

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 546.64:546.725+546.05 https://doi.org/10.17308/kcmf.2023.25/10975

Формирование в процессе глицин-нитратного горения и магнитные свойства наночастиц YFe_{1_v}Ni_vO_z

Е. И. Лисунова¹, Н. С. Перов², В. О. Миттова³, Х. В. Буи⁴, А.Т. Нгуен⁵, Б. В. Сладкопевцев^{1⊠}, Ю. А. Алехина², В. Ф. Кострюков¹, И. Я. Миттова¹

¹Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

²Московский государственный университет им. М. В. Ломоносова, ГСП-1, Ленинские горы, 1, стр. 2, Москва 119991, Российская Федерация

³Учебный университет Геомеди 4 ул. Царя Соломона II.0114, Тбилиси, Грузия

⁴ Сайгонский университет, педагогический факультет, ул. Ан Дуонг Выонг, 273, округ 3, район 5, Хошимин, Вьетнам

⁵Педагогический университет Хошимина, химический факультет, Хошимин 700000, Вьетнам

Аннотация

Целью работы был синтез нанокристаллов YFeO₃ и YFe_{1-x}Ni_xO₃ (x = 0.1; 0.15; 0.2; 0.3; 0.5) в условиях самораспространяющейся волны глицин-нитратного горения, их характеризация и установление влияния допирования Ni²⁺ феррита иттрия на магнитные свойства нанопорошков.

Описана технология синтеза наночастиц ортоферрита иттрия (с допированием ионами Ni²⁺ и без него) методом глицин-нитратного горения при соотношении G/N = 1 и 1.5 без добавления в реакционную смесь гелеобразователя и с применением этиленгликоля/глицерина. Для характеризации нанопорошков на основе YFeO₃ определены: фазовый состав и кристаллическая структура, размер и структура частиц нанокристаллов, элементный состав образцов, магнитные характеристики.

Термический отжиг синтезированных образцов в режиме 800 °C, 60 мин приводит к формированию основной фазы о-YFeO₃. Недопированные образцы ортоферрита иттрия характеризуются диаметром частиц в интервале 5–185 нм в зависимости от используемого гелеобразователя. Для YFe_{1-x}Ni_xO₃ характерны частицы преимущественно округлой формой с размером от 24 до 31 нм, имеет место немонотонный характер зависимости среднего диаметра частиц от содержания допанта: по мере увеличения количества вводимого допанта средний размер кристаллитов имеет тенденцию к уменьшению. Нанопорошки недопированного ортоферрита иттрия проявляют антиферромагнитное поведение магнитной восприимчивости при изменении температуры. Изменение магнитных свойств нанокристаллических порошков YFeO₃, допированных никелем, обусловлено встраиванием Ni²⁺ в положение Fe³⁺, что приводит к формированию материала с более выраженными магнитномягкими свойствами при степени замещения 0.1. Для образцов с большими степенями замещения (*x* = 0.15 и 0.3) также характерно парамагнитное поведение при температурах выше 100 К.

Ключевые слова: нанокристаллы, ортоферрит иттрия, никель, допирование, глицин-нитратное горение

Источник финансирования: исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-33-90048 Аспиранты.

🖂 Сладкопевцев Борис Владимирович, e-mail: dp-kmins@yandex.ru

© Лисунова Е. И., Перов Н. С., Миттова В. О., Буи Х. В., Нгуен А.Т., Сладкопевцев Б. В., Алехина Ю. А., Кострюков В. Ф., Миттова И. Я., 2023

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Е.И.Лисунова и др.

Формирование в процессе глицин-нитратного горения и магнитные свойства...

Благодарности: проведенные исследования выполнены на приборах ЦКПНО ВГУ, а также на установках кафедры магнетизма МГУ им. М. В. Ломоносова, приобретенных за счет средств Программы развития МГУ.

Для цитирования: Лисунова Е. И., Перов Н. С., Миттова В. О., Буи Х. В., Нгуен А.Т., Сладкопевцев Б. В., Алехина Ю. А., Кострюков В. Ф., Миттова И. Я. Формирование в процессе глицин-нитратного горения и магнитные свойства наночастиц YFe_{1-x}Ni_xO₃. *Конденсированные среды и межфазные границы*. 2023;25(1): 61–71. https://doi.org/10.17308/ kcmf.2023.25/10975

For citation: Lisunova E. I., Perov N. S., Mittova V. O., Vuong B. X., Nguyen A. T., Sladkopevtsev B. V., Alekhina Yu. A., Kostryukov V. F., Mittova I. Ya. Formation during glycine-nitrate combustion and magnetic properties of $YFe_{1-x}Ni_xO_3$ nanoparticles. *Condensed Matter and Interphases*. 2023;25(1): 61–71. https://doi.org/10.17308/kcmf.2023.25/10975

1. Введение

Получение нанокристаллических перовскитоподобных ортоферритов редкоземельных элементов (РЗЭ), а также твердых растворов и композиционных материалов на их основе, в настоящее время является одним из наиболее интенсивно развивающихся направлений исследований наук о материалах [1–5]. Интерес к этому классу неорганических веществ во многом связан с возможностью применения присущих ортоферритам РЗЭ как мультиферроикам практически важных для использования в области хранения данных, газовых сенсоров, топливных ячеек свойств [6–8].

Одним из ярких представителей этого класса является YFeO₃, многообразие важных функций которого (мультиферроик, полупроводник, фотокатализатор в видимой области света и т. п.) дополняется экономической целесообразностью использования материалов на его основе ввиду наибольшей распространенности иттрия среди всего ряда РЗЭ [9–11]. Нанопорошки YFeO₃ могут быть получены методами соосаждения [12], гидротермального синтеза [13], золь-гель технологии и другими [14, 15].

