0.90	-1.90	-3,37	-4.4
F	281751	8.45	6.67	4.68	3.40	2.46	0.6
NO ₃	43522	2.26	2.03	0.56	0.42	_	-

Табл. 1. Значения pi_n^{o} диссоциации лигандов Th⁴⁺ при 25 °C и 1 бар [**Table 1**. Values of pi_n^{o} of dissociation of Th4+ ligands at 25 °C and 1 bar]

Аналогично получены значения свободной энергии иона $Th(SO_4)_{3}^{2^-}_{(p-p)} = -3020976 \ Дж/моль (pK_3^0 = 2.08) и Th(SO_4)_4^{4^-}_{(p-p)} = -3765606 \ Дж/моль (pK_4^0 = 0.03).$

Для карбонатов тория в растворе [22] рекомендуют значения $pK_1^0 = 11.03$, $pK_2^0 = 9.3$, $pK_3^0 = 6.78$. $\Delta G_{f(298)}^0 CO32 - = -527983$ Дж /мол [22].

Свободная энергия ионов Th(CO₃)²⁺_(p-p) = -1310503 Дж/моль, Th(CO₃)₂⁰_(p-p) = -1891561 Дж/моль, Th(CO₃)₃²⁻ _(p-p) = -2458237 Дж/моль.

Для гидрокарбонатов тория в растворе [22] рекомендуют значения $pK_1^0 = 2.92$, $pK_2^0 = 2.46$, $pK_3^0 = 1.79$, $pK_4^0 = 1.14$. $\Delta G_{f(298)}^0$ HCO₃⁻ = -586870 Дж /мол (TKB).

Свободная энергия ионов $Th(HCO_3)^{3+}_{(p-p)} = -1323106$ Дж/моль, $Th(HCO_3)^{2+}_{(p-p)} = -1924015$ Дж/моль, $Th(HCO_3)_{2}^{+}_{(p-p)} = -2521101$ Дж/ моль, $Th(HCO_3)_{4}^{0}_{(p-p)} = -3114477$ Дж/моль.

Константы ступенчатой диссоциации гидроксокомплексов тория по [22] равны: $pK_1^0 = 10.80$, $pK_2^0 = 10.27$, $pK_3^0 = 9.23$, $pK_4^0 = 9.80$, $pK_5^0 = 8.30$ авторы [17] рекомендуют учитывать и pK_6^0 .

Авторы работ [25, 26] предложили методы сравнительного расчета физико-химических свойств химических веществ, в основу которых положено предположение о равномерном изменении этих свойств. Поэтому можно ожидать, что изменения констант ступенчатой диссоциации гидроксокомплексов тория должно быть равномерным. Но значение pK₄⁰ превышает величину pK₃⁰.

Если допустить, что изменение констант ступенчатой диссоциации для гидроксокомплексов тория должно изменяться равномерно, то уравнение аппроксимации (без учета pK_4^0) у = -0.6408 ·X + 11.416 и достоверность аппроксимации $R^2 = 0.9741$ С учетом этого уравнения значение $pK_4^0 = 8.9$ и $pK_6^0 = 7.6$.

По этим константам вычисляем свободную энергию гидроксокомплексов тория, например, диссоциация гидроксида тория по первой ступени протекает по реакции (р $K_1^0 = 10.80$ и $\Delta G_{f(298)}^0$ OH⁻ = -157262 Дж /мол, [15]):

$$Th(OH)^{3+}_{(p-p)=}Th^{4+}_{(p-p)+}OH^{-}_{(p-p)}$$
(5)

Отсюда для $Th(OH)^{3+}_{(p-p)}$ получаем значение $\Delta G^{0}_{f(298)}(Th(OH)^{3+}_{(p-p)} = -938470$ Дж/моль.

Аналогично диссоциация гидроксида тория по второй ступени протекает по реакции:

$$Th(OH)_{2}^{2^{+}}(p-p) = Th(OH)_{3}^{+}(p-p) + OH^{-}(p-p)$$
(6)

Величина свободной энергии $\Delta G_{f(298)}^0$ (Th(OH)₂²⁺_(p-p) = -1154343 Дж/моль.

 $\Delta G_{f(298)}^0$ для других ионов равно: Th(OH)₃⁺_(p-p) = -1364281 Дж/моль, Th(OH)₄⁰_(p-p) = -1572335, Th(OH)₅⁻_(p-p) = -1776965 и Th(OH)₆²⁻_(p-p) = -1977600 Дж/мол.

гэо4281 Дж молы, $\Pi(OH)_{4}^{2-}(_{p-p}) = -1572535$, $\Pi(OH)_{5}^{2-}(_{p-p}) = -1977600$ Дж/мол. [26] рекомендуют $\Delta G^{0}_{f(298)}$ Th2(OH)35+(p-p) = -2074239 Дж/моль и $\Delta G^{0}_{f(298)}$ Th4(OH)₁₂⁴⁺ (_{p-p}) = -5491977 Дж/моль.

В [15] приведены свободные энергии Гиббса для торианита $\Delta G^0_{f(298)}$ ThO₂ = -1169147 Дж/мол и торита $\Delta G^0_{f(298)}$ ThSiO₄ = -2049323 Дж /мол.

В [22] рекомендуются также константы ступенчатой диссоциации хлоридов тория: $pK_1^0 = 1.39$, $pK_2^0 = -0.91$, $pK_3^0 = -0.90$, $pK_4^0 = -1.90$, $pK_5^0 = -3.37$. Значение pK_2^0 должно быть больше по величине, чтобы наблюдалось равномерное изменение констант. Без учета pK_2^0 уравнение аппроксимации имеет вид: $y = -1.1686 \cdot X + 2.6029$. Достоверность аппроксимации $R^2 = 0.996$. Отсюда $pK_2^0 = 0.3$ и $pK_6^0 = -4.4$.

