УДК 541.123.3

АНАЛИЗ ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ Sn — P — As

© 2012 Г. В. Семенова, Е. Ю. Кононова, Т. П. Сушкова

Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия Поступила в редакцию 11.11.2011 г.

Аннотация. Методом дифференциально-термического анализа построена *T-х* диаграмма политермического разреза $Sn_4As_3 - Sn_4P_3$. Сечение $Sn_4As_3 - Sn_4P_3$ не является частично квазибинарным, но может осуществлять фазовую триангуляцию тройной диаграммы при температурах ниже солидуса. В области составов с содержанием более 70 мол. % Sn_4P_3 возможно разложение α -твердого раствора (Sn_4As_3)_{*x*} (Sn_4P_3)_{*i*-*x*} по синтектической схеме $\alpha \leftrightarrow L_1 + L_2$.

Ключевые слова: фазовая диаграмма, фосфид олова, арсенид олова, твердый раствор.

ВВЕДЕНИЕ

Пниктиды металлов отличаются большим разнообразием составов, кристаллических структур и свойств, поэтому являются важным классом соединений, используемых в промышленности как функциональные материалы. Применение фосфидов и арсенидов металлов в качестве анодных материалов стимулировало работы по исследованию пниктидов d- (Mo, W, Fe, Co, Ni, Cu), а также некоторых *р*-металлов (Sn, Zn). Достаточно подробно изучены фазовые диаграммы двойных систем Sn — As и Sn — P, а также кристаллическая структура и свойства промежуточных фаз в этих системах [1-4]. Сведения о характере равновесий в тройной системе Sn — P — As в литературе практически отсутствуют. В то же время, однотипный характер связи и кристаллохимическое строение Sn₄P₃ и Sn₄As₃, благоприятный «размерный» фактор, предопределяют возможность формирования непрерывного ряда твердых растворов между этими соединениями. В [5] на основании данных рентгенофазового анализа было сделано заключение о существовании непрерывного ряда твердых растворов $(Sn_4P_3)_x(Sn_4As_3)_{1-x}$. Появляется возможность, варьируя состав твердого раствора, в определенных пределах изменять свойства сплавов. С научной точки зрения подойти к получению таких многокомпонентных сплавов можно на основе знания фазовой диаграммы системы Sn — P — As.

Цель настоящей работы состояла в экспериментальном исследовании политермического сечения Sn₄P₃ — Sn₄As₃ методом дифференциальнотермического анализа и построении его *T-х* диаграммы, а также анализе характера фазовых равновесий в тройной системе Sn — P — As.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ РАВНОВЕСИЙ В СИСТЕМЕ Sn — P — As

Анализ литературных данных показывает, что характер фазовых равновесий в тройной системе Sn — As — Р достаточно сложен: помимо жидкой и паровой фаз возможно присутствие девяти твердых фаз. В двойной системе олово — фосфор согласно [6] существует два синтектических равновесия: $L_1 + L_2 \leftrightarrow Sn_4P_3$ и $L_2 + L_3 \leftrightarrow SnP_3$; еще одна промежуточная фаза Sn₃P₄ плавится конгруэнтно. В системе олово — мышьяк установлено существование двух соединений: Sn₄As₃ разлагается по перитектической схеме, SnAs плавится конгруэнтно [7]. В системе фосфор — мышьяк бертоллидная промежуточная фаза (у) с широкой областью гомогенности (60—70 ат. % As) плавится инконгруэнтно [8]. Необходимо учесть, что разрезы, проходяшие через область существования этой фазы, не могут быть квазибинарными или даже частично квазибинарными (в некотором интервале температур ниже солидуса), а классические условия сингулярной триангуляции не выполняются. Арсенид олова Sn₄As₃ также разлагается по перитектической схеме, что исключает квазибинарный характер сечений с участием этого соединения. Кроме того, наличие в двойной системе олово — фосфор синтектических равновесий также усложняет анализ фазовых равновесий в тройной системе. Тем не менее, для верной интерпретации экспериментальных данных необходимо предварительно представить возможные схемы равновесий в этой системе. На рис. 1 представлен один из наиболее вероятных с нашей точки зрения вариантов, хотя, безусловно, окончательно можно решить этот вопрос лишь после полного экспериментального исследования системы.

