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Abstract 
The paper considers the issue of the equilibrium shape of the rolled out capillary meniscus in a homogeneous gravitational 
field. The approach used in this work differs from the earlier ones, as it takes into account the size dependence of the surface 
tension. With the help of such models, it will be possible to understand better the behaviour of small capillary bodies and 
to reveal the effects caused by the size dependence of physical parameters. For the purpose of the study, we propose to use 
an analogue of the well-known Tolman formula expressing the size dependence of the surface tension for the case of an 
interface with an arbitrary geometry. Taking into account the size dependence of the surface tension gives us equations 
which are predictably more complicated than the classical ones. Because of their complex nonlinearity, they cannot be 
solved by elementary functions, hence numerical methods are applied. The mathematical model of the meniscus is presented 
in a form that is better suited for numerical modelling of the profiles. We carried out computational experiments to determine 
the degree and nature of the effect of the parameter responsible for the size dependence of the surface tension on the 
equilibrium shape of the meniscus. We analysed the special cases when the exact solution of the Laplace equation and the 
exact relations between the meniscus profile coordinates can be obtained.
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1.  Introduction
Rolled out menisci, along with sessile/

pendant drops and liquid bridges, are among the 
main types of axisymmetric capillary menisci. 
They can usually be observed when a cylindrical 
rod or spherical body is partially submerged in a 
liquid. Due to wetting, the surface of the liquid 
curves and takes a certain shape. The small 
volume of liquid that is now above the zero level 
is the rolled out meniscus. In English-language 
studies, these capillary systems are referred to by 
various names such as holms, rod menisci, etc. In 
Russian-language sources, the term “neck” can 
be used. We use the terminology adopted in the 
monograph [1]. A distinctive feature of this type 
of meniscus is its surface that asymptotically 
transitions to a horizontal plane as it moves away 
from the wetting line.

The study of the physical problems associated 
with rolled out menisci is of great theoretical and 
practical importance [2–6]. These configurations 
are observed, for example, in experiments 
to determine surface and linear tension, in 
studies of wetting and spreading phenomena, 
in technologies for growing single crystals from 
melts (Czochralski and Stepanov techniques), in 
studies of heat and mass transfer and electrical 
conductivity in nanosystems, flotation, probe 
microscopy and lithography, and in nanofluidics.

In the vast majority of cases where the 
rolled out meniscus is used as a model object, 
the problem of its equilibrium shape has to be 
considered. The main point of the problem is 
to determine the shape the meniscus takes in 
an external force field. Based on its solution, it 
is possible to draw qualitative and quantitative 
conclusions about the patterns of some processes 
occurring at the interface between immiscible 
media. The equilibrium shape problem in its 
general formulation does not have an exact 
solution. Therefore, it is crucially important to 
develop numerical methods which, in certain 
situations, make it possible to calculate the 
profiles of rolled out menisci with a good 
accuracy. Among the publications devoted to 
this issue, we should mention [7–13]. In general, 
the studies pay much less attention to rolled out 
menisci than to drops and bridges.

In this study, we considered the equilibrium 
shape problem of the rolled out meniscus in a 

homogeneous gravitational field. The novelty of 
the approach is that the model takes into account 
the size dependence of the surface tension, which 
is described by the generalised Tolman formula.

2. Size dependence of surface tension
The surface tension s is the most important 

thermodynamic characteristic of the interface; 
it is the cause of almost all capillary phenomena 
[1]. It is well known that the value of surface 
tension, provided that all other conditions are 
equal, depends on the curvature of the interface 
[14–18]. This relationship is commonly referred 
to as the size dependence. Physically, the 
dependence is due to a change in the interatomic 
or intermolecular interactions near the interface. 
For example, the energies required to evaporate 
atoms or molecules from flat and curved surfaces 
can be ten times different from each other. If 
the surface is concave, the evaporation energy is 
higher than in the case of a flat interface. For a 
convex surface, the evaporation energy is lower 
(see Fig. 1).

The effect of the size dependence of the 
surface tension is most pronounced in low-
dimensional thermodynamic systems, so studying 
it is especially relevant for the development of 
modern nanotechnology. At this point, the theory 
of size effects is certainly an independent (not 
exhaustively developed) direction in the physics 
of interfacial phenomena, which is considered to 
be an underlying principle of the type II capillary 
phenomena (according to L. M. Scherbakov’s 
terminology).