Свободная энергия ионов $\text{ThCl}^{3+}_{(p-p)} = -858795$ Дж/мол, $\text{ThCl}_{2^{+}(p-p)}^{2^{+}} = -991797$, $\text{ThCl}_{3^{+}(p-p)}^{+} = -1117951$, $\text{ThCl}_{4^{0}(p-p)}^{0} = -1238398$, $\text{ThCl}_{5^{-}(p-p)}^{-} = -1350455$ и $\text{ThCl}_{6^{-2}(p-p)}^{2^{-}} = -1456634$ Дж/мол. Для фторидов тория в растворе [22] рекомендуют значения $pK_{1}^{0} = 8.45$, $pK_{2}^{0} = 6.67$, $pK_{3}^{0} = 4.68$, $pK_{4}^{0} = 3.40$, $pK_{5}^{0} = 2.46$.

Уравнение аппроксимации этих пяти констант ступенчатой диссоциации фторидов тория (у = $-1.525 \cdot X + 9.707$ и достоверность аппроксимации $R^2 = 0.9805$) позволяет найти величину $pK_6^0 = 0.6$.

Свободная энергия ионов $\text{ThF}^{3+}_{(p-p)} = -1049547$ Дж/мол, $\text{ThF}_{2}^{2+}_{(p-p)} = -1369364$ Дж/мол, $\text{ThF}_{3}^{+}_{(p-p)} = -1677824$ Дж/мол, $\text{ThF}_{4}^{0}_{(p-p)} = -1978979$ Дж/мол, $\text{ThF}_{5}^{-}_{(p-p)} = -2274769$ Дж/мол. Свободная энергия $\text{Th}_{6}^{2-}_{(p-p)} = -2559944$ Дж/мол.

Предположение о равномерном изменении термодинамических свойств различных ионов и соединений использовано в работах и других авторов [27–29].

Из работы [28], где приведены константы устойчивости для реакций

получим р $K_6^0 = 0.8$ и Δ fGoThF62- (p-p) = -2561086 Дж/мол.

Те же авторы приводят для реакции

ThO2 (am.)
$$+2 \cdot H2O = Th4 + 4 \cdot OH - (9)$$

величину lgK = -45.5. Отсюда значение свободной энергии Δ fGoThO2 (ат.) = -1134007 Дж/моль. В этой же работе даётся величина lgK = 6.78 для реакции

ThO2 (am.) + H+ + H2O + CO32- = Th(OH)3CO3- (10)

Отсюда находим $\Delta G^0_{f(298)}$ Th(OH)3CO3- (p-p) = -1937824 Дж/моль.

Для реакции Th4+
$$+ 4 \cdot H2O = Th(OH)40 + 4 \cdot H + (11)$$

здесь же рекомендуется lgK = -19.7. Отсюда получим значение $\Delta G_{f(298)}^0$ Th(OH)40 (p-p) = -1555708 Дж/моль.

Автор работы [13] на основании изучения состава байкальской воды получил значение $\Delta Gof(298.15)$ NO₃- = -43522 Дж/моль, которое и принято нами для дальнейших вычислений. На основе этой величины рекомендованные в работах [13, 15] значения свободной энергии нитратов тория пересчитаны и соответственно равны $\Delta Gof(298.15)Th(NO3)3+ = -776014$ Дж/моль, Th(NO3)22+ = -831126, Th(NO3)SO4+ = -1559886, Th(NO3)2SO40 = -1599935, Th(NO3)3SO4- = -1645424 Дж/моль.

Demol J., Но Е., Senanayake G. [30] рекомендуют реакцию:

$$H_4 P_2 O_{7(p-p)} + Th(SO_4)_{2(p-p)} = Th P_2 O_{7(\kappa p)} + 2 \cdot H_2 SO_{4(\kappa)}$$
(12)

свободная энергия которой равна -67 000 Дж/мол. Отсюда для дифосфата тория ThP_2O_7 (кр) величина свободной знергии Гиббса $\Delta G^0_{f(298)}ThP_2O_{7(кр)} = -2872000$ Дж/моль. (Свободная энергия $H_4P_2O_{7(p-p)} = -2259360$ (ТКВ) и $H_2SO_{4(ж)} = -733043$ Дж/моль (КРШ)).

В работе [31] определены общие константы устойчивости (log β_j) фосфатов четырёхвалентного тория (при ионной силе раствора $\mu = 0.35$) для реакций

Соответственно константы нестойкости (диссоциации) будут

$$Th(HPO_4)^{2^+} = Th^{4^+} + HPO_4^{2^-} (16) pK_1^0 = 10.8,$$

$$Th(HPO_4)_2^0 = Th(HPO_4)^{2^+} + HPO_4^{2^-} (17) pK_2^0 = 12,$$

$$Th(HPO_4)_3^{2^-} = Th(HPO_4)_2^0 + HPO_4^{2^-} (18) pK_3^0 = 8.5.$$

[18] приводят данные по свободной энергии фосфатов тория для ионной силы $\mu = 0.35$ (без пересчета их на нулевую ионную силу).