Склонность наночастиц к агломерации является важным фактором, влияющим на размер кластеров, находящихся в растворе, а значит и на их физико-химические свойства [15-18]. В последнее время активно применяется метод получения сложнооксидных систем в волне горения, и, в частности, глицин-нитратный синтез (ГНС), позволяющий обеспечить высокую химическую однородность веществ за счет смешения исходных компонентов на молекулярном уровне при относительно невысоких температурах [19-22]. Основное преимущество данного метода заключается в достижении узкого распределения частиц по размерам и, вероятно, поэтому ГНС активно применяется на практике при синтезе нанокристаллического YFeO₇ [23, 24]. Однако до сих пор остается неизученным влияние гелеобразователей на процесс формирования нанокристаллов ортоферрита иттрия (с допированием и без него) в условиях самораспространяющейся волны глицин-нитратного горения, их размер, структуру и магнитные свойства получаемой композиции.

Особое внимание уделяется изучению магнитных свойств ортоферрита иттрия, допированного двухзарядными катионами [25-28]. Например, в [29] показано, что допирование YFeO, кобальтом обеспечивает рост магнитной проницаемости материала и уширение петли гистерезиса, что вызвано увеличением скоса магнитных моментов атомов в антиферромагнетиках. В связи с этим для допирования феррита иттрия был выбран катион переходного элемента Ni²⁺ с дефектной *d*-оболочкой. Из-за сходства физико-химических свойств и близости размерных параметров по системе радиусов Шеннона $(r(Ni^{2+}) = 0.69 Å)$ никель, вероятнее всего, должен занимать позиции железа в решетке феррита $(r(Fe^{3+}) = 0.65 \text{ Å})$ [30].

В этой связи целью работы стал синтез нанокристаллов YFeO₃ и YFe_{1-x}Ni_xO₃ в условиях самораспространяющейся волны глицин-нитратного горения, их характеризация и установление влияния допирования Ni²⁺ феррита иттрия на магнитные свойства нанопорошков.

2. Экспериментальная часть

Исходными реагентами служили нитраты железа (III) и иттрия – Fe(NO,),·9H,O («ч.») и $Y(NO_z)_z \cdot 6H_2O$ («х. ч.»), глицин (аминоуксусная кислота) С₂H₅NO₂ («ч. д. а.»), количество которого по отношению к нитратам металлов G/N варьировалось от 1 до 1.5. В качестве гелеобразователей в общем случае применяют многоатомные спирты, за счет которых происходит полиэтерификация хелатов, в настоящей работе эту роль выполняли глицерин C₇H₂(OH), и этиленгликоль С₂Н₄(OH)₂, оба – «ч. д. а.». Вследствие этого достигается равномерное распределение ионов металлов Y (III) и Fe (III) в исходном прекурсоре, при последующей термообработке которого образуется порошок сложного оксида, отвечающий основной фазе YFeO₄.

Е. И. Лисунова и др.

Формирование в процессе глицин-нитратного горения и магнитные свойства...

Методика синтеза нанокристаллов состояла в следующем. В 200 мл дистиллированной воды растворяли $Y(NO_z)_z \cdot 6H_2O$, $Fe(NO_z)_z \cdot 9H_2O$ и С₂Н₅NO₂. В раствор нитратов металлов, помимо глицина вводили этиленгликоль или глицерин. Количество гелеобразователя изменяли в зависимости от основных компонентов G/N = 1 и G/N = 1.5 соответственно. Кипячение продолжалось 120 минут. Образовавшийся гель подвергали термическому нагреву, в результате чего развивалась самоподдерживающаяся экзотермическая реакция с участием глицина (аминоуксусная кислота). Конечный продукт (в виде порошка) отжигали в муфельной печи при температуре 800 °С в течение 60 минут. Такие параметры термического отжига были выбраны на основании ранее полученных нами результатов по формированию методом соосаждения допированных никелем нанокристаллов YFeO, [31]. Там же показано, что в этих условиях происходит образование однофазного продукта ортоферрита иттрия со структурой перовскита с размерами частиц до 160 нм. Дальнейшее увеличение температуры и времени отжига нежелательно, так как это приводит к укрупнению частиц и их агломерации.

Фазовый состав и кристаллическую структуру синтезированных образцов устанавливали методом рентгеновской дифракции (РФА, дифрактометр Thermo ARL X'tra (СиК_{α} излучение, $\lambda = 0.154018$ нм, $2\theta = 20 - 70^{\circ}$, шаг = 0.02°). Размер частиц определяли методом просвечивающей электронной микроскопии (ПЭМ, Carl Zeiss LIBRA 120). Для установления элементного состава образцов использовали локальный рентгеноспектральный микроанализ (ЛРСМА, растровый электронный микроскоп JEOL-6580LV с системой энергодисперсионного микроанализа INCA 250).

Измерения температурных зависимостей магнитной восприимчивости до гелиевых температур были проведены на PPMS (Physical properties measurement system). На этой же установке были измерены петли гистерезиса образца 5 (см. ниже) с ферримагнитным упорядочением в полях до 6.4 MA/м. Магнитные свойства остальных образцов измеряли на вибрационном магнитометре LakeShore модель 7407. Образцы запаивали в полиэтиленовые капсулы размером порядка 4×4 мм и ламинировали, чтобы предотвратить движение частиц порошка в процессе измерений. Капсулы закрепляли на держателе магнитометра с помощью тефлоновой ленты. Магнитное поле в процессе измерений прикладывалось в плоскости капсулы. Измерения вели в криостате при температурах 100 и 300 К.

