

Condensed Matter and Interphases

ISSN 1606-867X (Print)

Kondensirovannye Sredy i Mezhfaznye Granitsy https://journals.vsu.ru/kcmf/

Original articles

Research article https://doi.org/10.17308/kcmf.2022.24/10256

Up-conversion luminescence in mixed crystals $BaY_{1.8}Lu_{0.2}F_8$ doped with Er^{3+} ions excited at 1532 nm

A. S. Nizamutdinov^{1⊠}, S. A. Bukarev², S. V. Gushchin², A. A. Shavelev¹, M. A. Marisov^{1,3}, A. A. Shakirov¹, A. G. Kiiamov¹, A. V. Astrakhantseva¹, A. A. Lyapin²

¹Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

²National Research Mordovia State University, 68 Bolshevitskaya str., Saransk 430005, Russia

³Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Sciences, 10/7 Sibirsky av., Kazan 420029, Russian Federation

Abstract

Increasing the efficiency of upconversion luminophores is an important problem in materials science. Here we report on approach of use of disordered crystals namely solid solutions $BaY_{1,8}Lu_{0,2}F_8$ doped with Er^{3+} ions to improve spectral characteristics and efficiency of upconversion from near IR spectral region. It is shown that investigated compound provide up to 9.4% of external energy yield of the up-conversion luminescence at an excitation power density of 6 W/cm² at 1532 nm for the 10 at.% of Er^{3+} doping. Also the investigated crystals of $BaY_{1.8}Lu_{0.2}F_8$: Er^{3+} allow the control of the CCT parameter in the range of 2384–5149 K by changing the concentration and power density of the excitation. Advantages revealed in this work for crystalline compounds $BaY_{1.8}Lu_{0.2}F_8$: Er^{3+} such as wide absorption bands in the infrared spectral range, a high external energy yield, and a controllable distribution of intensity of luminescence bands makes them prospective to improve the efficiency of double-sided solar cells.

Keywords: Upconversion luminescence, External energy yield, Correlated color temperatures, Er³⁺, Fluoride crystals, Solid solutions

Funding: The work was supported by Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030). The crystal growth experiments were performed in the frame of subsidy allocated to Kazan Federal University for the state assignment No. 0671-2020-0050.

For citation: Nizamutdinov A. S., Bukarev S. A., Gushchin S. V., Shavelev A. A., Marisov M. A., Shakirov A. A., Kiiamov A. G., Astrakhantseva A. V., Lyapin A. A. Up-conversion luminescence in mixed crystals $BaY_{1.8}Lu_{0.2}F_8$ doped with Er^{3+} ions excited at 1532 nm. *Condensed Matter and Interphases*. 2022;24(3): 387–396. https://doi.org/10.17308/kcmf.2022.24/10256

Для ципирования: Низамутдинов А. С., Букарев С. А., Гущин С. В., Шавельев А. А., Марисов М. А., Шакиров А. А., Киямов А. Г., Астраханцева А. В., Ляпин А. А. Ап-конверсионная люминесценция в смешанных кристаллах $BaY_{1.8}Lu_{0.2}F_8$, легированных ионами Er^{3+} , при возбуждении на длине волны 1532 нм. *Конденсированные среды и межфазные границы*. 2022;24(3): 387–396. https://doi.org/10.17308/kcmf.2022.24/10256

A. S. Nizamutdinov, e-mail: anizamutdinov@mail.ru

© Nizamutdinov A. S., Bukarev S. A., Gushchin S. V., Shavelev A. A., Marisov M. A., Shakirov A. A., Kiiamov A. G., Astrakhantseva A. V., Lyapin A. A., 2022

The content is available under Creative Commons Attribution 4.0 License.

A. S. Nizamutdinov et al.

Up-conversion luminescence in mixed crystals $BaY_{1.8}Lu_{0.2}F_8$ doped with Er^{3+} ions...

1. Introduction

Up-conversion materials doped with rare earth ions are widely used for various practical applications. These materials are used as markers to detect counterfeit products, laser radiation visualizers, solid-state lasers, biological sensors, and in solar panels to increase their efficiency. Fluoride matrices are characterized by large band gap and low energy spectrum of phonons which provides low level of nonradiative losses of excited population of levels and make them efficient in luminescent and upconversion applications [1-4].