Мы пересчитали эти данные на $\mu = 0$ по уравнению, рекомендованному [31]

$$lgK\mu = lgK0 + (\Delta Z2 \text{ At } \mu \frac{1}{2}) / (1 + (Bt / B0) \mu \frac{1}{2}) - 0.3 \text{ At } \Delta Z2 \mu$$
(19)

Здесь $lgK\mu$ – реальная константа, lgK0 – константа при $\mu = 0$, температурные коэффициенты уравнения Дебая-Хюккеля A25 = 0.5098, B25 = 0.3284, B0 = 0.3242 [17], $\Delta Z2$ – алгебраическая сумма квадратов зарядов ионов, участвующих в реакции. Например, для реакции (16) $\Delta Z2 = (4)2 + (-2)2 - (2)2 = 16$.

По уравнению (19) получим:

10.8 = lgK₀ + (16 ·0.5098 ·0.35^½) / (1 + (0.3284 / 0.3242) 0.35^½) – 0.3 ·0.5098 ·16 ·0.35. pK₁₀⁰ = 8.6. Отсюда свободная энергия реакции (16) равна 49080 Дж/мол. Используя принятые нами величины $\Delta_a G^o$ Th⁴⁺_(p-p) = -719572 ± 8368 Дж/мол и $\Delta G^0_{f(298)}$ HPO₄²⁻_(p-p) = -1089263 Дж/мол⁻¹: [17], получим величину свободной энергии гидроортофосфата тория Th(HPO₄)²⁺_(p-p) = -1857915 Дж/мол.

Для реакции (17) $\Delta Z^2 = (2)^2 + (-2)^2 - (0)^2 = 8.$

По уравнению (19) получим:

12 = lgK₀ + (8 ·0.5098 · 0.35^{1/2}) / (1 + (0.3284 / 0.3242) 0.35^{1/2}) – 0.3 0.5098 ·8 ·0.35. pK₁₁⁰ = 10.9. Отсюда свободная энергия реакции (16) равна 62206 Дж/мол и $\Delta G_{f(298)}^{0}$ Th(HPO₄)₂²⁻_(p-p) = -3009384 Дж/мол.

Для фосфатов тория (дигидрофосфат H₂PO₄⁻) по данным [17] константы устойчивости реакций

 $Th^{4+} + H_2PO_4^- = Th(H_2PO_4)^{3+}$ (20) log $\beta = 4.52$

 $Th(H_2PO_4)^{3+} + H_2PO_4^- = Th(H_2PO_4)_2^{2+}$ (21) log $\beta = 4.36$

С учетом принятых нами величин свободных энергий ионов Th^{4+} и $H_2PO_4^-$ (табл. 2) $\Delta G^0_{f(298)}Th(H_2PO_4)^{3+}_{(p-p)} = -1876323$ Дж/мол и $\Delta G^0_{f(298)}Th(H_2PO_4)^{2+}_{(p-p)} = -3016121$ Дж/мол.

По данным работы [27] logK = -14.9±0.36 для ре-акции

$$Th^{4+} + 4 \cdot H_2O + PO_4^{3-} = Th(OH)_4 PO_4^{3-} + 4H^+$$
(22)
и $\Delta G_{f(298)}^0 Th(OH)_4 PO_4^{3-} = -2601904 Дж/мол.$

Свободные энергии ионов Th(H3PO4)(H2PO4)3+, Th(H3PO4)4+ и Th4(OH)124+ рекомендованы [32] и равны соответственно -3022900, -1858100 и -5491977 Дж/мол. Сведения о свободной энергии органометаллокомплексов тория взяты из [15] без изменений (табл. 2).

Равновесие реакции торит – торианит

$$ThSiO_{4 (cr.)} + 2H_2O_{(aq)} = ThO_{2 (cr)} + H_4SiO_{4 (sol)}$$
 (23)

зависит только от содержания растворённой кремнекислоты. Поскольку свободная энергия реакции (23) положительна (+44671 Дж/моль), то на земной поверхности устойчив торит ThSiO₄.

На Щугорском месторождении бокситов (Тиман, Республика Коми, Россия) [33] обнаружил ториевый минерал из группы крандаллитов в виде бесформенных зёрен размером от 1–2 мкм до 60–70 мкм.

Состав этих микроскопических зёрен – крандаллит CaAl₃H(PO₄)₂(OH)₆, гойяцит SrAl₃H(PO₄)₂(OH)₆, Th-

крандаллит и сванбергит SrAl₃PO₄SO₄(OH)₆. Между Th и Fe в этом ториевом крандаллите наблюдается положитетельная корреляция (r = +098), позволяющая представить его формулу в виде ThFe₃(PO₄,SiO₄)₂ (OH)₆. Этот Th-крандаллит, по мнению [32], может быть продуктом выветривания минерала (пока не найденного) с возможной формулой Fe²⁺ThSiO₄(OH)₂. Mordberg L. Е. [33] выделил пирохлор, содержащий торий, в самостоятельный минеральный вид – ториевый пирохлор. В процессе выветривания кристаллы пирохлора разрушаются, происходит дезинтеграция и метасоматическое замещение его соединениями железа, стронция, фосфора, глинистым веществом.

