УДК 621.382

СПЕКТРОСКОПИЯ ГЛУБОКИХ УРОВНЕЙ МЕТОДОМ LAPLACE-DLTS. КИНЕТИКА ИОНИЗАЦИИ МЕТАСТАБИЛЬНЫХ ЦЕНТРОВ

© 2010 М. Н. Левин¹, А. Е. Бормонтов¹, А. Э. Ахкубеков¹, Е. А. Татохин²

¹Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия ²Воронежская государственная технологическая академия, пр. Революции, 19, 394000 Воронеж, Россия

Поступила в редакцию: 07.04.2010 г.

Аннотация. Метод DLTS является одним из основных при определении параметров электрически активных центров локализации заряда в полупроводниках. С целью повышения точности и адекватности получаемых результатов в работе предложен метод, основанный на применении обратного преобразования Лапласа. Показано, что использование этого метода позволяет определять параметры не только одновалентных, но и метастабильных центров, что невозможно при использовании традиционного метода DLTS.

Ключевые слова: релаксационная спектроскопия, глубокие уровни, обратное преобразование Лапласа, кинетика ионизации, метастабильные центры.

введение

Метод DLTS (Deep Level Transient Spectroscopy) является одним из основных методов, широко используемых для определения параметров дефектов, приводящих к возникновению глубоких уровней (ГУ) в запрещенной зоне полупроводникового материала [1, 2]. Достоинствами метода являются: высокая чувствительность к концентрации глубоких центров, возможность независимого определения энергий активации и сечений захвата ловушек для основных и неосновных носителей тока.

Основной проблемой метода DLTS является недостаточная разрешающая способность, делающая практически невозможным разделение сигналов от нескольких глубоких центров, имеющих близкие значения коэффициентов эмиссии. В литературе описаны различные подходы, применяемые с целью повышения разрешающей способности метода [3-5]. Наибольший интерес в этом направлении представляет метод Laplace-DLTS [4], основанный на применении обратного преобразования Лапласа. Предельное разрешение метода Laplace-DLTS зависит от отношения сигнал/шум, а также процедуры расчета, используемой в процессе регуляризации решения при численном обращении преобразования Лапласа. Наиболее эффективной является процедура, использующая *L*-кривую [6, 7].

В предыдущей нашей работе [8] показано, что вариант метода Laplace-DLTS с использованием

L-кривой (LL-DLTS) существенно повышает достоверность получаемых результатов. В частности, на примере радиационного точечного дефекта кислород-вакансия (А-центр) в кристалле Cr-Si показана возможность значительного снижения механического давления, необходимого для расщепления энергетического уровня при определении типа симметрии дефекта, за счет повышения разрешающей способности метода. В данной работе исследуются возможности метода LL-DLTS для определения основных параметров глубоких центров с близкими значениями коэффициентов эмиссии в монокристаллах GaAs.

МЕТОДИКА

Классический метод DLTS [1] состоит в следующем: исследуемая структура, предварительно охлажденная до температуры жидкого азота, плавно нагревается и в процессе нагрева периодически переводится в неравновесное состояние. Релаксация неравновесного заряда ГУ контролируется по разности значений выбранного для измерений параметра в моменты времени t_1 и t_2 после каждого заполнения. Соотношение скорости нагрева, времен регистрации t_1 и t_2 , а также периодичности циклов заполнения выбираются такими, что в интервалах времени $\Delta t = t_2 - t_1$ структура находится в квазиизотермических условиях.

Выбор контролируемого параметра определяется тем условием, что его изменение должно без искажений воспроизводить процесс релаксации неравновесного заряда ГУ. Например, в работе [1] эмиссию электронов с ГУ воспроизводит релаксация емкости асимметричного n^+ -p перехода $C(t) = C_0 \exp(-e_n t)$, где e_n — коэффициент эмиссии электронов. В этом случае сигнал DLTS получается путем формирования разности нестационарного отклика, измеренного при двух временных задержках t_1 и $t_2 = t_1 + \Delta t$ после заряжающего импульса: $\Delta C_{21}(T) = C(t_2, T) - C(t_1, T)$. Цель обработки сигнала DLTS состоит в нахождении скоростей эмиссии для каждого ГУ и последующем расчете параметров глубоких центров (энергетического положения, сечений захвата, а также концентрации этих центров) [1].