One of the approaches to increase the efficiency of luminophores is to investigate disordered crystal lattices. First, such lattices may provide broadening of spectral lines which leads to increase of energy transfer efficiency between impurity ions and upconversion luminescence efficiency. Second, distortions of crystal lattice may lead to increase of electronic transitions probabilities which are relatively low for forbidden intraconfigurational *f*-*f* transitions of rare-earth ions. Despite low probabilities the *f*-*f* transitions of rare earth ions are widely used since they possess spectral lines in a variety of spectral ranges. One of the most popular luminescent ions for upconversion investigation is Er³⁺ ion [5,6]. Due to relatively large lifetime of excited states and significant manifestation of cross-relaxation processes it provide efficient upconversion with emitting photons of energy of two and higher photons of excitation radiation [7]. High efficiency of upconversion process in Er³⁺-doped fluorides make it possible to achieve the laser oscillation at wavelengths of about 0.55 μ m (the ${}^{4}S_{3/2} - {}^{4}I_{15/2}$ transition) when pumping at 980 nm [8]. Also the record value for internal photoluminescence quantum yield for upconversion luminescence was measured for $Er^{3+}-Yb^{3+}$ ion pair [9, 10]. More interesting that Er³⁺ ions allow excitation of anti-stokes luminescence under pumping at 1530 nm where intensity of the sun light is still significant and photo effect from crystalline silicon is already absent. As it is known from literature the efficiency of Er³⁺ upconversion luminescence excited at 1530 nm can be even higher than that for 980 nm excitation most

probably due to longer lifetime of ⁴I_{13/2} state [11] and it can provide efficient energy harvesting due to stronger absorption cross-section at 1.5 micrometers spectral range [11,12]. For example, the microcrystalline powder of β -phase $NaYF_4$ with 20% of Er^{3+} have shown 0.34% of external quantum efficiency at an irradiance of 1090 W·m⁻² (0.03 cm²·W⁻¹) at 1522 nm, polycrystalline samples of the same NaYF₄: Er³⁺ (20%) have provided 2.5% being incorporated into an optically transparent (refractive index similar to that of the phosphors) acrylic adhesive medium (weight ratio 0.4:0.6) [13] and 6.5% being incorporated into perfluorocyclobutane (PFCB) host matrix [14] external quantum efficiency when irradiated at 1523 nm.

The material under investigation is from family of BaY_2F_8 fluoride matrices which are characterized by monoclinic structure and significant vibrational broadening. It is already known that it provides significant efficiency of conversion from IR spectral range, for example, the external quantum efficiency (EQE) at 1557 nm measured values of 6.5% and 4.1% have been reached under 8.5 W cm⁻² power density illumination for the 30% Er³⁺ and 20% Er³⁺ samples, respectively [15]. We studied the upconversion luminescence of mixed crystals $BaY_{1.8}Lu_{0.2}F_8$ doped with Er^{3+} ions upon excitation by infrared laser radiation at a wavelength of 1532 nm to the ⁴I₁₃₂ energy level of Er^{3+} ions.

1532 nm to the ${}^{4}I_{13/2}$ energy level of Er^{3+} ions. Aim of this work is to study the efficiency of light conversion in $BaY_{1.8}Lu_{0.2}F_8$:Er crystals from the spectral range of photon energies lower than perovskite and silicon photoeffect maxima to near IR and visible spectral ranges. Namely, the spectral characteristics of up-conversion luminescence and its efficiency under laser excitation to the ${}^{4}I_{13/2}$ energy level of Er^{3+} ions have been investigated.

2. Research methods and characterization of materials

Single crystals of $BaY_{1.8}Lu_{0.2}F_8$:Er (1 at.%, 5 at.%, 10 at.%, 20 at.%, 30 at.%) were grown in Kazan Federal University by the Bridgman method, which consists in moving the crucible with the melt from the high-temperature zone to the lower-temperature. Crystal growth was implemented in graphite crucibles.

A. S. Nizamutdinov et al. Up-conversion luminescence in mixed crystals BaY₁₈Lu₀₂F₈ doped with Er³⁺ ions...

The absorption spectra of $\mathrm{Er^{3+}}$ ions in the studied fluoride crystals were registered in a Perkin Elmer Lambda 950 double-beam spectrophotometer with a double monochromator. The upconversion luminescence spectra of $\mathrm{Er^{3+}}$ ions were registered using spectroradiometer OL-770 VIS/NIR (slit spectral width 100 µm). To excite the upconversion luminescence of $\mathrm{Er^{3+}}$ ions to the ⁴I_{13/2} level, we used a CW fiber laser with $\lambda_{\mathrm{rad}} \sim 1532$ nm. The diameter of the laser beam incident on the sample was measured using a BEAMAGE-3.0 beam analyzer (GenTec-EO) and appeared to be 420±10 µm.

