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Abstract 
The goal of the work was to study the microstructural, elemental, and electromagnetic properties of the samples of 
micropowder made from a natural mineral schungite. It was found that according to an X-ray spectral microanalysis, the 
carbon content in the studied samples of the mineral schungite was from 44 to 54 wt% while the iron content did not exceed 
3.9 wt%. The iron content increased up to 6.1 wt% in the produced schungite micropowder.
It can be presumed that in the schungite, micropowder iron exists in the form of ferrimagnetic nanoparticles of magnetite 
and pyrite, which is formed when grinding schungite particles in ball mills with a steel body and a milling bowl. The produced 
schungite micropowder also showed the presence of weak ferrimagnetic properties according to the measurements of 
magnetic permeability performed by vector analysis of the impedance of electrical circuits.
In accordance with its electromagnetic characteristics, schungite micropowder made from shungite mineral is an effective 
radio-absorbing filler for building materials for cellular communication frequency bands.
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1. Introduction
Schungite is a unique natural carbon-

containing mineral with a hybrid microstructure 
the proven reserves of 38-40 million tons of which 
are located in Karelia [1–3]. The total reserves 
of schungite rocks in Karelia is estimated to be 
several billion tons [4, 5]. It is known that the 
mineral content of schungite-containing rocks 
is formed by nanostructured schungite carbon, 
quartz, silicates (sericite, chlorite, feldspars), 
carbonates (siderite and dolomite), and sulphides 
(pyrite, pyritine, sphalerite, and chalcopyrite) [1-
7]. The main chemical components of schungite 
rocks are schungite carbon with the content from 
15 to 50 % [1, 3, 7], silica in the form of quarts of 
various modifications with the content from 25 
to 75 % [1, 2], and pyrite with the content from 2 
to 5.8 % [8–11].

Schungite rocks are natural microhetero-
geneous composite materials with various 
nanostructured forms of carbon. Being nano-
sized structures of different nature, schungite 
is considered to closely cover the surface of 
mineral particles of jointly present minerals 
with a film in the form of flakes [4–7, 12]. Due to 
the high content of the electrically conductive 
carbon phase [4–7, 12], schungite materials in 
the form of small particles or micropowders can 
be used as a dielectric filer for the production of 
radio-absorbing and radio-shielding composite 
materials [4–7, 12]. For example, schungite in 
the form of ground particles and micropowders 
is used as a dielectric filer in radio-absorbing 
construction materials [13–20] and radio-
shielding concrete compositions [21–23].

Scanning electron microscopy (SEM) is widely 
used in practical material science to study a 
wide range of heterogeneous materials, such 
as metal, composite, building, and geological 
materials. This is due to the fact that the obtained 
images of the microstructure are of high quality 
and the process of preparation of the objects 
for microscopic studies is relatively simple 
and does not require long sample preparation. 
In case of natural minerals and rocks, the 
combination of the SEM method and microprobe 
analysis provides great potential for studying 
the structural features of the microstructure 
and phase microheterogeneity of minerals and 
mineral raw materials [25].

As for electron microscopy of rocks and raw 
building materials, the signal of the so-called 
“secondary electrons”, the electrons of atoms 
emitted from the sample as a result of inelastic 
scattering (secondary electron image – SEI) [25, 
26], is most often used to obtain images of 
particles. Secondary electrons are electrons with 
low energy, which is less than 50 eV, as they are 
mostly formed only in the ultrathin surface layer 
of the material up to 10 nm [28]. Is is known that 
secondary electrons allow obtaining a higher 
resolution (< 10 nm) signal, than in the case of the 
analysis of backscattered electrons signals [26].

A special mode (backscattered electron image – 
BEI) of signal registration by backscattered 
electrons is used to obtain the information 
on the surface distribution of phases in the 
studied samples when using SEM [25, 26]. In 
this mode, which can be named BSE, COMPO, 
or BSD depending on the manufacturer of the 
electronic microscope, image contrast is formed 
by backscattered electrons based on the difference 
between average atomic masses of the sample’s 
components in the studied regions or phases 
[25, 26]. The emission of backscattered electrons 
significantly depends on the atomic number 
and, correspondingly, the atomic mass of the 
chemical elements. The greater the value of the 
average atomic mass of the studied area of the 
sample is, the greater the number of electrons 
are backscattered from these atoms at a smaller 
depth in the sample when the sample is exposed 
to the probing beam. Correspondingly, the areas 
of the sample with smaller average atomic masses 
look darker on the photo of the microstructure. 
Recently, the electron microscopy in backscattered 
electrons has been widely used in material science 
for construction and raw materials [27, 28].