3. Результаты и обсуждение

Из данных РФА (рис. 1) следует, что термический отжиг при температуре 800 °С в течение 60 минут недопированных образцов, синтезированных в условиях глицин-нитратного горения при соотношении G/N = 1 без добавления в реакционную смесь гелеобразователя (дифрактограмма 1) и с добавлением этиленгликоля при соотношениях G/N = 1 и G/N = 1.5 (дифрактограммы 2 и 3), приводит к формированию порошков ортоферрита иттрия. В то же время, как для G/N = 1, так и для G/N=1.5 с использованием глицерина в качестве гелеобразователя, помимо основной фазы YFeO₃ (№№ карт: 48-0529 и 39-1489) установлено наличие примеси У₂О₄ (№ карты: 20-1412), что следует из дифрактограмм 4 и 5 на рис. 1 (см. табл. 1).

На дифрактограммах образцов феррита иттрия (рис. 2, начало нумерации на рис. 1, дифрактограммы 6 и 7), допированного Ni²⁺, в условиях глицин-нитратного горения при G/N = 1 без использования гелеобразователей с последующим термическим отжигом в режиме 800 °C, 60 минут наблюдаются пики основной фазы – ортоферрита иттрия (№№ карт: 48-0529 и 39-1489). Помимо рефлексов основной фазы на дифрактограммах № 6 и № 7 присутствует незначительный по интенсивности один примесный пик оксида иттрия (№ карты: 20-1412). В случае использования глицерина (рис. 2, дифрактограммы № 8 и № 9) и этиленгликоля (рис. 2, дифрактограммы № 10 и № 11) в качестве гелеобразователей установлено наличие основной фазы ортоферрита иттрия и присутствие незначительного количества пиков, которые относятся к оксиду У₂O₇ (рис. 2).

Определение размера частиц нанопорошков $YFe_{1-x}Ni_xO_3$ (x = 0.1; 0.15; 0.2; 0.3; 0.5), по данным об уширении линий рентгеновской дифракции (расчет по формуле Шеррера) и просвечивающей электронной микроскопии дало следующие результаты (табл. 2). Расчет по формуле Шеррера (РФА) показал, что при увеличении х от 0.1 до 0.3 D_{cp} нанокристаллов изменяется от 27±2 нм до 47±4 нм соответственно (РФА). Как следует из данных ПЭМ, наночастицы феррита иттрия, допированного никелем, с номинальной степенью допирования x = 0.15 при G/N = 1.5 с добавлением этиленгликоля (рис. 3а) и глицерина (рис. 3б) характеризуются преимущественно сферической

Е. И. Лисунова и др. Формирование в процессе глицин-нитратного горения и магнитные свойства...

Рис. 1. Рентгеновские дифрактограммы порошков YFeO₃, полученных глицин-нитратным методом, с различным соотношением компонентов G/N и разными гелеобразователями после термического отжига в режиме 800 °C, 60 мин: 1 - G/N = 1 без добавления гелеобразователя; 2, 3 - G/N = 1 и 1.5 соответственно, гелеобразователь – этиленгликоль $C_2H_4(OH)_2$; 4, 5 - G/N = 1 и 1.5, гелеобразователь – глицерин $C_3H_5(OH)_3$

Рис. 2. Рентгеновские дифрактограммы порошков, термически отожжённых в режиме 800 °C, 60 мин: $6 - YFe_{1-x}Ni_xO_3$ (x = 0.1) при G/N = 1 без добавления гелеобразователя; 7 - YFe_{1-x}Ni_xO_3 (x = 0.2) при G/N = 1 без добавления гелеобразователя; 8 – YFe_{1-x}Ni_xO_3 (x = 0.15) при G/N = 1.5, гелеобразователь – глицерин $C_3H_5(OH)_3$; 9 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – глицерин $C_3H_5(OH)_3$; 10 – YFe_{1-x}Ni_xO_3 (x = 0.15) при G/N = 1.5, гелеобразователь – этиленгликоль $C_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль $C_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль $C_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$; 11 – YFe_{1-x}Ni_xO_3 (x = 0.3) при G/N = 2, гелеобразователь – этиленгликоль С $_2H_4(OH)_2$

 4 🗖															
		a (D)	DDAIA	00001140		nouo			2 2 TU OFO	FOD		14 14 7 5	OI HITTLI	CDOMCT	22
	vнова и лі) (1)		пование	кп	DUILE		-нип	JAIHOIO		-ния	ทพลเ	нигные		3d
 	,	J. <u> </u>	P P P P P P P P P P	pobuline		роце	CCC 17	 	54111010	1000			inviti Dic	CDOMCIN	20

N⁰	Состав	G/N	Гелеобразователь	Дополнительная фаза
1	YFeO ₃	1	-	_
2	YFeO ₃	1	$C_2H_4(OH)_2$	-
3	YFeO ₃	1.5	C ₂ H ₄ (OH) ₂	-
4	YFeO ₃	1	C ₃ H ₅ (OH) ₃	Y ₂ O ₃
5	YFeO ₃	1.5	C ₃ H ₅ (OH) ₃	Y ₂ O ₃
6	YFe _{0.9} Ni _{0.1} O ₃	1	-	Y ₂ O ₃
7	YFe _{0.8} Ni _{0.2} O ₃	1	-	Y ₂ O ₃
8	YFe _{0.85} Ni _{0.15} O ₃	1.5	C ₃ H ₅ (OH) ₃	Y ₂ O ₃
9	YFe _{0.7} Ni _{0.3} O ₃	2	C ₃ H ₅ (OH) ₃	Y ₂ O ₃
10	YFe _{0.85} Ni _{0.15} O ₃	1.5	C ₂ H ₄ (OH) ₂	Y ₂ O ₃
11	YFe _{0.7} Ni _{0.3} O ₃	2	C ₂ H ₄ (OH) ₂	Y ₂ O ₃