Табл. 2. Значения стандартной свободной энергии Гиббса (- $\Delta_f G^{\circ}_{(298.15)}$ Дж/моль) для компонентов водного раствора тория, использованных при моделировании [**Table 2.** Values of the standard Gibbs free energy (- $\Delta f Go(298.15)$ J/mol) for the components of the aqueous thorium solution used in the simulation]

Ион [Ion]	ΔG ^{ot} _(298.15) Дж/моль [J/mol]	Ион [Ion]	ΔG ^{ot} _(298.15) Дж/моль [J/mol]	Ион [Ion]	ΔG ^{ot} _(298.15) Дж/моль [J/mol]
Н ₂ О _(ж)	237141	ThCl ₅	1350455	$ThC_2O_4^{2+}$	1413773
Th^{4+}	719572	ThCl ₆ ²	1456634	$Th(C_2O_4)_2^0$	2104970
ThSO4 ²⁺	1496218	ThCO ₃ ²⁺	1310503	$Th(C_2O_4)_3^{2-}$	2800351
$\text{Th}(\text{SO}_4)_2^0$	2264646	$\text{Th}(\text{CO}_3)_2^0$	1891561	$Th(C_2O_4)_4^{4-}$	3525856
$Th(SO_4)_3^{2-}$	3020976	$Th(CO_3)_3^{2-}$	2458237	ThHCOO ³⁺	1095789
$\text{Th}(\text{SO}_4)_4^{4-}$	3765606	Th(OH) ₃ (CO ₃) ⁻	1937824	Th(HCOO) ₂ ²⁺	1464400
ThOH ³⁺	938470	$Th(HCO_3)^3$	1323106	Th(HCOO) ₃ ⁺	1828408
Th(OH)_2^{2+}	1154343	$\text{Th}(\text{HCO}_3)_2^{2+}$	1924015	Th(CH ₃ COO) ³⁺	1117964
Th(OH)_3^+	1364281	$Th(HCO_3)_3^+$	2521101	Th(CH ₃ COO) ₂ ²⁺	1510424
$Th(OH)_4^0$	1572335	$Th(HCO_3)_4^0$	3114477	Th(CH ₃ COO) ₃ ⁺	1894515
Th(OH)5	1776965	ThF ³⁺	1049547	Th(CH ₃ COO) ₄ ⁰	2273167
Th(OH) ₆ ²⁻	1977600	$\mathrm{ThF_2}^{2+}$	1369364	Th(CH ₃ COO) ₅	2646798
$Th_2(OH)_3^{5+}$	2074239	$\mathrm{ThF_{3}}^{+}$	1677824	OH	157262
$\text{Th}(\text{NO}_3)^{3+}$	776014	$\mathrm{ThF_4}^{0}$	1978979	CO ₃ ²⁻	527983
$Th(NO_3)_2^{2+}$	831126	ThF5	2274769	HCO ₃	586870
$\text{Th}(\text{NO}_3)_3^+$	877870	$\mathrm{ThF_6}^{2-}$	2559944	H_2SO_4	733043
$\text{Th}(\text{NO}_3)_4^0$	923776	$\text{Th}(\text{HPO}_4)^{2+}$	1813500	SO4 ²⁻	744459
$\mathrm{ThNO_3SO_4}^+$	1559886	$Th(HPO_4)_2^0$	3009384	$H_2PO_4^-$	1130266
$Th(NO_3)_2SO_4^0$	1599935	$Th(H_2PO_4)^{3+}$	1866700	HPO_4^{2-}	1089137
Th(NO ₃) ₃ SO ₄	1645424	$Th(H_2PO_4)_2^{2+}$	3016245	PO ₄ ³⁻	1018804
ThCl ³⁺	858795	$\text{Th}(\text{H}_3\text{PO}_4)^{4+}$	1857800	NO ₃	43522
ThCl ₂ ²⁺	991797	Th(OH) ₄ PO ₄ ³⁻	2601904	F⁻	281751
ThCl ₃ ⁺	1117951	$Th_4(OH)_{12}^{4+}$	5491977	Cl	131290
ThCl ₄ ⁰	1238398	$Th(H_3PO_4)(H_2PO_4)^{3+}$	3022900	$(C_2O_4)^{2-}$	668879
$Th_2(OH)_3^{5+}$	2074200	$H_4P_2O_7$	2259360	H_4SiO_4	1309885

Итоги моделирования

Процесс выветривания, особенно латеритный в условиях жаркого влажного климата [34], воздействует на любые горные породы и минералы. Смена окислительных условий на восстановительные нами проводилась титрованием кислорода атмосферы органическим веществом породы за счет изменения соотношении вода (water), порода (rock) – [W/R] = 1000 : 1(p[W/R] = 3).

Моделировалось взаимодействие 1 кг воды (55.51 моль H_2O) с различным количеством филлитовидных сланцев (далее породы). При взаимодействии минимального количества породы ($10^{-7} - 10^{-6}$ моль) с водой (верхняя часть профиля выветривания, [35]) все растворимые продукты переходят в раствор и вымываются, а остаются только не растворимые. Это зона

боксита, существующая вниз по разрезу до соотношения W/R = 4.55 (рис. 1). Именно здесь присутствует гиббсит.

Каолинит появляется в разрезе с соотношения W/R = 5.3 и далее вниз по профилю присутствует постоянно. До границы смены окислительных условий на восстановительные наблюдается парагенезис ThSiO₄, рутил, гётит и каолинит.

Красно-рыжая окраска окислительной зоны обусловлена наличием гетита. В восстановительных условиях эта красно-рыжая окраска породы сменяется на серую, зеленовато-бурую, поскольку в восстановительных условиях железо двухвалентно и входит в состав новообразованных глин (алюмосиликатов, иллитов). Здесь оксидов трёхвалентного железа уже нет.

Рис. 1. Поведение тория в профиле выветривания филлитовидных сланцев: *R* – порода, *W* – вода, *Gbs* – гиббсит, *Gth* – гётит, *Rt* - рутил, Kln - каолинит, Ilt - иллит, Ру - пирит, Sd - сидерит, Qz - кварц, Thr - торит, Dlm - доломит, ThP₂O₇ - дифосфат тория (сокращённые названия минералов даны по рекомендации Whitney D., Evans B. W. [36]).