Наиболее высокую температуру плавления имеет мышьяк (1087 К). Вдоль линии e_6 М твердый раствор на основе мышьяка (As) участвует в трехфазном эвтектическом равновесии L \leftrightarrow (As) + SnAs. С другой стороны, трехфазное перитектическое равновесие должно существовать вдоль линии p_2 М: L + (As) $\leftrightarrow \gamma$.

Эвтектический и перитектический характер этих процессов нетрудно установить, анализируя

вид коннодных треугольников: в первом случае трехфазному превращению предшествуют два двухфазных L \leftrightarrow (As) и L \leftrightarrow SnAs, а равновесие (As) \leftrightarrow SnAs следует за ним. Во втором случае трехфазному процессу предшествует двухфазное превращение L \leftrightarrow (As), а из него вытекают два других: L \leftrightarrow γ и (As) $\leftrightarrow \gamma$. В точке M осуществляется четырехфазное равновесие, ему соответствует плоскость трапеции SnAs — (As) — γ — M, причем т. M находится за пределами треугольника, образуемого фигуративными точками твердых фаз, что говорит о первращения: L + (As) $\leftrightarrow \gamma$ + SnAs. Ниже по температуре следует одно трехфазное равновесие с участием жидкости: L $\leftrightarrow \gamma$ + SnAs (*кривая* MK).

Рис. 1. Схема фазовых равновесий в системе Sn — As — P

Твердый раствор на основе фосфора (Р) в двойной системе фосфор-мышьяк формируется по перитектической реакции, поэтому из точки р₃ исходит кривая p_3N трехфазного равновесия $L+\gamma \leftrightarrow$ (Р), за которым следует четырехфазное превращение с участием жидкости и трех твердых фаз: γ -фазы, SnP₃ и (P). Из схемы, приведенной на рис. 1, видно, что это равновесие должно носить перитектический характер L+ $\gamma \leftrightarrow \text{SnP}_2 + (P)$, а значит, следовать за ним должен трехфазный процесс L ↔ $SnP_3 + (P)$ (*кривая* Ne₅ на рис. 1). Помимо уже упомянутого перитектического процесса вдоль кривой р₃N равновесию при температуре точки N предшествует осуществляемый по линии КN эвтектический процесс $L \leftrightarrow SnP_3 + \gamma$. В самой точке К сосуществуют жидкость и три твердых фазы: γ-фаза, SnP₃ и SnAs. Это равновесие может носить как эвтектический, так и перитектический характер, для выяснения этого необходимо экспериментальное определение параметров точки К и ее положения относительно треугольника, связывающего фигуративные точки соответствующих твердых фаз. Выше температуры т. К реализуются два трехфазных равновесия: L $\leftrightarrow \gamma$ + SnAs (кривая MK) и L \leftrightarrow SnP₃ + SnAs (кривая KF на рис. 1).

Промежуточная фаза Sn_3P_4 участвует в трех моновариантных эвтектических процессах: L \leftrightarrow $Sn_3P_4 + SnP_3$ (кривая e_4F); L \leftrightarrow $Sn_4P_3 + Sn_3P_4$ (кривая e_3O); L \leftrightarrow $Sn_3P_4 + SnAs$ (кривая FO). Соответственно этому в точках F и O реализуются четырехфазные равновесия, вероятнее всего эвтектические L \leftrightarrow $Sn_3P_4 + SnP_3 + SnAs$ и L \leftrightarrow $Sn_3P_4 + SnAs + Sn_4P_3$. Для удобства восприятия пунктирными линиями на рис. 1 соединены фигуративные точки твердых фаз, участвующих в равновесиях, однако эти сечения не осуществляют триангуляцию системы.

В табл. систематизированы данные о четырехи трехфазных процессах в тройной системе Sn — As — P.