In a number of works [5, 6, 12, 16], schungite 
powders used as a radio-absorbing filler for building 
and construction materials were considered as 
purely dielectric radio-absorbing fillers with 
electrically conductive carbon particles. However, 
doubts occur as to whether this assumption is 
correct as iron is known to be present in schungite 
rocks in the form of particles of such minerals as 
pyrite, magnetite, and siderite and iron hydroxides 
[2, 3, 5, 9–11]. At least one of these forms of iron, 
natural magnetite, is a pronounced ferrimagnetic 
material [29, 30] while natural pyrite has a mixture 
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of both weak ferrimagnetic and paramagnetic 
properties [31, 32]. 

The goal of the work was to study the 
microstructural, elemental, and electromagnetic 
properties of the samples of the micropowder made 
of a natural mineral schungite. Such a powder can 
be used as a highly-permeable dielectric filler 
to create eco-friendly building radio-absorbing 
materials, therefore, a comprehensive study of 
its properties is relevant.

2. Experimental
2.1. The studied schungite samples

Samples of schungite mineral (produced in 
the Russian Federation) in the form of particles 
2 to 12 mm in size from the schungite rock 
of the Zazhoginsky deposit were purchased 
commercially at different times in different 
batches (Table 1). 

We produced a sample of schungite powder 
made from the particles of the mineral from 
sample No. 2 as it showed a smaller content 
of carbon, which is important for durability of 
concrete compositions based on it. The schungite 
micropowder was obtained through mechanic 
abrasion of schungite particles in in a ball mill 
MSHL-1 with a drum and milling balls made of non-
magnetic stainless steel AISI SS304 in the course 
of 4 hours and through sifting of the obtained 
powder with a sieve with cell sizes of 100μm. Such 
a method of preparation of schungite micropowder 
allowed simulating the contamination of the 
powder with iron compounds which inevitably 
appear due to abrasion of schungite particles in 
a ball mill with the most common steel drum and 
steel/cast-iron milling bowl.

2.2. Scanning electron microscopy and elemental 
analysis

The microstructure of schungite samples was 
studied using a scanning electron microscope 

EVO HD15 (ZEISS) with both modes of secondary 
electrons (SEI) and backscattered electrons 
(BSD). The BSD mode was chosen due to the fact 
that in this case the image reflects real phase 
composition of the sample and has a good phase 
contrast. The qualitative elemental analysis 
and mapping of the distribution of chemical 
elements were conducted using an INCA X-Max 
energy dispersive microanalysis attachment 
(Oxford Instruments) to the scanning electron 
microscope. The samples for measurements were 
placed on carbon tape with special duralumin 
holders. The elemental composition of each 
sample was measured three times in different 
areas, and the results were statistically averaged.

2.3. VNA measurements.
To determine the electromagnetic properties 

of the produced schungite micropowder, we 
measured the characteristics of losses upon 
reflection based on its composite with paraffin 
with mass fraction of the filler of 50 % in a 10-cm 
HP-11566A coaxial cell with the size of a toroid of 
7.0×3.05 mm using a KC901V Deepace dual-port 
vector network analyser in the frequency range 
of 15 MHz to 7.0 GHz.

According to the theory of power lines, the 
damping constant of an electromagnetic wave 
in a material can be determined as follows [33]:

g p em= j f
c

2
,   (1)

where f is the frequency of the electromagnetic 
wave, с is the speed of light, e and μ are the com-
plex dielectric and magnetic permeability of the 
material.

Thus, the more the value (e·m) is, the more 
effective the electromagnetic wave is absorbed 
in this material with frequency f.

In the case of a perfect quarter wave 
electromagnetic absorber, the relationship 
between the frequency of maximum radio 
absorption f m and i ts  e lectromagnetic 
characteristics is determined by the following 
formula [34]:
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where dm is the thickness of the absorbing layer, 
c is the speed of light, e¢ and m¢ are the real parts 

Table 1. The studied schungite samples

Sample Description Particle 
size Manufacturer

№ 1 mineral 
particles 5–12 mm OOO “SHUGGE”

№ 2 mineral 
particles 2–5 mm OOO NPK 

Karbon-Shungite

№ 3 micro-
powder <100 mkm Self-made
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of the dielectric and magnetic permeability of the 
material, tan rm is the magnetic loss angular tan-
gent.

Taking into account the fact that schungite is 
not a pronounced magnetic material and that for 
its composite with paraffin a simplified formula 
can be obtained to describe the relationship 
between the peak frequency of maximum 
radio absorption fm of the material and its 
electromagnetic characteristics [34]: 

em = ( )4 f d ncm m / , (3)

where n = (1, 3, 5…) for the cases of resonant 
reflection of electromagnetic waves.