[Fig. 1. Behaviour of thorium in the weathering profile of phyllite shale: R - rock, W - water, Gbs - gibbsite, Gth - goethite, Rt - rutile, Kln - kaolinite, Ilt - illite, Py - pyrite, Sd - siderite, Qz - quartz, Thr - torite, Dlm - dolomite, ThP₂O₇ - thorium diphosphate (abbreviated names of minerals are given according to the recommendation of Whitney D., Evans B. W. [36]).

При израсходовании на процессы окисления растворённого в атмосферных осадках кислорода воздуха в профиле выветривания создаётся восстановительная среда. Здесь проходит граница геохимического барьера смены Eh и pH. В восстановительных условиях профиля минеральный парагенезис представлен пиритом, сидеритом, доломитом, кварцем, каолинитом, филлитами. Здесь образуются торит (ThSiO₄). Общее содержание тория в растворе меньше 10⁻¹⁰ ол/л.

Титан представлен практически по всему разрезу оксидами (рутил с лейкоксеном). В зоне отрицательных значений Eh (восстановительная обстановка), торий входит в состав торита, который практически не растворим, и в процессе выветривания переходит с состав россыпей. По всему разрезу (согласно результатам моделирования) должен наблюдаться также дифосфат тория – ThP₂O_{7(кр.)}. В самой верхней части профиля выветривания торий представлен торитом, ThSiO₄. Дифосфата практически нет (отношение торит / дифосфат более 1500). В восстановительной зоне профиля выветривания количество возможного ThP₂O_{7(кр.)} возрастает и становится сравнимым с количеством торита.

2872000

[5]

для твёрдых фаз тория (Дж/моль), использованных при моделировании								
Table 3 . Values of the standard Gibbs free energy for thorium solid phases (J/mol) used in the simulation								
Фаза	$\Delta G^{of}_{(298.15)}$	Ссылка	Фаза	$\Delta G^{of}_{(298.15)}$	Ссылка			
[Phase]	Дж/моль	[Reference]	Phase	Дж/моль	[Reference]			
ThO ₂ торианит	1169147	[1]	$ThCl_4$	1094500	[7]			
ThSiO ₄ торит	2049323	[1]	ThCl ₄ ·2H ₂ O	1633400	[2,7]			
Th(OH) ₄	1599388	[4,5]	ThCl ₄ ·4H ₂ O	2150600	[2,7]			
ThF_4	2003500	[2, 7]	ThCl ₄ ·7H ₂ O	2880300	[2,7]			
ThF ₄ ·2.5H ₂ O	2667500	[2,7]	ThCl ₄ ·8H ₂ O	3121300	[2,7]			
Th(NO ₃) ₄ ·.5H ₂ O	2325380	[7]	Th(HPO ₄) ₂ ·4H ₂ O	3986000	[2,4,5]			
$Th(SO_4)_2$	2243740	[7]	Th ₂ (PO ₄) ₂ (HPO ₄)·H ₂ O	5147000	[4,5]			
Th(SO ₄) ₂ ·4H ₂ O	3164800	[7]	$Th_3(PO_4)_4$	6695000	[6]			
Th(SO ₄) ₂ ·8H ₂ O	4184000	[7]	Th(PO ₃) ₄	4326000	[6]			

Табл. 3. Значения стандартной свободной энергии Гиббса

Note: [1] TKB, [2] Langmuir (1980), [3] Rai (1999) JNC TN 8400 99-009, [4] Kim (2012), [5] Lapidus (2015), [6] Demol (2018), [7] Jenkins (2020).

ThP₂O₇

[4]

4374540

Th(SO₄)₂·9H₂O

Заключение

Полученные результаты физико-химического моделирования на ЭВМ поведения тория в процессе выветривания показывают, что торий практически представлен нерастворимым торитом (ThSiO₄), и должен накапливаться в разрезе при химическом выветривании. Возможно присутствие дифосфата ThP₂O₇.

Значения констант ступенчатой диссоциации лигандов Th⁴⁺ (pi_n°) при 25 °C и 1 бар представлены в таблице 1, данные о стандартной свободной энергии Гиббса (-Дж/моль) для компонентов водного раствора тория даны в таблице 2. Значения стандартной свободной энергии Гиббса для твёрдых фаз тория (Дж/моль), использованных при моделировании, приведены в таблице 3. В расчетах следует использовать свободную энергию иона NO₃⁻ = -43522 Дж/моль.

Главный вывод: в процессах выветривания торий накапливается.

Конфликт интересов: Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

ЛИТЕРАТУРА

1. Adams J.A.S., Richardson K.A. Uranium and zirconium concentrations in bauxite // *Econom. Geolog.* 1960. Vol. 55. No 8. P. 1653–1675.

2. Гурвич М. Ю., Паршаков Н. С., Скосырева Н. Н. Распределение тория и урана в бокситах некоторых месторождений Красноярского края // Известия ВУЗов. Геология и разведка. 1974. № 10. С. 38–43.

3. Теняков В. А., Копейкин В. А. Торий в бокситах: распространение, причина попадания, генетическая интерпретация. В кн.: Бокситы. М.: ВИМС, 1980. С. 199–213.

4. Бушинский Г. И. Геология бокситов. М.: Недра, 1975. 416 с.

5. Баженов В. А., Булдаков Л. А., Василенко И. Я. Вредные химические вещества. Радиоактивные вещества: справочник. Ленинград: Химия, 1990. 464 с.

6. Бекман И. Н. Торий. Учебное пособие. М.: МГУ, 2010. 136 с.

7. Ярошевский А. А. Распространённость химических элементов в земной коре // *Геохимия*. 2006. № 1. С. 54–62.

8. Виноградов А. П. Введение в геохимию океана. М.: Наука, 1967. 216 с.