В случае образования непрерывного ряда твердых растворов $(Sn_4As_3)_r(Sn_4P_3)_{1-r}$ (α — твердые растворы) вдоль кривой Ор₁ будет наблюдаться совместная кристаллизация твердых растворов и арсенида олова SnAs, причем до пересечения с плоскостью политермического сечения Sn₄As₃ -Sn₄P₃ в точке Z характер процесса будет эвтектическим $L \leftrightarrow SnAs + \alpha$, а после точки Z — перитектическим: L + SnAs $\leftrightarrow \alpha$. Вдоль кривой e_1e_2 должна реализоваться совместная кристаллизация олова (или твердого раствора на его основе, хотя растворимость крайне мала) и α -твердых растворов: L \leftrightarrow Sn + α. Поскольку эвтектические точки в двойных системах Sn—As и Sn—P вырождены, линия e₁e₂ лежит вблизи фигуративной точки чистого олова и на рис. 1 представлена в виде вставки. Таким образом, в треугольнике, ограниченном фигуративными точками олова, арсенида и фосфида олова состава Sn₄B₃, поверхность ликвидуса практически полностью занимает поле первичной кристаллизации α-твердых растворов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов осуществляли однотемпературным методом в два этапа: предварительно син-

Нонвариантные равновесия		Моновариантные равновесия			
Точка	Процесс	Кривая	Процесс	Кривая	Процесс
М	$L+(As) \leftrightarrow \gamma + SnAs$	MK	$L \leftrightarrow SnAs + \gamma$	e ₆ M	$L {\leftrightarrow} SnAs + \gamma$
K	$L \leftrightarrow SnAs + \gamma + SnP_3$	p ₂ M	$L+(As)\leftrightarrow\gamma$	p ₃ N	$L + \gamma \leftrightarrow (P)$
K	или L + SnAs $\leftrightarrow \gamma$ +SnP ₃	KN	$L \leftrightarrow \gamma + SnP_3$	Ne ₅	$L \leftrightarrow SnP_3 + (P)$
N	$L + \gamma \leftrightarrow SnP_3 + (P)$	FK	$L \leftrightarrow SnAs + SnP_3$	e ₄ F	$L \leftrightarrow Sn_3P_4 + SnP_3$
F	$L \leftrightarrow SnAs + Sn_3P_4 + SnP_3$	FO	$L \leftrightarrow SnAs + Sn_3P_4$	e_1H	$L {\leftrightarrow} Sn + Sn_4As_3$
0	$L \leftrightarrow SnAs + Sn_4P_3 + Sn_3P_4$	e ₃ O	$L \leftrightarrow Sn_3P_4 + Sn_4P_3$	e ₂ H	$L \leftrightarrow Sn + Sn_4P_3$
G	$L+ SnAs \leftrightarrow Sn_4P_3+SnAs$	OG	$L \leftrightarrow SnAs + Sn_4P_3$	GH	$L \leftrightarrow Sn_4As_3 + Sn_4P_3$
Н	$L \leftrightarrow Sn + Sn_4As_3 + Sn_4P_3$				

Таблица 1. Четырехфазные и трехфазные равновесия в тройной системе Sn — As — P

тезировали фазы Sn_4P_3 и Sn_4As_3 , затем из полученных двойных соединений готовили сплавы, составы которых отвечают политермическому разрезу $Sn_4As_3 - Sn_4P_3$.

В качестве исходных компонентов использовали олово марки ОВЧ-000, мышьяк ОСЧ-9-5 (очищенный вакуумной сублимацией), фосфор ОСЧ-9-5. Кварцевые ампулы с навесками вакуумировали до остаточного давления 5×10^{-4} гПа. Взвешивание осуществляли на весах AR2140 с погрешностью $\pm 1 \cdot 10^{-3}$ г.

Полученные бинарные сплавы измельчали, а затем рассчитанные навески сплавляли между собой в вакуумированных кварцевых ампулах при температуре 900 К (температура инконгруэнтного разложения $Sn_4As_3 - 861$ К, температура синтектического распада фазы $Sn_4P_3 - 832$ К). Образцы подвергали гомогенизирующему отжигу в течение 150 ч при температуре 800—820 К.