Для определения скорости термической эмиссии $e_n(T)$ и оценки концентрации глубоких доноров N(T) для заданной температуры T обычно используется уравнение [2]:

$$\frac{\Delta C_{21}(T)}{C_s(T)} = \frac{N(T)}{2N_d} \Big[e^{-e_n(T)t_1} - e^{-e_n(T)t_2} \Big], \qquad (1)$$

где $C_s(T)$ — стационарная емкость исследуемой структуры, N_d — концентрация мелких доноров.

Температурная зависимость коэффициента эмиссии $e_{r}(T)$ определяется соотношением:

$$e_n = e_n^* \exp\left(-\frac{E}{kT}\right),\tag{2}$$

где E — энергия ионизации ГУ, k — постоянная Больцмана, T — абсолютная температура, $e_n^* = v_{th}\sigma_n N_c$ — частотный фактор (здесь σ_n — сечение захвата электрона на ловушку, v_{th} — средняя тепловая скорость электронов, N_c — эффективная плотность состояний в зоне проводимости).

Величина DLTS сигнала (1) сильно зависит от температуры релаксации и имеет максимум при некоторой температуре T_{\max} . Дифференцируя (1) по e_n и приравнивая производную нулю, получаем значение коэффициента эмиссии, соответствующее этой температуре:

$$e_{n\max} = \frac{\ln(t_2 / t_1)}{t_2 - t_1}.$$
 (3)

Записав серию кривых $\Delta C_{21}(T)/C_s(T)$ при разных значениях времен задержки t_1 и t_2 , мы получим семейство кривых, максимум на которых будет систематически сдвигаться. Обработка этих кривых позволяет по амплитуде пика сделать вывод о концентрации ГУ, а по смещению максимума с температурой — об энергетическом положении уровня и его сечении захвата. Действительно, в соответствии с формулой (2), зависимость $\ln e_{n \max}$ от $1/T_{\max}$ близка к линейной, и наклон прямой определяет энергетическое положение уровня в запрещенной зоне, а величина отсечки прямой при $1/T_{\max} \rightarrow 0$ — сечение захвата. Далее, зная $e_{n \max}$, t_1 , t_2 и амплитуду DLTS сигнала, пользуясь (1), можно вычислить концентрацию ГУ при данной температуре:

$$N(T) = 2N_d \left[\frac{\Delta C_{21}(T)}{C_s(T)} \right]_{\max} \times$$

$$\times \left[e^{-e_{n\max}(T)t_1} - e^{-e_{n\max}(T)t_2} \right]^{-1}.$$
(4)

Спектроскопический характер метода заключается в том, что он позволяет выделить сигнал, обусловленный эмиссией с каждого уровня из спектра глубоких уровней.

Несмотря на все свои преимущества, классический метод DLTS имеет существенный недостаток. На графике температурной зависимости сигнала DLTS при наличии в полупроводнике нескольких ГУ с близкими скоростями эмиссии, пики сигнала, соответствующие разным центрам, сливаются. В результате получается широкий пик, из которого практически невозможно извлечь полезную информацию о параметрах таких центров. Процесс релаксации неравновесной емкости в этом случае представляет собой сумму нескольких экспоненциальных процессов, входящих с разными весами:

$$C(t) = \sum_{i=1}^{n} C_{0i} \exp\left(-e_{ni}t\right), \qquad (5)$$

где e_{ni} — скорость эмиссии с уровня E_i . Возникает проблема разделения нескольких близко расположенных экспоненциальных функций.

Для решения этой проблемы в работе [3] предложено использовать обратное преобразование Лапласа сигнала (5), результатом которого является сумма δ -функций:

$$R(s) = \sum_{i=1}^{n} C_{0i} \delta\left(s - \frac{1}{\tau_i(T)}\right), \tag{6}$$

положение которых на оси абсцисс позволяет определить значения скоростей эмиссии в (5).

Идея применения обратного преобразования Лапласа получила продолжение в методе Laplace-DLTS, предложенном в работе [4]. В общем случае измеренное значение емкости представляет собой непрерывный спектр скоростей эмиссии [4, 9]:

$$f(t) = \int_{0}^{\infty} F(s) \exp(-st) ds, \qquad (7)$$

где f(t) — измеренное значение емкости, F(s) — функция спектральной плотности.