To calculate the chromaticity coordinates and correlated color temperatures (CCT), the CIE 1931 (X, Y) standard colorimetric system was used.

To determine the internal energy yield (B_{in}) of up-conversion luminescence, an experimental setup was elaborated based on OL IS-670-LED integrating sphere and OL-770 VIS/NIR spectroradiometer. Continuous laser radiation after a quartz achromatic depolarizer was focused onto a sample located at the center of the sphere. The spectral power of the upconversion luminescence was measured using a spectroradiometer. The integrating sphere and the spectroradiometer were connected by

an optical fiber. The experimental setup was corrected for spectral sensitivity using a Gooch & Housego reference halogen lamp with a known spectral output power. The power of the laser radiation incident on the sample was measured using a power meter based on an integrating sphere with high sensitivity.

The external energy yield (B_{ex}) of upconversion luminescence was determined as the ratio of the power of upconversion luminescence in a certain spectral range to the power of laser radiation incident on the sample.

All measurements were performed at room temperature.

3. Experimental results

3.1. Up-conversion luminescence of *BaY*, *Lu*, *F*,:*Er crystals*

In accordance with X-ray powder diffraction patterns (Fig. 1), for the synthesized $BaY_{1.8}Lu_{0.2}F_8$ crystals, the samples represented the same phase as their homologue BaY_2F_8 , belonging to the monoclinic system, space group C12/m1 [16]. The differences in the position of the reflections are very small, although for the $BaY_{1.8}Lu_{0.2}F_8$ mixed crystal they are slightly shifted to the region of small angles.

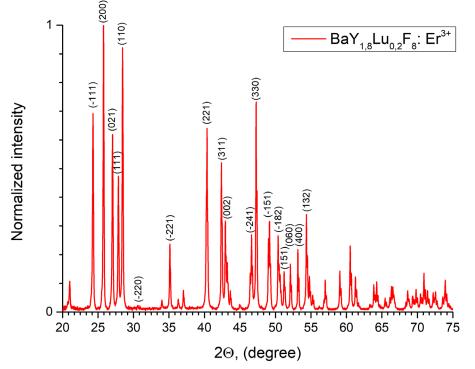
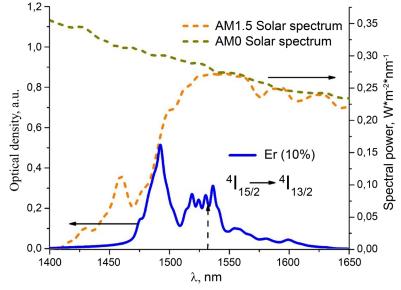
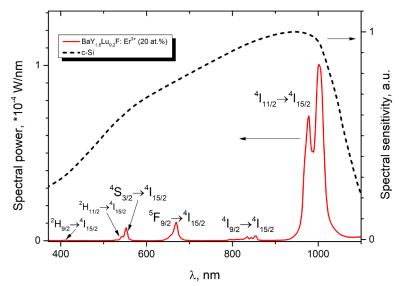


Fig. 1. X-ray pattern of the crystalline compound BaY_{1.8}Lu_{0.2}F₈:Er³⁺


A. S. Nizamutdinov et al.

Up-conversion luminescence in mixed crystals BaY_{1.8}Lu_{0.2}F₈ doped with Er³⁺ ions...


The absorption spectrum of the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ crystal for the ⁴I_{15/2}→⁴I_{13/2} electronic transition of Er³⁺ ions in the spectral range 1400–1700 nm is shown at the Fig. 2 together with the spectrum of solar radiation above the atmosphere (the spectrum of the Sun AM0) and at the surface (the spectrum of the Sun AM1.5) of Earth. It can be seen that the absorption band of the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ crystal overlaps well with the solar radiation spectrum. The dotted arrow in the spectrum also shows the wavelength of excitation of upconversion luminescence to the ⁴I_{13/2} level of Er³⁺ ions in our investigation (λ_{ev} ~1532 nm).