В настоящей работе сечение $Sn_4As_3 - Sn_4P_3$ было изучено методом дифференциальнотермического анализа. Исследования проводили на установке ДТА с программируемым нагревом печи с использованием ПИД-регуляторов ОВЕН ТРМ-151 и ТРМ-202. Сигнал с хромель-алюмелевых термопар оцифровывался и обрабатывался при помощи компьютерной программы «MasterSCADA». Цифровое представление выходного сигнала позволяет более точно определять температуру фазовых переходов. Для термографирования использовали сосуды Степанова, изготовленные из особо чистого кварца. Исследуемое вещество измельчали и загружали в сосуды с максимальным заполнением объема, после чего их вакуумировали до остаточного давления 5.10-4 гПа. В качестве эталона в данной работе использовался безводный оксид алюминия (III) марки ЧДА. Градуировка хромельалюмелевых термопар, используемых в качестве датчика температуры, была проведена по реперным точкам химически чистых веществ, температуры фазовых переходов которых известны. В качестве последних использовали: олово (505 K), антимонид индия (798 K), сурьму (903,5 K), хлорид натрия (1074 K). Погрешность определения температуры фазовых переходов методом ДТА не превышала ±2 K.

На термограммах всех образцов четко регистрировался единственный эндотермический эффект. Среди факторов, определяющих термограмму, особое значение имеет скорость изменения температуры, от выбора которой зависит диагностируемая температура фазовых превращений. В настоящей работе исследования проводили при скорости нагревания 10, 5, 2 и 1 К/мин. Было установлено, что если температура начала плавления воспроизводилась в различных сериях опытов достаточно хорошо, то температура его окончания (температура пика) возрастала с ростом скорости нагрева. Кроме того, уменьшение скорости нагрева позволяет разделить накладывающиеся друг на друга термические эффекты, происходящие в близком температурном диапазоне. Поэтому для определения температур фазовых переходов использовали термограммы, полученные при скорости нагрева 2 К/мин. Попытка определить температуры по кривым охлаждения не увенчалась успехом, поскольку было установлено, что сплавы системы склонны к сильному переохлаждению.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 представлена T-x диаграмма политермического разреза $Sn_4As_3 - Sn_4P_3$, построенная по

Рис. 2. *Т-х* диаграмма политермического разреза Sn₄As₃ — Sn₄P₃

результатам термографического исследования. Необходимо уточнить, что не все линии, изображенные на диаграмме состояния, были обнаружены методом ДТА. Это связано с трудностями фиксирования данным методом эффектов, близких по температуре. Для исследуемого разреза разница температур разложения Sn_4As_3 и Sn_4P_3 составляет менее 30 К, поэтому разница температур ликвидуса и солидуса тройных сплавов не превышает 7—8 К. В связи с этим, некоторые линии нанесены с учетом теоретического анализа тройной системы Sn - As - P.

Для сплавов, богатых Sn_4As_3 , на разрезе должна реализоваться область трехфазного равновесия L + SnAs + α , поскольку само соединение Sn_4As_3 образуется по перитектической схеме, что должно найти свое отражение на диаграмме политермического сечения. Схема на рис. 3 иллюстрирует эту особенность тройной диаграммы Sn — As — P. Вдоль линии p₁O осуществляется непрерывный переход перитектического трехфазного равновесия в эвтектическое.

Анализируя вид коннодных треугольников (рис. 3), можно показать, что вдоль линии p_1Z (где Z — точка пересечения кривой p_1O с плоскостью политермического разреза $Sn_4As_3 - Sn_4P_3$) осуществляется моновариантный перитектический процесс L + SnAs $\leftrightarrow \alpha$, а часть кривой ZO соответствует трехфазному эвтектическому равновесию L \leftrightarrow SnAs + α , также моновариантному. Нетрудно видеть, что указанные превращения осуществляются в некотором интервале температур, т.е. им отвечает трехфазный объем, внутри кото-

рого можно выделить эвтектическую и перитектическую части. Область эвтектической кристаллизации сверху ограничена поверхностями (L + α) и (L + SnAs), на которых заканчивается соответственно первичная кристаллизация этих фаз и начинается эвтектическое превращение L $\leftrightarrow \alpha$ + SnAs, а снизу поверхностью (SnAs + α), где заканчивается эвтектическая кристаллизация. Перитектическая часть трехфазного объема сверху ограничена поверхностью (L + SnAs), а снизу поверхностями (L + α) и (SnAs + α). Перитектическое превращение L + SnAs ↔ α возникает из двухфазного равновесия L + SnAs. На поверхности (L + α) оно переходит в двухфазное равновесие $L \leftrightarrow \alpha$ после превращения всех образовавшихся при первичной кристаллизации кристаллов SnAs, а на поверхности (а + SnAs), после того как израсходовалась вся жидкость, оно переходит в двухфазное равновесие $\alpha \leftrightarrow SnAs$.