9. Войткевич Г. В., Мирошников А. Е., Поваренных А. С., Прохоров В. Г. Краткий справочник по геохимии. М.: Недра, 1977. 184 с.

10. Эмсли Дж. Элементы: справочник. М.: Мир, 1993. 256 с.

11. Копейкин В. А. Поведение тория в латеритном процессе // Атомная энергия. 1984. Т. 56. С. 221–223.

12. Карпов И. К. Физико-химическое моделирование на ЭВМ в геохимии. Новосибирск: Наука, 1981. 248 с.

13. Чудненко К. В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: ГЕО, 2010. 287 с.

14. Каржавин В. К. Термодинамические величины некоторых фосфатов кальция группы апатита // Журнал физической химии. 1981. Т.LV. № 8. С. 1933–1936.

15. Термические константы веществ: Справочник. Под ред. акад. В. П. Глушко (отв. ред.) и др. Вып. 1–10. Москва, АН СССР, ВИНИТИ; 1965. 26 с.

16. Латимер В. М. Окислительные состояния элементов и их потенциалы в водных растворах. М.: ИЛ, 1954. 400 с.

17. Наумов Г. Б., Рыженко Б. Н., Ходаковский И. Л. Справочник термодинамических величин (для геологов). М.: Атомиздат, 1971. 240 с.

18. Langmuir D., Herman J. S. The mobility of thorium in natural waters at low temperatures // *Geochim. Cosmochim. Acta.* 1980. Vol. 44. No 11. P. 1753–1766.

19. Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия, 1989. 448 с.

20. Морозов И. В., Болталин А. И., Карпова Е. В. Окислительно-восстановительные процессы. Электронная библиотека химического факультета. М.: МГУ, 2003. 64 с.

21. Лидин Р. А., Андреева Л. Л., Молочко В. А. Константы неорганических веществ: справочник. М.: Дрофа, 2006, 685 с

22. Крайнов С. Р., Рыженко Б. Н., Швец В. М. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты. М.: ЦентрЛитНефтеГаз, 2012. 672 с.

23. Smith R. H., Martell A. E. Critical stability constants // N.Y.-L.: Plenum Press. 1977. Vol. 4. 156 p.

24. Turner D. R., Whitefield M., Dickson A. G. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure // *Geochim. Cosmochim. Acta.* 1981. Vol. 45. No 6. P. 855–881.

25. Карапетьянц М. Х. Методы сравнительного расчета физико-химических свойств. М.: Наука, 1965. 404 с.

26. Киреев В. А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. 520 с.

27. Kim E.Y., Osseo-Asare, K. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th-, Ce-, La-, Nd-(PO₄)-(SO₄)-H₂O at 25 °C // *Hydrometallurgy 113–114*. 2012. P. 67–78.

28. Shock E. L., Helgeson H. C. Calculation of the thermodynamic and transport properties of aqueous species in high pressures and temperatures. Correlation algorithms for ionic species and equation of state predicthions to 5 kb and 1000 °C // *Geochim. Cosmochim. Acta.* 1988. Vol. 52(2). P. 2009–2036.

29. Rai I., Rao L., Weger H.T., Felmy A.R., Chappin G.R., Yui M. Thermodynamic data for predicting concentrathions of Th (IV), U(IV), Np(IV) and Pu(IV) in Geological Environments // *Japan nuclear cycle development institute*. 1999.

30. Demol J., Ho E., Senanayake G. Sulfuric acid baking and leaching of rare earth elements, thorium and phosphates from monazite concentrate: Effect of bake temperature from 200 to 800 C // *Hydrometallurgy*. 2018. Vol. 179. P. 254–267.

31. Москвин А. И., Эссен Л. Н., Бухтиярова Т. Н. Комплексообразование четырёхвалентных тория и урана в фосфатных растворах // Журнал неорганической химии. 1967. Т. XII. № 12. С. 3390–3392.

32. Lapidus G. T., Doyle F. M. Selective thorium and uranium extraction from monazite: I. Single-stage oxalate leaching // *Hydrometallurgy*. 2015. Vol. 154. P 102–110

33. Mordberg L. E. Thorium in crandallite-group mlnerals: an example from a Devonian bauxite deposit, Timan, Rassia // *Mineralogical Magazine*. 2004. Vol. 68. No 3. P. 489–497.

34. Лихачев В.В. Редкометальность бокситоносной коры выветривания Среднего Тимана. Сыктывкар: Коми НЦ УрО РАН, 1993. 224 с.

35. Копейкин В. А. Физико-химическая модель латеритного процесса. Физико-химические модели в геохимии. Новосибирск: Наука, 1988. С.61–80.

36. Whitney D., Evans B. W. Abbreviations for names of rockforming minerals // Amer. Mineral. 2010. Vol. 95. P. 185–187.

PALEONTOLOGY, LITHOLOGY, STRATIGRAPHY

UDC 550.4:550.426:551.345:546.795.4 DOI: https://doi.org/10.17308/geology/1609-0691/2022/3/20-28 Received: 22.06.2020 Accepted: 08.09.2020 Published online: 30.09.2020

A physicochemical model of thorium behaviour in the weathering profile

© 2021 V. A. Kopeikin[⊠]

Ukhta State Technical University, 13 Pervomayskaya ul., 169300 Ukhta, Republic of Komi, Russian Federation

Abstract

Introduction: Author's and literature data on the standard Gibbs free energy for thorium ions and complexes in aqueous solution, as well as for two thorium minerals and 20 possible mineral phases are presented.

Methodology: The behaviour of thorium in the process of weathering of phyllite-like shales was analysed using the program "Selektor" using computer physicochemical simulation.