Magnetic permeability of the sample of a 
composite produced from the obtained schungite 
powder with paraffin was calculated by the 
experimental measurement of S-parameter S21 
using a dual-port vector network analyser through 
the calculation of the corresponding impedance 
of electrical circuit Z [35–37], taking into account 
that with the used equipment Z0 = 50 Ohm: 

Z Z=
-( )

0
21

21

2 1 S
S

.   (4)

The approach of calculating the impedance 
of an electric circuit from the transmission 
parameter S21, as compared to its calculation from 
the parameter S11, is believed to provide more 
accurate values of the magnetic permeability of 
samples from the impedance of the circuit in a wide 
frequency range from 1 MHz to 6.5 GHz [36, 37].

Using the obtained frequency dependence 
of the impedance of circuit Z, we calculated the 

magnetic permeability of sample μ according to 
the following formula [36, 37]:

m m m
m

= ¢ - ¢¢ = +
-

( )j
Z Z

jhf r r
1

0 2 1

air

ln /
,  (5)

where Z and Zair are the values of the complex 
impedance of the circuit with the coaxial cell used 
in the presence and absence of the studied toroi-
dal sample, h is the height of the toroidal sample, 
f is the frequency of electromagnetic radiation, 
μo is the magnetic permeability of free space, and 
r2 and r1 are the outer and inner radii of the to-
roidal sample.

3. Results and discussion
The microstructure of the surface of the 

studied schungite mineral is presented in Fig. 1. 
It was found that the studied samples of schungite 
mineral contained a nanostructured phase with 
an average size of nanoparticles of 85 ± 30 nm. 
According to the data of electron microscopy, 
such nanoparticles are grouped in submicrosized 
aggregates which fill the pores, fractures, and 
edge regions of microparticles of forming 
minerals. Thus, the images of the schungite 
surface obtained in secondary electrons provide 
information on the presence of pronounced 
microheterogeneities, large pores, and surface 
relief in the studied material.

To study the microheterogenous state of the 
schungite sample No. 1, we selected the BSD mode 
of backscattered electrons as in this case the image 
reflects the real phase composition of a sample 
and, as compared to the SEI mode of secondary 

Fig. 1. Photos of the microstructure of the surface of the schungite mineral: a – sample No. 1; b – sample No. 2
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electrons, it allows obtaining an image with a high 
phase contrast. The back reflected electrons were 
recorded by two semiconductor detectors located 
directly above the sample. In the BSD mode, the 
signals of two detectors were summed, which 
allowed minimising the influence of the relief 
irregularities on a raster image. Therefore, the total 
signal was mostly dependent on the change of the 
average atomic number, that is on the composition 
of the studied area of the sample.

Photos of the microstructure of the surface of 
the schungite mineral in the mode of backscattered 
electrons are presented in Fig. 2. According to the 
data in Fig. 2, in these photographs the phases 
based on elements with a small atomic mass 
(C, O, Al, Si) are dark areas while phases based 
on elements with a large atomic mass (Fe, S) 
correspond to light areas.

It can be seen that the ferric sulphide (in 
the form of a FeS2 pyrite) in sample No. 1 was 
represented by the particles with the size of 200–
300 nm while in sample No. 2 the ferric sulphide 
was represented by the particles of smaller sizes 
between 100 and 220 nm. Therefore, microscopic 
images of the schungite surface obtained in 
backscattered electrons provided information 
on the presence of a pronounced heterogeneous 
microstructure in the material.

Energy-dispersive X-ray spectroscopy 
microanalysis (EDS) allowed identifying relative 
concentrations of chemical elements in the 
schungite samples and reflect the distribution of 
chemical elements on the surface of the studied 
samples (Fig. 3).

According to the data of Fig. 3, there was a 
pronounced microheterogeneity of phases on 
the surface of the studied schungite mineral, 
and the association of iron and sulphur with the 
formation of pyrite microcrystals could also be 
observed. However, some atoms of sulphur did 
not have any direct relation with the location 
of iron atoms and it was most likely associated 
with the microphase of gypsum particles 
CaSO4·2H2O.

The elemental composition of the studied 
schungite samples and its powder prepared 
according to the EDS data is presented in Table 2.