Для получения значений F(s) необходимо выполнить обратное преобразование Лапласа для функции f(t). Результатом подобной процедуры является спектр четких, резко выраженных пиков, позволяющий получить информацию о количестве уровней и о значениях коэффициентов эмиссии для каждого из них. Основная трудность заключается в том, что для аналитической зависимости f(t)имеется однозначное решение F(s), но в случае экспериментально полученных данных наличие различного вида погрешностей (шумов) ведет к появлению множества решений, которые могут сильно отличаться друг от друга.

Задачу восстановления оригинала F(s) по изображению f(t) можно рассматривать как задачу о нахождении решения интегрального уравнения Фредгольма первого рода, которая относится к классу некорректных задач.

Принимая во внимание дискретный характер экспериментальных данных, можно представить (7) в виде:

$$A\mathbf{x} = \mathbf{b} , \qquad (8)$$

где **b** — вектор N_f элементов экспериментальных данных (например, емкость), **x** — вектор N_F элементов спектральной функции плотности, и A матрица размера $N_f \times N_F$, представляющая дискретную аппроксимацию интегрального преобразования Лапласа. Для поиска устойчивых решений в методе Laplace-DLTS использовались алгоритмы, основанные на изложенных в работе [10] способах решения некорректно поставленных задач методами регуляризации, в частности, регуляризации Тихонова [11].

В данном методе в качестве регуляризованного решения принимается приближенное решение уравнения \mathbf{x}_{i} , минимизирующее выражение:

$$\mathbf{x}_{\lambda} = \arg\min\left\{\left\|A\mathbf{x} - \mathbf{b}\right\|_{2}^{2} + \lambda \|L\mathbf{x}\|_{2}^{2}\right\}, \qquad (9)$$

где второе слагаемое — стабилизирующий (сглаживающий) функционал, λ — параметр регуляризации, контролирующий вклад стабилизатора в минимизацию нормы невязки. В качестве матрицы L может быть взята единичная матрица I_n или $p \times n$ дискретная аппроксимация дифференциального оператора порядка (n-p). В данной работе использовался вид стабилизирующего функционала, предложенный в [11]. В результате получаем набор решений, отличающихся значением параметра регуляризации и степенью сглаженности. В практических задачах правая часть уравнения (8) — вектор **b** — всегда содержит различного рода погрешности, такие как ошибки измерений, аппроксимации или округления. Представим его в виде

$$\mathbf{b} = \overline{\mathbf{b}} + \mathbf{e},\tag{10}$$

где е — погрешность, $\overline{\mathbf{b}}$ — невозмущенная часть. Точная часть $\overline{\mathbf{b}}$ и соответствующее невозмущенное (точное) решение $\overline{\mathbf{x}}$ не известны.

В работах [4, 9] использовалась комбинация следующих стратегий для выбора наиболее устойчивого и близкого к истинному решения: (а) Дополнительные сведения, касающиеся решения. Например, условие $x_{\lambda} \ge 0$ позволяет удалить многочисленные осциллирующие компоненты; (б) Статистические сведения о среднем и среднеквадратическом отклонении решения, а также о величине отклонения е позволяют напрямую находить оптимальное (с минимальной среднеквадратической погрешностью) решение (принцип невязки [12]); (в) Принцип отрицания (parsimony principle), говорящий о том, что из всех решений, входящих во множество и не отсеянных по критериям (a) и (б), следует выбирать самое простое. В случае Laplace-DLTS это означает выбор решения с наименьшим количеством пиков, в котором удалены пики с амплитудами, сопоставимыми с уровнем шума.

Таким образом, данный подход предполагает знание или достаточно достоверную оценку нормы возмущения $\|\mathbf{e}\|_2$. Примером подобного метода может служить принцип невязки, согласно которому параметр регуляризации выбирается таким, чтобы норма невязки для регуляризованного решения удовлетворяла выражению:

$$\left\| A\mathbf{x}_{reg} - \mathbf{b} \right\|_{2} = \left\| \mathbf{e} \right\|_{2}.$$
 (11)

При этом недооценка $\|\mathbf{e}\|_2$ может приводить к слабой регуляризации решения с большой нормой и возникновению дополнительных пиков в спектре Laplace-DLTS, не соответствующих глубокому уровню, а переоценка, в свою очередь, к сильно регуляризованному решению и снижению разрешающей способности.