Fig. 1. Particle at the interface
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The dependence of the surface tension for a 
small spherical drop is determined by the well-
known Tolman formula [14, 15]:

s s
d

=
+

•( )

1 2
R

,�		  (1)

Where s •( )  is the surface tension of a flat 
interface, R is the drop radius, and d is a non-
negative parameter that describes the thickness of 
the interface (the Tolman length). For interfaces 
with arbitrary geometry, we generalised formula 
(1) [19]:

s s

d
=

+ +
Ê
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ˆ
¯̃

•( )

1 1 1

1 2R R

, 		  (2)

where R1  and R2  are the radii of curvature of the 
interface in main directions. As can be seen from 
(2), s sÆ •( )  at d Æ 0.

3. Theoretical model
Before proceeding to the equations, let us 

note the following. It is common to consider the 
size dependence of the surface tension when the 
volume of the condensed phase is rather small. 
On the contrary, the influence of gravity on the 
meniscus shape is significant at larger sizes. 
So, where the size dependence of the surface 
tension is taken into account, the effect of 
gravity can be ignored, and vice versa. However, 
the thickness of the interface layer d increases 
with increasing temperature. Therefore, the 
dependence of the surface tension on the surface 
curvature, apparently, should also appear in 
macroscopic systems, for example, near a critical 
point. Second, in the considerations below, the 
gravitational field can be easily replaced by an 
artificial homogeneous gravitational field of 
higher strength. In this case, it only affects the 
numerical value of just one parameter. Anyway, it 
is important to derive the most general equations 
which take into account both the size dependence 
of surface tension and the gravitational field.

Let us consider a rolled out meniscus formed 
by the contact of a vertically placed cylinder with 
free surface of liquid. There are no restrictions 
on the radius of the cylinder in this problem. 
However, it should not be so small that a 

macroscopic description of the meniscus is no 
longer applicable.

The coordinate system associated with the 
meniscus profile and the designations are shown 
in Fig. 2: s is the arc length of the profile measured 
from the tangential point, j is the slope angle 
of the tangent to the meniscus profile with the 
horizontal axis x, and (x, z) are the coordinates 
of an arbitrary point of the profile. In the 
gravitational field, the condition of mechanical 
equilibrium of the meniscus is defined by Laplace 
formula for excess pressure [1]:

s r r1 1

1 2R R
gzl v+

Ê
ËÁ

ˆ
¯̃

= - - , 	 (3)

where rl , rv  are the densities of the liquid and 
gas phases respectively, g is the gravitational 
acceleration. We should further keep in mind that 
the value of the surface tension s is not constant 
as previously thought. It depends on the mean 
curvature of the surface by formula (2). After 
inserting formula (2) in (3), we get:
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where b r r s= - •( )
l v g /  is the capillary constant. 

If the surface has rotational symmetry, its prin-
cipal curvatures are defined by the meridian 
section z(x):
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Then, after determining the sign, (4) 
transforms to the equation:

Fig. 2. Meniscus profile
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Usually, the equation for the rolled out 
meniscus profile is extended with the boundary 
conditions of the form:

dz
dx

dz
dxx x x= Æ+•

= -( ) =
0

0 0tan ,� ,p j 	 (6)

where x0  is the radius of the contact area, i.e., 
the cylinder, and j0  is the slope angle of the 
tangent at the point x x= 0 . The first condition 
(6) is due to wetting of the cylinder by liquid, the 
second condition is caused by asymptotic degen-
eration of the meniscus surface into a plane as it 
extends away from the contact line.

The principal curvatures of the rotation 
surface can be expressed in another way:

1 1

1 2R
d
ds R x

= =j j
,�

sin
.�		  (7)

Based on (7), the basic equation (4) was 
rewritten as follows:

d
ds

z
z x

j b
db

j= -
+

-
1

sin
.�		  (8)

On the other hand, the expressions for a 
smooth flat curve are:

dx
ds

dz
ds

= = -cos ,� sin .�j j 		  (9)

Combining (8) and (9), we finally obtained a 
system of equations:

dx
d

z x
xz zj

db j
b db j

= -
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+ +( )
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1
cos
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,�	 (10a)
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z x
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=
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1

1
sin
sin
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Thus, equilibrium profiles of the rolled out 
meniscus in the gravitational field, taking into 
account the size dependence of the surface 
tension, are described by solutions of equations 
(5) or (10). It is easy to check that in the absence 
of size effects, when the value of d is zero, these 
equations transfer to the equations known from 

publications [1, 10]. Note that only axisymmetric 
configurations are involved. In the absence of 
symmetry, the mathematical side of the issue gets 
very complicated. Instead of ordinary differential 
equations we obtain partial derivative equations.