The obtained results on the elemental 
composition of schungite correlate well with the 
experimental data of other previous works [1, 2, 
5–11]. It was discovered that the iron content 
in the studied schungite samples was relatively 
low and did not exceed 3.8 wt%. It is considered 
[1–3, 5–11] that iron is present in schungite 
rocks in the form of pyrite, magnetite, siderite, 
and iron hydroxides. Based on the obtained 
elemental ratios and the data from previous 
works [1–3, 5–11], we can conclude that in the 
studied samples of the schungite mineral, iron 
is partially found in the form of iron disulphide 
FeS2 (pyrite), both as the main iron-containing 
mineral in schungites in accordance with [ 9-11] 
and in the form of iron oxides Fe2O3 (hematite) 
and Fe3O4 (magnetite). 

According to the data of Table 2, milling 
schungite mineral sample No. 2 into sample 
No. 3 in a ball mill resulted in an increase of 
the share of elemental iron in it by 60 %. The 

Fig. 2. Photos of the microstructure of the surface of the schungite mineral in the mode of backscattered elec-
trons: a – sample No. 1; b – sample No. 2
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increased elemental content of iron in the 
produced schungite powder was associated 
with the technological features of obtaining 
schungite micropowders through grinding 
pieces of schungite-containing rock in a ball 
mill with a steel milling bowl. Apparently, 
due to the process of mechanical oxidation of 

iron sulphide to sulphate ions and elemental 
iron to carbonate ions, the shares of carbon, 
aluminium, magnesium, silicon, and potassium 
systematically lowered. A considerable decrease 
in the proportion of carbon in sample No. 3 can 
also be associated with the formation of ultra-
high dispersive carbon upon grinding which is 

Fig. 3. The distribution of chemical elements on the surface of the schungite mineral No. 1 and the correspond-
ing EDS spectrum

Table 2. Elemental composition of the studied schungite samples

Element №1 (wt%) №1 (аt%) №2 (wt%) №2 (аt%) №3 (wt%) №3 (аt%)
C 50.91±0.19 63.77±0.24 44.11±1.22 57.01±1.58 32.34±3.78 43.80±5.12
O 27.72±0.12 26.07±0.11 31.79±0.88 30.85±0.85 43.24±2.91 43.97±2.96

Mg 0.36±0.03 0.22±0.02 0.20±0.09 0.13±0.06 0.14±0.10 0.09±0.06
Al 2.36±0.06 1.32±0.03 1.74±0.12 1.00±0.07 1.46±0.41 0.88±0.25
Si 11.59±0.12 6.21±0.06 16.57±0.45 9.16±0.25 14.89±1.09 8.62±0.63
S 1.77±0.07 0.83±0.03 0.98±0.12 0.47±0.06 1.05±0.22 0.53±0.11
K 1.07±0.05 0.41±0.02 0.82±0.14 0.33±0.06 0.80±0.15 0.33±0.06

Ca 0.25±0.03 0.09±0.01 – – – –
Ti 0.22±0.03 0.07±0.01 – – – –
V 0.04±0.02 0.01±0.01 – – – –
Fe 3.68±0.11 0.99±0.01 3.80±0.22 1.06±0.18 6.08±1.53 1.77±0.45
Ni 0.04±0.02 0.01±0.01 – – – –
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intensively lost in the course of sifting of the 
ground schungite micropowder. 

To study the microheterogenous state of the 
produced schungite powder (Fig. 4), we selected 
the BSD mode of backscattered electrons as 
in this case the image reflected the real phase 
composition of a sample and, as compared to 
the SEI mode of secondary electrons, it allowed 
receiving an image with a high phase contrast.

The observation of the produced schungite 
micropowder in the BSD mode showed its 
pronounced microheterogeneity. It can be seen 
that the carbon and oxygen phases are distributed 
unevenly, and these areas are the darkest. The 
formation of multiple faults and edge cleavages 
of microparticles is also typical. In the course of 
schungite grinding, multiple point areas with 
lowered content of carbon appear (Fig. 4, BSD – 

light areas). Therefore, according to the obtained 
experimental data of electron microscopy 
and EDS, significant microheterogeneity 
can be found in the distribution of chemical 
elements on the surface of the particles of the 
studied schungite powder sample. These results 
confirm that schungite mineral is a natural 
microheterogeneous composite material. 

The frequency spectra of the radio absorption 
of the studied composite that are based on the 
produced schungite micropowder were processed 
and the results are presented in Fig. 5. It can be 
seen that there is a systemic shift of the resonance 
peak of radio absorption to the low frequency 
region upon an increase in the thickness of the 
sample. 