Габлица 1. Результаты ј	рентгенофазового анали:	за нанопорошков Ү	FeO _z и	YFe ₁ N	i O,
			-	1-8	

Рис. 3. ПЭМ-изображения (а, б) порошка состава $YFe_{1-x}Ni_xO_3$ (x = 0.15), в соотношении G/N = 1.5, гелеобразователь – $C_2H_4(OH)_2$ (а, Образец № 10) и $C_3H_5(OH)_3$ (б, образец № 8), отжиг – 800 °С, 60 мин

формой, их диаметр находится в пределах от 4 до 50 нм (рис. 3).

Из табл. 2 следует, что полученные данные показывают немонотонный характер зависимости $D_{\rm cp}$ от содержания допанта. По мере увеличения количества вводимого допанта средний размер кристаллитов имеет тенденцию к уменьшению, такой спад, возможно, может быть вызван особенностями химического строения гелеобразователей (этиленгликоль/глицерин).

Результаты исследования элементного состава методом локального рентгеноспектрального микроанализа приведены в табл. 3.

Определение элементного состава образцов показало, что реальное содержание каждого элемента в них довольно близко к их номинальному составу (табл. 4).

Полевые зависимости намагниченности недопированных образцов, синтезированных без использования гелеобразователя и с добавлением этиленгликоля, показаны на рис. 4-5. Магнитного насыщения (флип-перехода) образцы в поле 1270 кА/м при T = 100 К (рис. 4a) и 300 К (рис. 4б) не достигают. Полевые зависимости удельной намагниченности имеют вид прямых (шумы на зависимостях в первую очередь связаны с малостью измеряемых значений намагниченности), максимальные измеренные значения намагниченности для данных образцов в поле 1270 кА/м лежали в диапазоне 0.25-0.36 А·м²/кг при температуре 100 К и 0.12–0.30 А·м²/кг при температуре 300 К (табл. 5). Магнитные свойства образцов сравнимы с таковыми для чистой фазы YFeO₃, синтезированного методом осаждения [32], удельная намагниченность которого в магнитном поле такой же величины составляет J = 0.242 А·м²/кг. В приведенном диапазоне магнитных полей и температур материал

Конденсированные среды и межфазные границы / Condensed Matter and Interphases

Е. И. Лисунова и др. Формирование в процессе глицин-нитратного горения и магнитные свойства...

Таблица 2. Средний диаметр нанокристаллов УFe_{1-x}Ni_xO₃ (*x* = 0.1; 0.15; 0.2; 0.3) после отжига при 800 °С в течение 60 мин

Метол	<i>D</i> _{ср} , нм							
определения	образец № 6	образец № 7	образец № 8	образец № 10	образец № 9	образец № 11		
определения	(x = 0.1)	(x = 0.2)	(x = 0.15)	(x = 0.15)	(x = 0.3)	(x = 0.3)		
РФА	27±2	40±4	24±2	40±4	47±4	26±2		
ПЭМ	31±3	26±2	17±5	31±2	24±9	28±5		

Таблица 3. Результаты ЛРСМА и погрешность определения содержания элементов в образцах $YFe_{1-x}Ni_{x}O_{3}$, полученных методом глицин-нитратного горения, после термического отжига в режиме 800 °C, 60 мин

Образец №	Номинальный состав образцов	Элементный состав, ат. %						
	Х	Y	Ni	Fe	0	С		
6	0.1	15.9±1.8	0.8 ±0.1	11.9±0.6	55.0±3.4	16.0±1.0		
7	0.2	13.1±1.6	2.3±0.2	10.9±0.6	58.6±3.8	15.1±1.0		
8	0.15	10.1±1.4	3.1±0.2	6.8±0.4	63.0±4.5	17.0±1.2		
9	0.3	10.1±1.4	3.1±0.2	6.8±0.4	61.0±4.5	19.0±1.2		
10	0.15	18.4±1.8	1.1±0.1	14.2±0.6	50.9±2.8	15.3±0.9		
11	0.3	18.4±1.8	1.3±0.1	14.2±0.6	50.8±2.8	15.3±0.9		

а

б

Рис. 4. Петли гистерезиса при а) 100 К и б) 300К образцов YFeO₃ (отжиг в режиме 800 °C, 60 мин), синтезированных при соотношениях компонентов: G/N = 1 без добавления гелеобразователя (1) и G/N = 1 и 1.5 с добавлением этиленгликоля (2, 3)

демонстрирует парамагнитное поведение. При этом температурные зависимости намагниченности свидетельствуют о существовании антиферромагнитного типа упорядочения при низких температурах. Линейная аппроксимация участка кривой пересекает ось абсцисс в области отрицательных значений, что свидетельствует о наличии порядка антиферромагнитного типа (рис. 56). Максимум прямой зависимости восприимчивости, соответствующий температуре Нееля, может наблюдаться при температуре менее 2 К, однако существование локального упорядочения может наблюдаться вплоть до 100 К. Согласно литературным данным феррит иттрия является слабым ферромагнетиком, демонстрирующим явление спиновой переориентации – поворота оси антиферромагнетизма под действием магнитного поля [15]. Магнитные свойства недопированного образца 5, синтезированного с добавлением глицерина в качестве гелеобразователя при G/N = 1.5, в широком диапазоне магнитных полей продемонстрировали наличие широкой петли гистерезиса, свойственной материалам с антиферромагнитным типом упорядочения с нескомпенсированным магнитным моментом (рис. 6). При 2 К полевые зависи-