Необходимо отметить, что точка Z принадлежит переходному коннодному треугольнику, который является граничным между эвтектической и перитектической частями трехфазного объема. Внутри самого треугольника имеет место превращение, переходное между эвтектическим и перитектическим, которое в тройной системе является моновариантным. Если фигуративная точка системы достигает плоскости переходного треугольника, из жидкости состава т. Z выделяется эвтектическая смесь арсенида олова и твердого раствора, с последующим растворением образовавшегося SnAs в оставшейся жидкости с выделением α -твердых растворов (L + SnAs $\leftrightarrow \alpha$).

Рис. 3. Переход перитектического трехфазного равновесия в эвтектическое в системе Sn — As — Р

Рис. 4. Равновесие $L_1+L_2+\alpha$ в системе Sn — As — P

Для области составов с большим содержанием Sn_4P_3 (рис. 2) может оказать влияние наличие расслоения в жидкости и синтектики в системе олово — фосфор. Логично предположить, что в тройной системе в области, прилегающей к стороне Sn - P, также может происходить разложение твердой фазы на две жидкости разного состава. В тройной системе этому моновариантному процессу должен отвечать трехфазный объем (рис. 4). Поэтому характер равновесий в этой части *T-х* диаграммы политермического сечения является сложным (см. рис. 2).

ЗАКЛЮЧЕНИЕ

Методом дифференциально-термического анализа построена *T*--х диаграмма политермического разреза $Sn_4As_3 - Sn_4P_3$. В системе Sn - As - Pреализуется непрерывный переход перитектического трехфазного превращения L + SnAs $\leftrightarrow \alpha$ в эвтектическое L \leftrightarrow SnAs + α . В области составов с высоким содержанием Sn_4P_3 возможно разложение твердого раствора по синтектической схеме $\alpha \leftrightarrow L_1 + L_2$. Сечение $Sn_4As_3 - Sn_4P_3$ не является квазибинарным, но может осуществлять фазовую триангуляцию тройной диаграммы при температурах ниже солидуса.

СПИСОК ЛИТЕРАТУРЫ

1. *Kovnir K. A., et al.* // Journal of Solid State Chemistry. 2006. V. 179. № 7. C. 3756—3762.

2. *Kovnir K. A., et al.* // Journal of Solid State Chemistry. 2009. V. 182. № 5. C. 630–639.

Kim Y., et al. // Adv. Mater. 2007. № 19. P. 92—96.
Zaikina J. V., et al. // Chem. Mater. 2008. V. 20. №
P. 2476—2483.

5. *Семенова Г. В. и др.* // Конденсированные среды и межфазные границы. 2011. Т. 13. №. 4. С. 478—483.

6. *Okamoto H.* // Journal of Phase Equilibria. 1993. V. 14. № 2. P. 263—264.

7. *Gokcen N. A.* // Bulletin of alloy phase diagrams. 1990. V. 11. № 3. P. 243—245.

8. *Угай Я. А. и др. //* Ж. неорган. химии. 1981. Т. 26. № 8. С. 2218—2221.

Семенова Галина Владимировна — д.х.н., профессор кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610, е-mail: semen157@chem.vsu.ru

Сушкова Татьяна Павловна — к.х.н., доцент кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610, e-mail: semen157@chem.vsu.ru

Кононова Елена Юрьевна — аспирант кафедры общей и неорганической химии, Воронежский государственный университет; тел.: (473) 2208610, e-mail: semen157@chem.vsu.ru Semenova Galina V. — grand PhD (chem. sciences), professor, Department of general and inorganic chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: semen157@chem.vsu.ru

Sushkova Tatyana P. — PhD (chem. sciences), associate professor, Department of general and inorganic chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: semen157@chem.vsu.ru

Kononova Elena U. — the post-graduate student; Department of general and inorganic chemistry, Voronezh State University; tel.: (473) 2208610, e-mail: semen157@chem. vsu.ru