Альтернативный подход — метод автоматического и однозначного выбора параметра регуляризации, не предполагающий априорного знания величины $\|\mathbf{e}\|_2$, предложен в работах [6, 7]. Суть данного метода состоит в вычислении для набора значений параметра регуляризации λ кривизны линии в координатах $(\log \|A\mathbf{x}_{\lambda} - \mathbf{b}\|_2, \log \|L\mathbf{x}_{\lambda}\|_2)$ и поиску точки с максимальной кривизной. Построенный для случая дискретной некорректной задачи в логарифмических координатах график приобретает характерную *L*-образную форму с хорошо различимым углом, разделяющим вертикальную и горизонтальную части кривой. Вертикальная часть *L*-кривой соответствует решениям, в которых более чувствительна к изменениям параметра регуляризации величина $\|L\mathbf{x}_{reg}\|_2$. Горизонтальная часть соответствует решениям, в которых наиболее чувствительна к изменениям параметра регуляризации величина нормы невязки $\|A\mathbf{x}_{reg} - \mathbf{b}\|_2$, и преобладает влияние погрешности регуляризации.

Таким образом, *L*-кривая четко показывает оптимум между нормой решения (т.е. его близостью к точному решению) и его стабилизацией (сглаженностью). Для данной правой части $\mathbf{b} = \overline{\mathbf{b}} + \mathbf{e}$, очевидно, существует значение параметра регуляризации, обеспечивающее оптимальную степень регуляризации решения \mathbf{x}_{reg} . Одним из важных свойств *L*-кривой является тот факт, что оптимальное значение параметра регуляризации всегда находится вблизи угла кривой [7], по положению которого можно найти решение с наилучшим балансом между нормой невязки и нормой решения.

Численный анализ модельного релаксационного сигнала, содержащего три экспоненты с близкими значениями показателей и малой шумовой составляющей, наглядно показывает [13], что метод Laplas-DLTS с использованием *L*-кривой для выбора параметра регуляризации (LL-DLTS) обладает большей надежностью по сравнению с методом Laplace-DLTS с регуляризацией по невязке. В данной работе исследуются возможности метода LL-DLTS для анализа реальных релаксационных сигналов, полученных при исследовании ГУ в диодной структуре Al/GaAs.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспериментальные исследования проводились на установке емкостной спектроскопии полупроводников [14]. Отличительной особенностью установки является возможность измерения изотермической релаксации емкости (ИРЕ) в широком температурном диапазоне от 77 К до 363 К. Управление установкой осуществляется программно с использованием IBM совместимого компьютера. Программа организована таким образом, что за один цикл нагрева образца при каждой фиксированной температуре производится серия измерений в различных режимах, задаваемых перед началом работы. Анализ массива релаксационных зависимостей, сохраняемых на жестком диске компьютера, позволяет получить семейство зависимостей DLTS сигнала от температуры путем варьирования времен выборки с точностью 0,005 с в интервале от 0 до 20 с, а также производить обратное преобразование Лапласа.

Исследовалась партия пластин арсенида галлия ориентации <100>, выращенного по методу Чохральского, *n*-типа проводимости с концентрацией основных носителей 2,6 · 10¹⁶ см⁻³. Образцы для измерения спектров DLTS представляли собой диоды Шоттки, выпрямляющие контакты которых формировались термическим напылением алюминия.

Исходные зависимости ИРЕ, измеренные при переключении диода Шоттки из режима прямого смещения в неравновесное обеднение, представлены на рис. 1, рассчитанный на их основе классический DLTS-спектр — на рис. 2. Методом LL-DLTS анализировалась серия пиков, проявляющаяся в диапазоне (200÷300) К (выделенная область на рис. 2).

Далее на рис. З изображен график *L*-кривой в логарифмических координатах, полученный для набора значений λ в пределах [10⁻¹⁰, 1]. Как упоминалось выше, оптимальное с точки зрения регуляризованности решение должно выбираться максимально близко к положению угла *L*-кривой (отмечено стрелкой). Это можно делать визуально, анализируя график в логарифмических координатах, или автоматически, вычисляя максимальную кривизну 2D-сплайна, аппроксимирующего дискретный набор значений.

На рис. 4 приведен спектр Laplace-DLTS при температуре T = 256 К, полученный для значения параметра λ , найденного с помощью *L*-кривой. Как видно, хорошо разрешаются два уровня, неразличимые в исходном (классическом) сигнале DLTS, что позволяет с высокой точностью определить значения коэффициентов эмиссии этих уровней.