Results and discussion: The content of Th in shales was similar to the average content in the earth's crust and is equal to 10^{-3} wt.%. It was established that the content of thorium in the solution in the weathering profile was extremely low, its calculated concentration was less than 10^{-10} mol/l. Thorium was present almost exclusively in the form of Th(OH)₄⁰ hydroxocomplexes, Th(OH)₅⁻ and Th(OH)₆²⁻. During weathering, thorium accumulated and its content in bauxites averaged 40 g/t at a concentration coefficient of 4.16 [1], (3.4 according to [2]).

Conclusions: Thorium accumulated during weathering processes and its concentration coefficient in bauxites was 4.16 [1] (3.4 according to [2]).

Keywords: Thorium, Th(OH)₄⁰, Th(OH)₅⁻, Th(OH)₆²⁻, $\Delta_{f}G^{o}_{(298.15)}$ j/mol, simulation, computer, selector, weathering profile.

For citation: Kopeikin V. A. A physicochemical model of thorium behaviour in the weathering profile. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya –Proceedings of Voronezh State University. Series: Geology, 2022, no. 3, pp. 20–28 DOI: https://doi.org/10.17308/geology/1609-0691/2022/3/20-28

Conflict of interests: The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

REFERENCES

1. Adams J. A. S., Richardson K. A. Uranium and zirconium concentrations in bauxite. *Econom. Geolog.* 1960, vol. 55, no 8, pp. 1653–1675.

2. Gurvich M. Yu., Parshakov N. S., Skosyreva N. N. Raspredelenie torija i urana v boksitah nekotoryh mestorozhdenij Krasnojarskogo kraja [Distribution of thorium and uranium in bauxites of some deposits of the Krasnodar region]. *Izvestija VUZov. Geologija i razvedka – News of universities. Geology and exploration*, 1974, no 10, pp. 38–43 (In Russ.)

3. Tenyakov V.A., Kopeikin V.A. Torij v boksitah: rasprostranenie, prichina popadanija, geneticheskaja interpretacija. [Thorium in bauxites: distribution, cause of ingestion, genetic interpretation]. In the book: Bauxites. Moscow, VIMS Publ., 1980. pp. 199-213 (In Russ.)

4. Bushinskii G. I. *Geologiya boksitov* [Geology of bauxite]. Moscow, Nedra Publ., 1975. 416 p. (In Russ.)

5. Bazhenov V. A., Buldakov L. A., Vasilenko I. Ya. et al. *Vrednye himicheskie veshhestva. Radioaktivnye veshhestva:* spravochnik. Leningrad: Himija [Harmful chemicals. Radioactive substances: guide: a reference book]. Leningrad, Chemistry Publ., 1990. 464 p. (In Russ.)

6. Beckman I. N. *Torij*. Uchebnoe posobie [Thorium]. Moscow: MSU Publ., 2010, 136 p. (In Russ.)

The content is available under Creative Commons Attribution 4.0 License.

ISSN 1609-0691

[™] Valery A. Kopeikin, e-mail: vkopeikin.ugtu@gmail.com

7. Yaroshevsky A.A. Rasprostranjonnost' himicheskih jelementov v zemnoj kore [Prevalence of chemical elements in the Earth's crust]. *Geohimija – Geochemistry*, 2006, no. 1, pp. 54-62. (In Russ.)

8. Vinogradov A. P. *Vvedenie v geohimiju okeana* [Introduction to ocean geochemistry]. Moscow, Nauka Publ., 1967, 216 p. (In Russ.)

9. Voitkevich G. V., Miroshnikov A. E., Povarenykh A. S., Prokhorov V. G. *Kratkij spravochnik po geohimii* [A brief guide to geochemistry]. Moscow, Nedra Publ., 1977, 184 p. (In Russ.) 10. Emsley J. *Elementy* [Elements]. Reference book. Moscow, Mir Publ., 1993. 256 p. (In Russ.)

11. Kopeikin V. A. Povedenii torija v lateritnom processe [Behavior of thorium in the laterite process]. *Atomnaja jenergija* – *Atomic energy*. 1984, vol. 56, pp. 221–223 (In Russ.)

12. Karpov I. K. *Fiziko-khimicheskoe modelirovanie na EVM v geokhimii* [Physicochemical modeling on a computer in geochemistry]. Novosibirsk, Nauka Publ., 248 p. (In Russ.)

13. Chudnenko K. V. *Termodinamicheskoe modelirovanie v* geokhimii: teoriya, algoritmy, programmoe obespechenie, prilozheniya [Thermodynamic modeling in geochemistry: theory, algorithms, software, applications]. Novosibirsk, GEO Publ., 2010, 287 p. (In Russ.)

14. Karzhavin V. K. Termodinamicheskie velichiny nekotorykh fosfatov kal'tsiya gruppy apatita [Thermodynamic values of some calcium phosphates of the apatite group. *Zhurnal fizicheskoi khimii – Journal of physical chemistry.* 1981, vol.LV, no. 8, pp. 1933–1936. (In Russ.)

15 Termicheskie konstanty veshchestv: Spravochnik [Thermal constants of substances: Handbook.]. Ed. akad. V. P. Glushko (editor-in-chief) et.al. Vol. 1–10. Moscow, AN SSSR, VINITI Publ., 1965, 26 p. (In Russ.)

16. Latimer V.M. Okislitel'nye sostoyaniya elementov i ikh potentsialy v vodnykh rastvorakh [Oxidative states of elements and their potentials in aqueous solutions]. Moscow, Izd-vo inostr. Lit Publ., 1954, 400 p. (In Russ.)