Рис. 5. Температурная зависимость магнитной восприимчивости (а) и обратной восприимчивости (б) для образца 1 из таблицы 5 (для образцов 2 и 3 зависимости аналогичны)

мости намагниченности также демонстрируют перетяжку петли гистерезиса, свидетельствующую о более выраженном явлении спиновой переориентации [15]. Стоит также отметить, что для образцов, синтезированных с использованием глицерина, наблюдалось образование примесной фазы оксида иттрия.

Гистерезис полевых зависимостей наблюдался и для образца ортоферрита иттрия с малой степенью допирования никелем. Для образца со степенью замещения x = 0.1 при G/N = 1 без добавления в реакционную систему гелеобразователя наблюдается гистерезисное поведение в области магнитных полей до 1270 кА/м, свидетельствующее о наличии нескомпенсированного магнитного момента (рис. 7, табл. 6). При этом в

Рис. 6. Петли гистерезиса образца 5, синтезированного с глицерином при разных температурах. При 2 К (черная линия) наблюдается тенденция перехода в антиферромагнитное состояние

области магнитных полей напряженностью порядка 1000 кА/м наблюдается перегиб полевой зависимости намагниченности, появление которого может свидетельствовать о начале процесса спиновой переориентации, однако сам процесс может наблюдаться лишь при приложении более сильных магнитных полей. Стоит также отметить отсутствие магнитного насыщения образцов в представленном диапазоне магнитных полей. В то же время коэрцитивность в приведенных частных циклах составляла порядка 50-80 кА/м (как при 300 К, так и при 100 К), что составляет величину, на порядок меньшую коэрцитивности недопированного образца при измерениях в аналогичных условиях (порядка 520–550 кА/м). Таким образом, допирование

Рис. 7. Петли гистерезиса образца 6 номинального состава $YFe_{0.9}Ni_{0.1}O_3$ (отжиг в режиме 800 °C, 60 мин) при G/N = 1 без добавления гелеобразователя

Формирование в процессе глицин-нитратного горения и магнитные свойства...

феррита иттрия никелем в малой степени может позволить получить материалы с более магнитномягким поведением нескомпенсированного магнитного момента и меньшими полями спиновой переориентации.

Для образцов с большими степенями замещения (x = 0.15, x = 0.3) и полученными с использованием глицерина и этиленгликоля в качестве гелеобразователей в диапазоне магнитных полей до 1270 кА/м наблюдается парамагнитное поведение при температурах выше 100 К с восприимчивостью порядка 10^{-5} – 10^{-6} (рис. 8). Остальные образцы № 8 и 9 YFe_{1-x}Ni_xO₃ (x = 0.15 и 0.3), синтезированные с использованием в качестве гелеобразователя глицерина в соотношении G/N = 1.5 и 2 соответственно, а также образцы № 10, 11 YFe_{1-x}Ni_xO₃ (x = 0.15 и 0.3), полученные с добавлением этиленгликоля в том же соотношении G/N = 1.5 и 2, демонстрируют парамагнитное поведение.

2023;25(1): 61-71

Таким образом, в процессе формирования нанопорошков ортоферрита иттрия (с допированием и без него) в условиях самораспространяющейся волны глицин-нитратного горения в

Рис. 8. Полевые зависимости намагниченности для образцов, термически отожжённых в режиме 800 °С, 60 мин: 8 – номинального состава $YFe_{0.85}Ni_{0.15}O_3$ при G/N = 1 с добавлением глицерина, 9 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.85}Ni_{0.15}O_3$ при G/N = 1.5 с добавлением этиленгликоля, 11 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 20 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.85}Ni_{0.15}O_3$ при G/N = 2 с добавлением глицерина, 20 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина, 10 – номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ при G/N = 2 с добавлением глицерина и номина и номинального состава $YFe_{0.7}Ni_{0.3}O_3$ п

Таблица 4. Результаты ЛРСМА образцов $YFe_{1-x}Ni_xO_3$, полученных методом глицин-нитратного горения, после термического отжига в режиме 800 °C, 60 мин

Образец №	G/N	Гелеобразователь	Х	Номинальный состав	Реальный состав
6	1	-	0.1	YFe _{0.9} Ni _{0.1} O ₃	YFe _{0.92} Ni _{0.08} O ₃
7	2	-	0.2	YFe _{0.8} Ni _{0.2} O ₃	YFe _{0.83} Ni _{0.17} O ₃
8	1.5	C ₃ H ₅ (OH) ₃	0.15	YFe _{0.85} Ni _{0.15} O ₃	YFe _{0.75} Ni _{0.25} O ₃
9	2	C ₃ H ₅ (OH) ₃	0.3	YFe _{0.7} Ni _{0.3} O ₃	YFe _{0.69} Ni _{0.31} O ₃
10	1.5	C ₂ H ₄ (OH) ₂	0.15	YFe _{0.85} Ni _{0.15} O ₃	YFe _{0.79} Ni _{0.21} O ₃
11	2	C ₂ H ₄ (OH) ₂	0.3	YFe _{0.7} Ni _{0.3} O ₃	YFe _{0.73} Ni _{0.27} O ₃

Таблица 5. Магнитные характеристики недопированных нанопорошков YFeO₃ (отжиг в режиме 800 °C, 60 мин), измеренные при 100 и 300 К

N⁰	G/N	Гелеобразователи	Размер частиц (ПЭМ), нм	J(100K), А∙м²/кг	J(300K), A·m²/кг
1	1	_	~5-145	0.26	0.23
2	1	$C_2H_4(OH)_2$	~5-150	0.36	0.16
3	1.5	C ₂ H ₄ (OH) ₂	~20-185	0.33	0.26

Конденсированные среды и межфазные границы / Condensed Matter and Interphases

Е. И. Лисунова и др.