It is impossible to analytically derive a general 
solution of equations (5) or (10), so we have to 
use numerical methods. The most convenient 
technique for the numerical simulation of rolled out 
meniscus profiles [10] is based on the linearisation 
of equation (5). For now, we assume that d = 0. 
For large values of the variable x, the inequality 
dz dx/ �1  is satisfied. Therefore, if we neglect 
the infinitesimal quantities of higher order in the 
denominator, (5) transforms into the equation:

d z
dx x

dz
dx

z
2

2

1
0+ - =b . 		  (11)

The solution of equation (11), having a 
horizontal asymptote, is defined by the expression:

z x C K x( ) = ( )� ,�0 b 		  (12)

where C is the constant of integration, K0 (y) is 
the modified zero-order Bessel function of the 
second kind. Function (12) describes only the 
“tail” of the meniscus profile, and it is not par-
ticularly interesting: z ≈ 0. In order to determine 
the part of the profile belonging to the region of 
small values of x, it is first necessary to match an 
arbitrary, but sufficiently large value of x x= *  
with the corresponding z z= *  and the angle 
j j= *  at a fixed C, using representation (12).

j b b* tan � � ,= ( )È
Î

˘
˚

-1
1C K x

where K y1 ( )  is the modified zero-order Bessel 
function of the second kind. Then the set of num-
bers j* , x* , and z*  is used as the initial data of 
the Cauchy problem for system (10). The latter 
can be effectively solved, for instance, by the 
Runge-Kutta or Adams methods.

However, the above procedure is not suitable 
at d > 0 , since equation (5) cannot be linearised 
in the same way. In this case, we take system (10) 
as the basis and inserted y p j= -  in it.

dx
d

z x
xz zy

db y
b db y

= -
+( )
+ +( )
1

1
cos
sin

,�	 (13a)

dz
d

z x
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b db y

= -
+( )
+ +( )
1

1
sin
sin

.�	 (13b)
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Due to the characteristic of the rolled 
out meniscus, z Æ 0  when x Æ +• . So, the 
conditions to (13) must be as follows:

x x zy y y p=( ) = < +• =( ) =0 0 0,� . 	 (14)

Problem (13)–(14) is also a boundary value 
problem. But unlike (5)–(6), it is considered on 
the finite segment y y pŒÈÎ ˘̊0 ,�  and it is easy to 
solve numerically by the shooting method.

In order to transform system (13) to 
dimensionless coordinates, it is appropriate 
to choose capillary length as a characteristic 
value 1 / b . Upon dividing both parts of each of 
equations (13) by b , we obtained:

dX
d

Z X
XZ Zy

y
y

= -
+( )
+ +( )
1

1
D

D
cos
sin

,�	 (15a)

dZ
d

Z X
XZ Zy

y
y

= -
+( )
+ +( )
1

1
D

D
sin
sin

,�	 (15b)

X X Zy y y p=( ) = =( ) =0 0 0,� . 	 (16)

where X x= b , Z z= b , and D = bd . Fig. 3 
illustrates typical solutions to problems (15)–
(16). The results of 3D modelling of the rolled out 
meniscus surface are shown in Fig. 4. 