The up-conversion luminescence spectra of the BaY_{1.8}Lu_{0.2}F₈:Er (20 at.%) crystal is shown at the Fig. 3, it consist of the electronic transitions ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ of Er³⁺ ions. The highest luminescence intensity is observed for the band in the region of 1000 nm corresponding to the ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ of Er³⁺ ions. The evolution of luminescence spectra with

The evolution of luminescence spectra with power density of the 1532 nm laser excitation is shown at the Fig. 4. The intensity of anti-stokes luminescence rises with the excitation power and changes in the form of the spectra are observed in

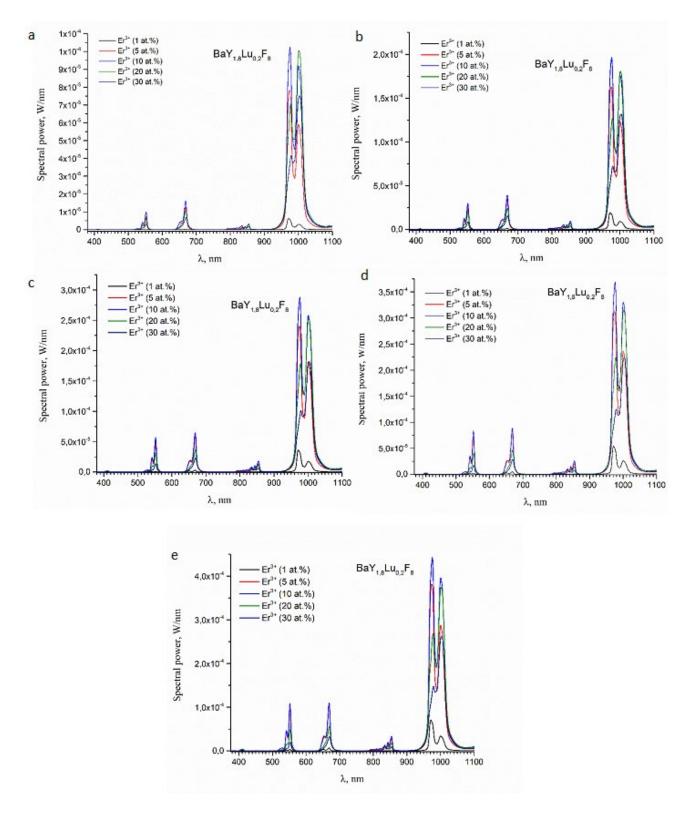
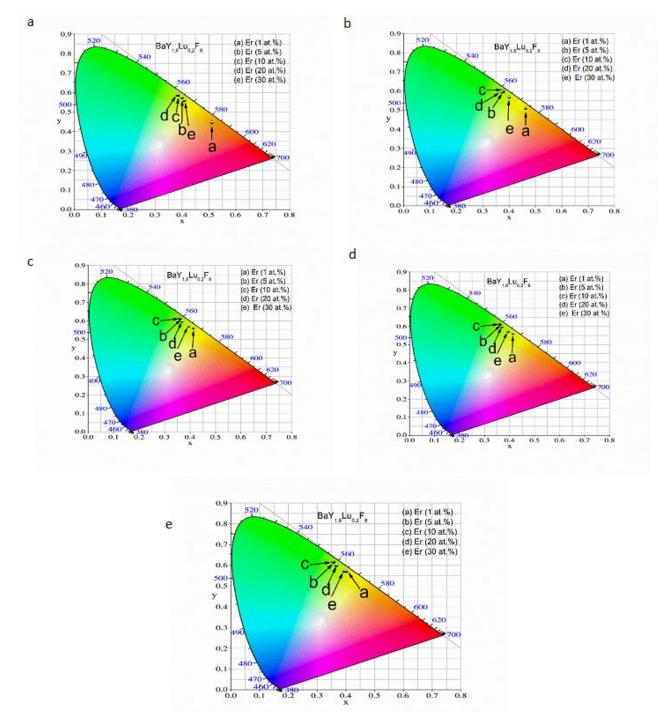


Fig. 2. Absorption spectrum of the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ (10 at%) crystal for the ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ transition of Er³⁺ ions and the spectrum of solar radiation above the atmosphere (AM0) and on the earth's surface (AM1.5)

Fig. 3. Upconversion luminescence spectra of $BaY_{1.8}Lu_{0.2}F_8$:Er (20 at.%) crystals and spectral sensitivity of crystalline silicon

Condensed Matter and Interphases / Конденсированные среды и межфазные границы 2022;24(3): 387–396 A. S. Nizamutdinov et al. Up-conversion luminescence in mixed crystals BaY₁₈Lu₀₂F₈ doped with Er³⁺ ions...