Формирование в процессе глицин-нитратного горения и магнитные свойства...

Таблица 6. Магнитные характеристики в поле 1270 кА/м нанопорошков $YFe_{1-x}Ni_xO_3$ (x = 0.1; 0.15; 0.3) после термического отжига в режиме 800 °C, 60 мин, измеренные при 100 и 300 К

N⁰	G/N	Гелеобразователи	Размер частиц (ПЭМ), нм	J(300K), A∙m²/кг	J(100К), А∙м²/кг
6	1	_	5-100	0.066	0.145
8	1.5	$C_{3}H_{5}(OH)_{3}$	5-35	0.1	0.09
9	2	$C_{3}H_{5}(OH)_{3}$	4-55	0.128	0.133
10	1.5	$C_2H_4(OH)_2$	5-50	0.056	0.42
11	2	$C_2H_4(OH)_2$	4-70	0.176	0.092

области стехиометрического параметра G/N от 1 до 2 образуются материалы, проявляющие различные магнитные свойства. Тонкая регулировка магнитных характеристик возможна за счет изменения соотношения компонентов G/N и применения различных гелеобразователей при синтезе нанокристаллов.

4. Заключение

Синтезированы нанокристаллы ортоферрита иттрия (с допированием и без него) в условиях глицин-нитратного горения при соотношении G/N = 1 и 1.5 без добавления в реакционную смесь гелеобразователя и с применением этиленгликоля/глицерина. Установлено, что термический отжиг в течение часа при 800 °С приводит к формированию основной фазы о-YFeO₇. Для недопированных образцов ортоферрита иттрия характерен диаметр частиц порядка 5–185 нм в зависимости от используемого гелеобразователя (ПЭМ). Исследованием магнитных характеристик установлено, что образцы YFeO₃, синтезированные при участии этиленгликоля как гелеобразователя, характеризуются антиферромагнитным поведением вплоть до крайне низких температур (ниже 2 К), а использование глицерина в качестве гелеобразователя в аналогичном процессе приводит к формированию частиц с нескомпенсированным магнитным моментом, наиболее вероятно, вызванным слабым ферромагнетизмом феррита иттрия, демонстрирующим магнитножесткий отклик. В случае ортоферрита иттрия, допированного Ni²⁺, в тех же условиях выявлено, что частицы характеризуются преимущественно округлой формой с размером от 24 до 31 нм (ПЭМ). Изменение магнитных свойств нанокристаллических порошков YFeO₂, допированных никелем, обусловлено встраиванием Ni²⁺ ($r(Ni^{2+}) = 0.69$ Å) в положение Fe³⁺ (*r*(Fe³⁺) = 0.645 Å), что приводит к формированию материала с более выраженными магнитномягкими свойствами при степени замещения 0.1. Образцы с большими степенями замещения

также демонстрируют парамагнитное поведение при температурах выше 100 К.

Вклад авторов

Авторы внесли одинаковый вклад в работу, представленную в статье.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Saukhimov A. A., Hobosyan M. A., Dannangoda G. C., Zhumabekova N. N., Almanov G. A., Kumekov S. E., Martirosyan K. S. Solution-combustion synthesis and magnetodielectric properties of nanostructured rare earth ferrites. *International Journal of Self-Propagating High-Temperature Synthesis*. 2015;24(2): 63–71. https://doi.org/10.3103/ S1061386215020065

2. Попков В. И., Альмяшева О. В., Гусаров В. В. Исследование возможностей управления структурой нанокристаллического ортоферрита иттрия при его получении из аморфных порошков. *Журнал прикладной химии*. 2014;87(10): 1416–1420. https://doi.org/10.1134/S1070427214100048

3. Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X. V., Do T. H. Synthesis and magnetic properties of $PrFeO_3$ nanopowders by the co-precipitation method using ethanol. *Nanosystems: Physics, Chemistry, Mathematics*. 2020;11(4): 468–473. https://doi.org/10.17586/2220-8054-2020-11-4-468-473

4. Nguyen A. T., Phan Ph. H. Nh., Mittova I. Ya., Knurova M. V., Mittova V. O. The characterization of nanosized ZnFe_2O_4 material prepared by coprecipitation. *Nanosystems: Physics, Chemistry, Mathematics.* 2016;7(3): 459–463. https://doi.org/10.17586/2220-8054-2016-7-3-459-463

5. Sherstyuk D. P., Starikov A. Yu., Zhivulin V. E., Zherebtsov D. A., Gudkova S. A., Perov N. S., Alekhina

Е.И.Лисунова и др. Форми

Формирование в процессе глицин-нитратного горения и магнитные свойства...