It can also be observed that maximum losses 
upon reflection in the frequency range of 2 to 6.2 

Fig. 4. Photos of the surface of particles of prepared schungite micropowder: a – in SEI mode; b – in BSD mode

Fig. 5. Dependence of the resonance frequency (a) and the radio absorption peak (b) for the paraffin-schungite 
composite (50 wt%) on the sample thickness
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GHz of the studied paraffin-schungite composite 
(50 wt%) are approximately 4–4.4 dB. These values 
correspond to the reflection coefficient of power 
R at the level of 0.4-0.36, which corresponds well 
with the results in [13-16].

The frequency dependence of the calculated 
value  for the paraffin-schungite composite (50 
wt%) according to equation (3) is presented in 
Fig. 6.

According to the obtained data in Fig. 6, 
schungite micropowder is a more appropriate 
dielectric filler for concrete building materials 
as compared to previously studied dielectric 
radio-absorbing fillers, such as rice husk ashes 
[38] or brass micropowder [39]. This is associated 
with the observed comparative property of the 
radio absorption ability of schungite (value 
e·m) as compared to rice husk ashes and brass 
micropowder and good compatibility of schungite 

powder as a mineral metal-silicate material with 
concrete as compared to brass micropowder 
that shows a corrosion interaction with cement 
mixtures.

This conclusion is confirmed by the 
comparison of the effectiveness of radio 
absorption by paraffin-based composites with 
the corresponding optimum quantity additives of 
the discussed radio-absorbing fillers for concretes 
(Fig. 7): powder of rice husk ashes (50  wt%), 
brass micropowder (10 wt%), and schungite 
micropowder (50 wt%).

According to the data in Fig. 7, a comparison of 
the radio absorption efficiency of paraffin-based 
composites with the corresponding additives of 
the discussed radio-absorbing fillers for concrete 
demonstrated a pronounced radio-absorption 
efficiency of the shungite-based composite for 
4G and 5G cellular communication range.

Nevertheless, it should be taken into account 
that the produced schungite micropowder also 
showed the presence of weak ferrimagnetic 
properties μ >> 1 (Fig. 8) in accordance with 
the conducted calculations of the magnetic 
permeability based on the experimental 
measurement of the S-parameter S21 using the 
dual-port vector network analyser. 

It can be presumed that it is associated with 
the presence of a small quantity of ferrimagnetic 
nanoparticles of magnetite Fe3O4 in the produced 
schungite micropowder which are probably 
formed upon the atmospheric dry milling of 
schungite particles in a steel ball mill with a steel 
milling bowl. This can be assumed based on the 
chemical features of the oxidation of stainless 

Fig. 6. Frequency dependence of the calculated value  
e·m for the paraffin-schungite composite (50 wt%)

Fig.  7. Frequency dependence of reflection loss for 
composites based on paraffin and radio-absorbing 
fillers for concretes with a sample thickness of 15 mm

Fig. 8. Frequency dependence of the calculated value 
of magnetic permeability for the paraffin-schungite 
composite (50 wt%)
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steel in the course of abrasion of abrasive metal 
powders in a ball mill with a drum and AISI SS304 
non-magnetic stainless steel balls, as well as on 
the frequency behaviour of the high-frequency 
magnetic permeability calculated for the paraffin-
schungite composite, which shows that Snoek’s 
limit of the ferrimagnetic impurity is above 7 GHz. 
Therefore, the studied schungite micropowder 
cannot be considered as a purely dieletric radio-
absorbing filler with electrically conductive 
carbon particles as is common in some works [5, 
6, 12, 16, 40]. This conclusion corresponds well 
with the conclusion of [41], where it is stated 
that the frequency properties of the coefficients 
of reflection of electromagnetic radiation (EMR) 
from the surface of schungite-cement composites 
demonstrate a resonance effect at a frequency of 
8.5 GHz, which can be explained by the content 
of metals in the structure of schungite and their 
impact on the reflection of EMR.

4. Conclusion
Thus, the conducted microscopic and 

energy spectral study of the schungite mineral 
and its produced micropowder showed that 
both the schungite itself and its micropowder 
contain significant concentrations of iron of 
3.8 and 6.1 wt%, respectively. The schungite 
powder, apparently, contains iron in the form of 
ferrimagnetic nanoparticles of magnetite and 
pyrite, which also contributes to scattering and 
absorption of electromagnetic waves by schungite 
materials. The produced schungite micropowder 
also showed the presence of weak ferrimagnetic 
properties according to the measurements of 
magnetic permeability performed by vector 
analysis of the impedance of electrical circuits. 
This must be taken into account when discussing 
electromagnetic properties of industrially and 
independently produced schungite micropowders 
which are often used as radio-absorbing fillers for 
building materials.
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