Fig. 4. Dependence of the intensity of the up-conversion luminescence of BaY_{1.8}Lu_{0.2}F₈:Er³⁺ crystals on the laser excitation power density: a) 6 W/cm², b) 12.7 W/cm², c) 19 W/cm², d) 25.5 W/cm², e) 32 W/cm²


A. S. Nizamutdinov et al. Up-conversion luminescence in mixed crystals BaY₁₈Lu_{0.7}F₈ doped with Er³⁺ ions...

the investigated range from 6 W/cm² to 32 W/cm² which are discussed further.

The highest luminescence intensity for all electronic transitions of Er^{3+} ions in the range of 300–1100 nm is observed for the sample with a concentration of 10 at.% of Er^{3+} ions. The intensity of the up-conversion luminescence of Er^{3+} ions increases

with increasing concentration up to 10 at.%, then concentration quenching is observed for samples with a concentration of 20 at.% and 30 at.%. This concentration dependence was observed for all values of the excitation power density.

The CCT and chromaticity coordinates of the radiation of up-conversion phosphors

Fig. 5. Chromatic diagram of upconversion luminescence for $BaY_{1.8}Lu_{0.2}F_8$: Er crystals when excited by laser radiation with a wavelength of 1532 nm and a power density of 6 W/cm² (a), 12.7 W/cm² (b), 19 W/cm² (c), 25.5 W/cm² (d), and 32 W/cm² (e)

A. S. Nizamutdinov et al. Up-conversion luminescence in mixed crystals BaY₁₈Lu₀₂F₈ doped with Er³⁺ ions...

BaY_{1.8}Lu_{0.2} F_8 :Er³⁺ were studied. Fig. 5 shows location at the chromatic diagram for the upconversion luminescence of the studied crystals upon excitation by laser radiation with a power density of 6 W/cm², 12.7 W/cm², 19 W/cm², 25.5 W/cm², and 32 W/cm². The values of CCT and chromaticity temperatures are presented in Table 1.

The CCT and the chromaticity coordinates of the emission of fluoride phosphors depend on the excitation power density and the concentration of rare earth ions. For the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ (20 at.%) sample, green-yellow emission is observed with a CCT of 4767-5002 K at an excitation power density of 6–32 W/cm². As the excitation power density increases, the CCT also increases.

Table 1. CCT values, chromaticity coordinates, internal and external energy yield of up-conversion luminescence in $BaY_{1,8}Lu_{0,2}F_8$: Er crystals

1	.0 0.2 0				
	BaY _{1.8} Lu _{0.2} F ₈ : Er (1 %)	BaY _{1.8} Lu _{0.2} F ₈ : Er (5 %)	BaY _{1.8} Lu _{0.2} F ₈ : Er (10 %)	BaY _{1.8} Lu _{0.2} F ₈ : Er (20 %)	BaY _{1.8} Lu _{0.2} F ₈ : Er (30 %)
Internal B _{en} (6 W/cm²), %	2.3	17.8	20.4	10.7	6.9
Internal B _{en} (12.7 W/cm ²), %	3.2	19.4	19.0	9.9	6.2
Internal B _{en} (19 W/cm ²), %	4.5	20.5	19.5	9.3	5.7
Internal B _{en} (25.5 W/cm ²), %	5.1	20.2	19,0	8.9	5.4
Internal B _{en} (32 W/cm ²), %	5.6	18.7	18.3	8.6	5.1
External B _{en} (6 W/cm²), %	0.4	6.4	9.4	9.0	6.5
External B _{en} (12.7 W/cm ²), %	0.6	6.9	9.3	8.3	5.8
External B _{en} (19 W/cm ²), %	0.7	7.1	9.3	7.8	5.4
External B _{en} (25.5 W/cm ²), %	0.8	7.1	9.1	7.4	5.1
External B _{en} (32 W/cm ²), %	0.9	7.0	8.9	7.1	4.8
CCT (6 W/cm2), K	2384	4469	4767	4704	4304
CCT (12.7 W/cm2), K	3339	4827	4943	4912	4453
CCT (19 W/cm2), K	3922	4992	5073	4959	4511
CCT (25.5 W/cm2), K	4249	5087	5141	4985	4553
CCT (32 W/cm2), K	4441	5149	5181	5002	4575
Chromaticity coordinates (6 W/cm2)	X= 0.5107 Y=0.4507	X=0.4010 Y=0.5786	X= 0.3866 Y=0.5918	X=0.3824 Y=0.5928	X=0.4096 Y=0.5644
Chromaticity coordinates (12.7 W/cm2)	X= 0.4630 Y=0.5136	X= 0.3792 Y=0.6006	X= 0.3718 Y=0.6070	X=0.3734 Y=0.6003	X=0.4009 Y=0.5719
Chromaticity coordinates (19 W/ 	X= 0.4316 Y=0.5454	X= 0.3689 Y=0.6110	X= 0.3635 Y=0.6151	X=0.3704 Y=0.6030	X=0.3974 Y=0.5751
Chromaticity coordinates (25.5 W/cm²)	X= 0.4137 Y=0.5660	X= 0.3627 Y=0.6167	X= 0.3590 Y=0.6191	X=0.3686 Y=0.6033	X=0.3947 Y=0.5762
Chromaticity coordinates (32 W/cm ²)	X= 0.4025 Y=0.5760	X= 0.3586 Y=0.6208	X= 0.3564 Y=0.6215	X=0.3676 Y=0.6042	X=0.3934 Y=0.5774