Yu. A., Astapovich K. A., Vinnik D. A., Trukhanov A. V. Effect of Co content on magnetic features and SPIN states in Ni – Zn spinel ferrites. *Ceramics International*. 2021;47(9): 12163–12169. https://doi.org/10.1016/j. ceramint.2021.01.063

6. Serrao C. R., Sahu J. R., Ramesha K., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe₂O₄. *Journal of Applied Physics*. 2008;104(1): 16102. https:// doi.org/10.1063/1.2946455

7. Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rare-earth ferrites from first principles. *Physical Review B*. 2014;89: 205122. https://doi.org/10.1103/ PhysRevB.89.205122

8. Kanhere P., Chen Z. A review on visible light active perovskite-based photocatalysts. *Molecules*. 2014;19: 19995–20022. https://doi.org/10.3390/mol-ecules191219995

9. Ahmad T., Lone I. H., Ansari S. G., Ahmed J., Ahamad T., Alshehri S. M. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. *Materials and Design*. 2017;126: 331–338. https://doi.org/10.1016/j.matdes.2017.04.034

10. Jabbarzare S., Abdellahi M., Ghayour H., Chami A., Hejazian S. Mechanochemically assisted synthesis of yttrium ferrite ceramic and its visible light photocatalytic and magnetic properties. *Journal of Alloys and Compounds*. 2016;688: 1125–1130. https:// doi.org/10.1016/j.jallcom.2016.07.123

11. Suthar L., Bhadala F., Roy M. Structural, electrical, thermal and optical properties of YFeO₃, prepared by SSR and sol – gel route: a comparative study. *Applied Physics A*. 2019;125: 452. https://doi.org/10.1007/s00339-019-2743-1

12. Nguyen A. T., Pham V. N. T., Nguyen T. T. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya., Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite $YFe_{1-x}Mn_xO_3$ nanopowders synthesized by co-precipitation method. *Solid State Sciences*. 2019;96: 105922. https://doi. org/10.1016/j.solidstatesciences.2019.06.011

13. Popkov V. I., Almjasheva O. V. Formation mechanism of YFeO₃ nanoparticles under the hydrothermal condition. *Nanosystems: Physics, Chemistry, Mathematics*. 2014;5(5): 703–708. Режим доступа: https://www.elibrary.ru/item.asp?id=22415667

14. Бережная М. В., Альмяшева О. В., Миттова В. О., Нгуен А. Т., Миттова И. Я. Синтез золь-гель методом и свойства нанокристаллов Y_{1-x}Ba_xFeO₃. *Журнал общей химии*. 2018;88(4): 539–544. Режим доступа: https://www.elibrary.ru/item. asp?id=32809637

15. Popkov V. I., Almjasheva O. V., Semenova A. S., Kellerman D. G., Nevedomskiy V. N., Gusarov V. V. Magnetic properties of YFeO₃ nanocrystals obtained by different soft-chemical methods. *Journal of Materials Science: Materials in Electronics*. 2017;28; 7163–7170. https://doi.org/10.1007/s10854-017-6676-1

16. Shobana M. K., Kwon H., Choe H. Structural studies on the yttrium-doped cobalt ferrite powders synthesized by sol – gel combustion method. *Journal of Magnetism and Magnetic Materials*. 2012;324: 2245–2248. https://doi.org/10.1016/j.jmmm.2012. 02.110

17. Nguyen T. A., Pham V. N. T., Le H. T., Chau D. H., Mittova V. O., Nguyen L. T. Tr., Dinh D. A., Nhan Hao T. V., Mittova I. Ya. Crystal structure and magnetic properties of LaFe_{1-x}Ni_xO₃ nanomaterials prepared via a simple co-precipitation method. *Ceramics International*. 2019;45: 21768–21772. https://doi. org/10.1016/j.ceramint.2019.07.178

18. Lima E., De Biasi E., Mansilla M. V., Saleta M. E., Granada M., Troiani H. E., Rechenberg H. R., Zysler R. D. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. *Journal of Physics D: Applied Physics*. 2012;46: 045002. https://doi. org/10.1088/0022-3727/46/4/045002

19. Bachina A., Ivanov V. A., Popkov V. I. Peculiarities of LaFeO₃ nanocrystals formation via glycine-nitrate combustion. *Nanosystems: Physics, Chemistry, Mathematics*. 2017;8(5): 647–653. https://doi. org/10.17586/2220-8054-2017-8-5-647-653

20. Мартинсон К. Д., Кондрашкова И. С., Попков В. И. Получение нанокристаллов EuFeO₃ методом глицин-нитратного горения. *Журнал прикладной химии*. 2017;90(8): 980–985. Режим доступа: https://www.elibrary.ru/item.asp?id=30564178

21. Popkov V. I., Almjasheva O. V., Nevedomskyi V. N., Panchuk V. V., Semenov V. G., Gusarov V. V. Effect of spatial constraints on the phase evolution of YFeO₃-based nanopowders under heat treatment of glycine-nitrate combustion products. *Ceramics International*. 2018;44: 20906–20912. https:// doi.org/10.1016/j.ceramint.2018.08.097

22. Лебедев Л. А., Теневич М. И., Попков В. И. Влияние режима растворного горения на структуру, морфологию и размерно-чувствительные фотокаталитические свойства нанопорошков MgFe₂O₄. *Конденсированные среды и межфазные границы*. 2022;24(4): 496–503. https://doi. org/10.17308/kcmf.2022.24/10645

23. Popkov V. I., Almjasheva O. V., Nevedomskiy V. N., Sokolov V. V., Gusarov V. V. Crystallization behaviour and morphological features of YFeO₃ nanocrystallites obtained by glycine-nitrate combustion. *Nanosystems: Physics, Chemistry, Mathematics.* 2015;6(6): 866–874. https://doi.org/10.17586/2220-8054-2015-6-6-866-874

24. Попков В. И., Альмяшева О. В. Формирование нанопорошков ортоферрита иттрия YFeO₃ в условиях глицин-нитратного горения. *Журнал* Е. И. Лисунова и др.