17. Naumov G.B., Ryzhenko B.N., Khodakovskii I.L. *Spravochnik termodinamicheskikh velichin (dlya geologov)* [Handbook of thermodynamic quantities (for geologists)]. Moscow, Atomizdat Publ., 1971. 240 p. (In Russ.)

18. Langmuir D., Herman J.S. The mobility of thorium in natural waters at low temperatures. *Geochim. Cosmochim. Acta.* 1980, vol. 44, no 11, pp. 1753–1766.

19. Lur'e Yu.Yu. *Spravochnik po analiticheskoi khimii* [Handbook of analytical chemistry]. Moscow, Khimiya Publ., 1989. 448 p. (In Russ.)

20. Morozov I.V., Boltalin A.I., Karpova E.V. *Okislitel'no*vosstanovitel'nye protsessy. Elektronnaya biblioteka khimicheskogo fakul'teta [Oxidation-reduction processes. Electronic library of the Faculty of Chemistry]. Moscow, Moscow State University Publ., 2003. 64 p. (In Russ.)

21. Lidin R.A., Andreeva L.L., Molochko V.A. *Konstanty neorganicheskikh veshchestv: spravochnik* [Constants of inorganic substances: a reference book]. Moscow, Drofa Publ., 2006. 685 p. (In Russ.)

22. Krainov S.R., Ryzhenko B.N., Shvets V.M. Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie

aspekty [Geochemistry of underground waters. Theoretical, applied and environmental aspects]. Moscow, TsentrLitNefteGaz Publ., 2012. 672 p. (In Russ.)

23. Smith R.H., Martell A.E. Critical stability constants. *N.Y.-L.*: *Plenum Press*, 1977, vol. 4, 156 p.

24. Turner D.R., Whitefield M., Dickson A.G. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. *Geochim. Cosmochim.* Acta, 1981, vol. 45, no 6, pp. 855–881.

25. Karapetyants M. H. *Metody sravnitel'nogo rascheta fizikohimicheskih svojstv* [Methods of comparative calculation of physico-chemical properties]. Moscow, Nauka Publ, 1965, 404 p. (In Russ.)

26. Kireev V. A. *Metody prakticheskih raschetov v termodinamike himicheskih reakcij* [Methods of practical calculations in thermodynamics of chemical reactions]. Moscow, Chemistry Publ., 1970, 520 p. (In Russ.)

27. Kim E.-Y., Osseo-Asare, K. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th-, Ce-, La-, Nd-(PO₄)-(SO₄)-H₂O at 25 °C. *Hydrometallurgy* 113–114, 2012, pp. 67–78.

28. Shock E. L., Helgeson H. C. Calculation of the thermodynamic and transport properties of aqueous species in high pressures and temperatures. Correlation algorithms for ionic species and equation of state predicthions to 5 kb and 1000 °C. *Geochim. Cosmochim. Acta*, 1988, vol. 52(2), pp. 2009–2036.

29. Rai I., Rao L., Weger H.T., Felmy A.R., Chappin G.R., Yui M. Thermodynamic data for predicting concentrathions of Th (IV), U(IV), Np(IV) and Pu(IV) in Geological Environments. *Japan nuclear cycle development institute*, 1999.

30. Demol J., Ho E., Senanayake G. Sulfuric acid baking and leaching of rare earth elements, thorium and phosphates from monazite concentrate: Effect of bake temperature from 200 to 800 C. *Hydrometallurgy*, 2018, vol. 179, pp. 254–267.

31. Moskvin A.I., Essen L.N., Bukhtiyarova T.N. Kompleksoobrazovanie chetyrjohvalentnyh torija i urana v fosfatnyh rastvorah [Complexation of tetravalent thorium and uranium in phosphate solutions]. *Zhurnal neorganicheskaja himii – Journal* of Inorganic Chemistry, 1967, vol. XII. no. 12, pp. 3390–3392 (In Russ.)

32. Lapidus G. T., Doyle F. M. Selective thorium and uranium extraction from monazite: I. Single-stage oxalate leaching. *Hy-drometallurgy*, 2015, vol. 154, pp 102–110.

33. Mordberg L. E. Thorium in crandallite-group mlnerals: an example from a Devonian bauxite deposit, Timan, Rassia. *Mineralogical Magazine*, 2004, vol. 68, no 3, pp. 489–497.

34. Likhachev V. V. *Redkometal'nost' boksitonosnoi kory vyvetrivaniya Srednego Timana* [The rare metal of the bauxitebearing weathering crust of Middle Timan]. Syktyvkar, Komi NTs UrO RAN Publ., 1993, 224 p. (In Russ.)

35. Kopeikin V. A. *Fiziko-himicheskaja model' lateritnogo processa. Fiziko-himicheskie modeli v geohimii* [Physico-chemical model of the laterite process. Physico-chemical models in geochemistry]. Novosibirsk, Nauka Publ., 1988, pp. 61–80 (In Russ.)

36. Whitney D., Evans B.W. Abbreviations for names of rock-forming minerals. *Amer. Mineral*, 2010, vol. 95, pp. 185–187.

Копейкин Валерий Александрович – д. г.-м. н., профессор,
Ухтинский государственный технический университет,
Ухта, Республика Коми, Российская Федерация; e-mail:
vkopeikin.ugtu @gmail.com;Valery A. Kopeikin – PhD, Dr. habil. in Geol.-Min., professor,
Ukhta State Technical University, Ukhta, Republic of Ko-
mi, Russian Federation;
e-mail: vkopeikin.ugtu @gmail.com;Автор прочитал и одобрил окончательный вариант
рукописи.The author have read and approved the final manuscript.