As noted above, the problem of equilibrium 
shape of capillary surface cannot be solved 
analytically. This is due to the complicated 
nonlinearity of the Laplace equation. Sometimes, 
however, it is possible to simplify the nonlinearity 
and to derive different kinds of exact formulas 
or analytical approximations to the theoretical 
profile. For example, in the absence of external 
force fields, the capillary surface transforms 
to a surface with a constant mean curvature. 
A sessile (pendant) drop takes a spherical 
shape, the bridge surface takes a catenoidal 
shape. Similarly, if we neglect the contribution 
of gravity in equilibrium equation (5) for the 

Fig. 3. Dimensionless profiles of the meniscus at X0 2= , y0 30= ∞�and different D: a = 0, b = 0.4, c = 1

Fig. 4. 3D model of the meniscus
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rolled out meniscus and assume b = 0 , the exact 
solution is:

z x C C x x C( ) = ± + -( )1 2
2

2
2ln , 	 (17)

where C1 2,�  are the constants. In (17), however, the 
value of the constant C2  must be zero, otherwise 
the function z x( )  is unbounded. As a result, the 
meniscus surface turns into the plane z ∫ 0 . This 
trivial solution is obviously of no physical inter-
est. In contrast to other basic types of menisci, 
the formation of a rolled out meniscus under 
gravity-free conditions is impossible. Without the 
action of the force field, the liquid of limited 
volume gathers into a ball, and the second bound-
ary condition (6) cannot be satisfied.

A more important special case is the two-
dimensional (cylindrical) meniscus, where the 
azimuthal curvature 1 2/ R  at each point is zero: 
sin /j x ª 0 . For the rolled out meniscus, this 
leads to the relationship between the coordinate 
z and the angle j:

z z
d

db
bd

j-
+( )

= -
ln 1

12 cos .�	 (18)

It is still not possible to derive z from it at 
positive values of d  using elementary functions. 
We have to solve the nonlinear equation, but it is 
already scalar, not differential. By tabulating the 
function z j( )  with expression (18) over a certain 
range of the angle j , the corresponding values 
of x  can easily be deduced from the definition 
of the derivative.

If the parameter d  is decreased to zero, the 
left-hand side of (18) tends to bz2 2/ . Then (10) 
and (18) provide the exact expressions for x  and 
z  known from earlier research [1]:

z x C= = - +Ê
ËÁ

ˆ
¯̃

2
2

1
4

2
2b

j
b

j j
sin ,� tan cos ,�ln 	(19)

where the constant C  is defined by the condition 
x xj0 0( ) = . As follows from (19), the maximum 
possible height z0  of the rolled out meniscus is 
2 / b , irrespective of the value of x0 . For 
three-dimensional menisci, the maximum height 
generally increases as the radius of the contact 
line increases.

On the other hand, although z  cannot be 
expressed analytically from expression (18), 
it allows one to analyse the nature of the 

dependence of the maximum height z0  of the 
meniscus on the parameters b  and d . Then we 
inserted j p=  in (18):

z z0 0
2

1
2

d
db

bd
-

+( )
=

ln
.�		  (20)

Using the implicit function differentiability 
theorem, we obtained the following expression 
from implicit equation (20):

dz
d

0 0
b

< ,  
dz
d

0 0
d

> ,

i.e. the increase in d  is accompanied by an in-
crease in z0 , and an increase in b  is accompanied 
by a decrease in 0z . Note that even upon taking 
into account the size dependence of the surface 
tension, the maximal meniscus height z0  does 
not depend on x0 . Moreover, the behaviour of d  
upon changing of the capillary constant b  does 
not depend on the Tolman length d.

4. Conclusions
Equilibrium surface of the rolled out capillary 

meniscus in homogeneous gravitational field is 
described by solutions of nonlinear differential 
equations and their systems. The size dependence 
of the surface tension gives additional terms in 
the equations, further complicating the nature 
of nonlinearity. It is not possible to formulate 
their exact solutions in general terms. Therefore, 
numerical methods must be used to calculate the 
meniscus profiles. Due to the specific boundary 
conditions, the use of numerical techniques 
is also limited. The most practical method for 
numerical simulation of rolled out meniscus 
profiles, based on the linearisation of the Laplace 
equation, is not applicable in the presence of the 
parameter responsible for the size dependence. 
Thus, boundary value problems are the only 
option. However, with the proper choice of the 
variable parameters of the meniscus profile arc, 
the area where the solution is sought can be 
reduced to a finite segment instead of an infinite 
semi-axis. Then, well-known numerical methods, 
e.g. the shooting method can be applied.

In this study, we carried out computational 
experiments to determine the degree and nature 
of the effect of the parameters of the meniscus 
mathematical model on its equilibrium shape. 
From the analysis of the results, it follows, in 
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particular, that the size dependence of the surface 
tension can cause a significant distortion of the 
meniscus shape.
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