A. S. Nizamutdinov et al.

Up-conversion luminescence in mixed crystals BaY₁₈Lu_{0.2}F₈ doped with Er³⁺ ions...

With an increase in the concentration of Er^{3+} ions from 1 at.% to 30 at.%, the CCT to a concentration of 10 at.% increases in the range of 2384–4767 K, and then decreases again to 4304 K at an excitation power density of 6 W/cm². The observed character of the increase in CCT with an increase in the concentration of Er^{3+} ions manifests itself for all studied excitation power densities. The dependence of CCT on the concentration of rare earth ions and the excitation power density is presented in Table 1.

3.2. Energy yield of upconversion luminescence of $BaY_{18}Lu_{0.2}F_8:Er^{3+}$

Internal and external energy yield are important characteristics when evaluating the application of BaY_{1.8}Lu_{0.2}F₈:Er crystalline compounds in photovoltaics to increase the efficiency of solar cells and protect securities. The internal energy yield of up-conversion luminescence in the range of 400–1100 nm was determined as the ratio of the radiation power to the absorbed excitation power for crystals with an Er^{3+} ion concentration of 1 at.%, 5 at.%, 10 at.%, 20 at.% and 30 at.% respectively. It can be seen that the maximum yield value corresponds to the sample with a concentration of 10 at.% Er³⁺ ions. The value of the internal energy output when excited by other power densities is presented in Table 1.

The maximum value of the external energy yield of the up-conversion luminescence was 9.4% at an excitation power density of 6 W/cm² for the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ (10 at%) crystal which appears to be higher than that for BaY₂F₈:Er result from literature [15] and at the level of Yb³⁺ codoped luminophore BaF₂:Er,Yb [10].

4. Conclusions

In this work, we studied the upconversion luminescence characteristics of the concentration series of BaY_{1.8}Lu_{0.2}F₈:Er³⁺ crystals grown by the Bridgman method. The studied crystals showed intense up-conversion luminescence upon excitation of Er³⁺ ions to the ⁴I_{13/2} level by laser radiation with a wavelength of 1532 nm. The luminescence spectra consisted of electronic transitions ²H_{9/2}→⁴I_{15/2}, ²H_{11/2}→⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2}, ⁴F_{9/2}→⁴I_{15/2}, ⁴I₁₂→⁴I_{15/2}, Er³⁺ ions.

The maximum value of the external energy yield of the up-conversion luminescence was 9.4% at an excitation power density of 6 W/cm² for the BaY_{1.8}Lu_{0.2}F₈:Er³⁺ (10 at.%) crystal which appeared to be of optimal chemical composition. The maximum value of the internal energy yield of the up-conversion luminescence was 20.4% at an excitation power density of 6 W/cm² for the BaY_{1.8}Lu_{0.2}F₈:Er³⁺(10 at.%) crystal.