Формирование в процессе глицин-нитратного горения и магнитные свойства...

прикладной химии. 2014;87(2): 185–189. Режим доступа: https://www.elibrary.ru/item.asp?id=42837771

25. Nguyen A. T., Chau H. D., Nguyen T. T. L., Mittova V. O., Huong D. T., Mittova I. Ya. Structural and magnetic properties of $YFe_{1-x}Co_xO_3$ (0.1<x<0.5) perovskite nanomaterials synthesized by coprecipitation method. *Nanosystems: physics, chemistry, mathematics*. 2018;9(3): 424–429. https://doi.org/10.17586/2220-8054-2018-9-3-424-429

26. Нгуен А. Т., Миттова И. Я., Солодухин Д. О., Альмяшева О. В., Миттова В. О., Демидова С. Ю. Золь-гель формирование и свойства нанокристаллов твердых растворов Y_{1-x}Ca_xFeO₃. Журнал неорганической химии. 2014;59(2): 166–171. https://doi. org/10.7868/S0044457X14020159

27. Pomiro F., Gil D. M., Nassif V., Paesano A., Gomez M. I., Guimpel J., Sanchez R. D., Carbonio R. E. Weak ferromagnetism and superparamagnetic clusters coexistence in YFe_{1-x}Co_xO₃ ($0 \le x \le 1$) perovskites. *Materials Research Bulletin*. 2017;94: 472–482. https:// doi.org/10.1016/j.materresbull.2017.06.045

28. Томина Е. В., Куркин Н. А., Мальцев С. А. Микроволновый синтез ортоферрита иттрия и допирование его никелем. *Конденсированные среды и межфазные границы*. 2019;21(2): 306–312. https://doi.org/10.17308/kcmf.2019.21/768

29. Томина Е. В., Даринский Б. М., Миттова И. Я., Чуркин В. Д., Бойков Н. И., Иванова О. В. Синтез нанокристаллов YCo_xFe_{1-x}O₃ под воздействием микроволнового излучения. *Неорганические материалы*. 2019;55(4): 421–425. https://doi.org/10.1134/ S0002337X19040158

30. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*. 1976;A32(5): 751–767. https://doi.org/10.1107/S0567739476001551

31. Nguyen A. T., Pham V., Chau D. H., Mittova V. O., Mittova I. Ya., Kopeychenko E. I., Nguyen L. T. Tr., Bui V. X., Nguyen A. T. P. Effect of Ni substitution on phase transition, crystal structure and magnetic properties of nanostructured YFeO₃ perovskite. *Journal of Molecular Structure*. 2020;1215: 12829. https://doi. org/10.1016/j.molstruc.2020.128293

32. Бережная М. В., Миттова И. Я., Перов Н. С., Альмяшева О. В., Нгуен А. Т., Миттова В. О., Бессалова В. В., Вирютина Е. Л. Формирование нанопорошков феррита иттрия, допированного цинком, золь-гель методом. *Журнал неорганической химии*. 2018;63(6): 706–711. https://doi.org/10.7868/ S0044457X18060077

Информация об авторах

Лисунова Евгения Игоревна, аспирант кафедры материаловедения и индустрии наносистем Воронежского государственного университета (Воронеж, Российская Федерация). https://orcid.org/0000-0002-8657-2135 kopejchenko00@mail.ru

Перов Николай Сергеевич, д. ф.-м. н., профессор, заведующий кафедрой магнетизма физического факультета Московского государственного университета имени М. В. Ломоносова (Москва, Российская Федерация).

https://orcid.org/0000-0002-0757-4942 perov@magn.ru

Миттова Валентина Олеговна, PhD, профессор, Научно-исследовательский институт экспериментальной и клинической медицины, Лаборатория молекулярной медицины, Учебный университет Геомеди (Тбилиси, Грузия).

https://orcid.org/0000-0002-9844-8684 valentina.mittova@geomedi.edu.ge

Сладкопевцев Борис Владимирович, к. х. н., доцент, доцент кафедры материаловедения и индустрии наносистем, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0002-0372-1941 dp-kmins@yandex.ru

Хуан Вонг Буи, к. х. н., преподаватель педагогического факультета университета Сайгона (Хошимин, Вьетнам).

https://orcid.org/0000-0002-3757-1099 bxvuong@sgu.edu.vn

Ань Тьен Нгуен, к. х. н., заведующий кафедрой общей и неорганической химии педагогического университета Хошимина (Хошимин, Вьетнам).

https://orcid.org/0000-0002-4396-0349 tienna@hcmue.edu.vn

Алехина Юлия Александровна, научный сотрудник кафедры магнетизма Физического факультета Московского Государственного Университета имени М. В. Ломоносова (Москва, Российская Федерация).

https://orcid.org/0000-0003-1776-5782 Ya.alekhina@physics.msu.ru

Кострюков Виктор Федорович, д. х. н., доцент, доцент кафедры материаловедения и индустрии наносистем, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0001-5753-5653 vc@chem.vsu.ru

Миттова Ирина Яковлевна, д. х. н., профессор, профессор кафедры материаловедения и индустрии наносистем, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0001-6919-1683 imittova@mail.ru

Поступила в редакцию 30.08.2022; одобрена после рецензирования 12.09.2023; принята к публикации 15.09.2022; опубликована онлайн 25.03.2023.