BaY_{1.8}Lu_{0.2} F_8 :Er³⁺(10 at.%) crystal. Also the investigated crystals of BaY_{1.8}Lu_{0.2} F_8 :Er³⁺ allow the control of the upconversion luminescence spectra shape. By changing the concentration and power density of the excitation, it was possible to obtain upconversion radiation with CCT in the range of 2384–5149 K.

Advantages revealed in this work for crystalline compounds $BaY_{1.8}Lu_{0.2}F_8:Er^{3+}$ such as wide absorption bands in the infrared spectral range, a high external energy yield, and a controllable distribution of intensity of luminescence bands makes them prospective to improve the efficiency of double-sided solar cells.

Contribution of the authors

The authors contributed equally to this article

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

1. Lüthi S. R., Pollnau M., Güdel H. U., Hehlen M. P. Near-infrared to visible upconversion in Er^{3+} -doped $Cs_{3}Lu_{2}Cl_{9}$, $Cs_{3}Lu_{2}Br_{9}$, and $Cs_{3}Y_{2}I_{9}$ excited at 1.54 µm. *Physical Review B*. 1999;60(1): 162–178. https://doi. org/10.1103/PhysRevB.60.162

2. Wang Y., Ohwaki J. New transparent vitroceramics codoped with Er³⁺ and Yb³⁺ for efficient frequency upconversion. *Applied Physics Letters*. 1993;63(24): 3268–3270. https://doi.org/10.1063/1.110170

3. Alexandrov A. A., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Synthesis of upconversion luminophores based on calcium fluoride. *Condensed Matter and Interphases*. 2020;22(1): 3–10. https://doi. org/10.17308/kcmf.2020.22/2524

4. Singh R., Madirov E., Busko D., Hossain I. M., Konyushkin V. A., Nakladov A. N., Kuznetsov S. V., Farooq A., Gharibzadeh S., Paetzold U. W.,

A. S. Nizamutdinov et al. Up-conversion luminescence in mixed crystals BaY₁₈Lu_{0.7}F₈ doped with Er³⁺ ions...

Richards B. S., Turshatov A. Harvesting sub-bandgap photons via upconversion for perovskite solar cells. *ACS Applied Materials and Interfaces*. 2021;13(46): 54874–54883. https://doi.org/10.1021/acsami.1c13477

5. Van Den Hoven G. N., Snoeks E., Polman A. Upconversion in Er-implanted Al_2O_3 waveguides. *Journal of Applied Physics*. 1996;79(3): 1258–1266. https://doi.org/10.1063/1.361020

6. Lyapin A. A., Gushchin, S. V., Kuznetsov S. V., Ryabochkina P. A., Ermakov A. S., Proydakova V. Yu., Voronov V. V., Fedorov P. P., Artemov S. A., Yapryntsev A. D., Ivanov V. K. Infrared-to-visible upconversion luminescence in SrF_2 :Er powders upon excitation of the ${}^{4}I_{15/2}$ level. *Optical Materials Express*. 2018;8(7): 1863–1869. https://doi.org/10.1364/ OME.8.001863

7. Rubin J., Brenier A., Moncorge R., Pedrini C. Excited-state absorbtion and energy transfer in Er^{3+} doped LiYF₄. *Journal of Luminescence*. 1986;36(1): 39-47. https://doi.org/10.1016/0022-2313(86)90029-3

8. Brede R., Heumann E., Koetke J, Danger T., Huber G., Chai B. Green up-conversion laser emission in Er-doped crystals at room temperature. *Applied Physics Letters*. 1993;63(15): 2030–2031. https://doi. org/10.1063/1.110581

9. Kaiser M., Würth C., Kraft M., Hyppänen I., Soukka T., Resch-Genger U. Power-dependent upconversion quantum yield of NaYF₄:Yb³⁺,Er³⁺ nanoand micrometer-sized particles-measurements and simulations. *Nanoscale*. 2017;9(28): 10051–10058. https://doi.org/10.1039/c7nr02449e

10. Madirov E. I., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Bergfeldt T., Busko D., Howard I. A., Richards B. S., Kuznetsov S. V., Turshatov A. An upconversion luminophore with high quantum yield and brightness based on BaF_2 :Yb³⁺, Er³⁺ single crystals. *Journal of Materials Chemistry C*. 2021;9(10): 3493– 3503. https://doi.org/10.1039/d1tc00104c

11. Liu Y., Zhou Z., Zhang S., Zhao E., Ren J., Liu L., Zhang J. Mechanisms of upconversion luminescence of Er^{3+} -doped NaYF₄ via 980 and 1530 nm excitation. *Nanomaterials*. 2021;11(10): 2767. https://doi. org/10.3390/nano11102767

12. Ivanova S., Pellé F. Strong 1.53 um to NIR–VIS– UV upconversion in Er-doped fluoride glass for highefficiency solar cells. *Journal of the Optical Society of America B*. 2009;26(10): 1930–1937. https://doi. org/10.1364/JOSAB.26.001930

13. Shalav A., Richards B. S., Trupke T. Application of NaYF₄: Er^{3+} up-converting phosphors for enhanced near-infrared silicon solar cell response. *Applied Physics Letters*. 2005;86(1): 013505-1-013505-3. https://doi.org/10.1063/1.1844592

14. Ivaturi A., MacDougall, Sean K. W., Martín-Rodríguez R., Quintanilla M., Marques-Hueso J., Krämer, Karl W., Meijerink A., Richards, Bryce S. Optimizing infrared to near infrared upconversion quantum yield of β -NaYF₄:Er³⁺ in fluoropolymer matrix for photovoltaic devices. *Journal of Applied Physics*. 2013;114(1): 013505. https://doi. org/10.1063/1.4812578

15. Boccolini A., Faoro R., Favilla E., Veronesi S., Tonelli M. BaY_2F_8 doped with Er^{3+} : An upconverter material for photovoltaic application. *Journal of Applied Physics*. 2013;114(6): 064904. https://doi. org/10.1063/1.4817171

16. Kaminskii A. A., Sobolev B. P., Sarkisov S. E., Denisenko G. A., Ryabchenkov V. V., Fedorov V. A., Uvarova T. V. Physicochemical aspects of the synthesis of $BaLn_2F_8$ - Ln^{3+} single crystals. Spectroscopy and stimulated emission of these crystals. *Izv. Akad. Nauk SSSR, Neorg. Mater.* 1982;18(3): 482–497. (In Russ.)

Information about the authors

Alexey S. Nizamutdinov, Cand. Sci. (Phys.–Math.), Senior Researcher, Associate Professor, Kazan Federal University (Kazan, Russian Federation).

https://orcid.org/0000-0003-1559-6671 anizamutdinov@mail.ru

Sergey V. Gushchin, postgraduate student, National Research Mordovia State University (Saransk, Russian Federation).

https://orcid.org/0000-0003-1680-337X serg.guschin1703@gmail.com

Sergey A. Bukarev, postgraduate student, National Research Mordovia State University (Saransk, Russian Federation).

https://orcid.org/0000-0003-2781-5974 bukarevsa@yandex.ru

Alexey A. Shavelev, Junior Researcher, Kazan Federal University (Kazan, Russian Federation).

https://orcid.org/0000-0001-5700-6989 alexey.shavelev@gmail.com

Mikhail A. Marisov, Cand. Sci. (Phys.–Math.), Senior Researcher, Kazan Physical-Technical Institute, Kazan

Federal University (Kazan, Russian Federation). https://orcid.org/0000-0001-8425-7046 m.a.marisov@gmail.com

Ainur A. Shakirov, Junior Researcher, Kazan Federal University (Kazan, Russian Federation).

https://orcid.org/0000-0002-6140-3714 shakirov_1995@mail.ru

Airat G. Kiiamov, Cand. Sci. (Phys.–Math.), Senior Researcher, Kazan Federal University (Kazan, Russian Federation).

https://orcid.org/0000-0001-5376-7000 airatphd@gmail.com

A. S. Nizamutdinov et al.

Up-conversion luminescence in mixed crystals $BaY_{1.8}Lu_{0.2}F_8$ doped with $Er^{3\ast}$ ions...

Anna V. Astrakhantseva, Laboratory Assistant, Kazan Federal University (Kazan, Russian Federation)/ https://orcid.org/0000-0002-1670-3064 anya4324@gmail.com Andrey A. Lyapin, Cand. Sci. (Phys.–Math.), Associate Professor, National Research Mordovia State University (Saransk, Russian Federation). https://orcid.org/0000-0002-6963-9801

andrei_lyapin@mail.ru

Received 27.04.2022; approved after reviewing 01.07.2022; accepted for publication 15.07.2022; published online 25.09.2022.

Translated by author of the article.