Рассчитывая аналогичные спектры Laplace-DLTS при различных значениях температуры из рассматриваемого диапазона, были построены аррениусовские зависимости для двух выделенных уровней (рис. 5, зависимости 1 и 2). Очевидно, что эти зависимости имеют линейный характер. Поэтому, рассчитав коэффициенты уравнений линейной регрессии, мы определили значения энергий теплового возбуждения и частотные факторы для этих уровней: $E_1 = E_c - 0.51 \pm 0.01$ эВ, $e_{n1}^* = 25.06$ с⁻¹, $E_2 = E_c - 0.77 \pm 0.14$ эВ, $e_{n2}^* = 39.74$ с⁻¹.

Рис. 1. Экспериментальные зависимости ИРЕ для диода Шоттки Al/*n*-GaAs (• — $V_d = 2$ B, $V_r = -0.199$ B, $t_{imp} = 10$ мс; $\Delta - V_d = 2$ B, $V_r = -1$ B, $t_{imp} = 10$ мс; $+ - V_d = 2$ B, $V_r = -2$ B, $t_{imp} = 10$ мс)

Рис. 2. Спектр DLTS для диода Шоттки Al/*n*-GaAs, полученный при $V_d = 2$ B, $V_r = -0.199$ B, $t_{imp} = 10$ мс (здесь V_d — напряжение прямого смещения, V_r — напряжение обратного смещения, t_{imp} — длительность импульса прямого смещения)

Рис. 3. График *L*-кривой для анализа методом Laplace-DLTS серии пиков из диапазона температур (200— 300) К

Анализ рассчитанных спектров Laplace-DLTS и зависимостей Аррениуса приводит к парадоксальному, на первый взгляд, выводу. Дело в том, что коэффициент эмиссии для ГУ с энергий Е, оказывается меньше, чем для ГУ с энергией E_2 . В частности, при температуре T = 256 К они отличаются на порядок (рис. 4). Кроме того, зависимости Аррениуса пересекаются при температуре $T \approx 211$ К (рис. 5). Обнаруженные факты не могут быть объяснены с позиции классических представлений о релаксационной спектроскопии ГУ [1,2]. Действительно, из соотношения (2) следует, что чем глубже уровень расположен в запрещенной зоне, тем меньше у него коэффициент эмиссии. При этом степень расхождения значений коэффициентов эмиссии определяется, в первую очередь, экспоненциальным членом в соотношении (2). Поэтому, аррениусовские зависимости для совокупности ГУ в запрещенной зоне полупроводника не должны (в рамках классических представлений) иметь общих точек.

Отмеченное противоречие может быть объяснено в рамках следующей модели. В запрещенной

Рис. 4. Спектр Laplace-DLTS при температуре T = 256 К (здесь А — амплитуда функции спектральной плотности). Значение параметра регуляризации $\lambda = 0,0127$

зоне полупроводников помимо уровней, образованных однократно ионизируемыми донорными или акцепторными центрами локализации заряда, могут содержаться уровни метастабильных центров. Например, кислород в арсениде галлия является двукратно ионизируемым донором с энергией теплового возбуждения $E_1 \approx E_c - 0.41$ эВ для первого электрона и $E_2 \approx E_c - 0.6$ эВ для второго [15]. Атомы кислорода адсорбируются на поверхности GaAs и отвечают за образование поверхностных электронных состояний. Кинетика перезарядки такой бивалентной примеси может быть описана системой дифференциальных уравнений:

$$\begin{cases} \frac{\partial n(t,T)}{\partial t} = e_{1n}(T) [N - n(t,T)] - \\ -\delta(t,T) [n(t,T) - m(t,T)] - e_{1p}(T)n(t,T) \\ \frac{\partial m(t,T)}{\partial t} = e_{2n}(T) [n(t,T) - m(t,T)] + \\ +\delta(t,T) [n(t,T) - m(t,T)] - e_{2p}(T)m(t,T) \end{cases}$$
(12)

где N — концентрация бивалентной примеси; n(t, T) — концентрация однократно ионизированных цен-

Рис. 5. Зависимости Аррениуса для глубоких уровней в диоде Шоттки Al/*n*-GaAs в диапазоне температур (200—300) К, полученные методом Laplace-DLTS

тров; m(t, T) — концентрация двукратно ионизированных центров; $e_{1n}(T) = \sigma_{1n}v_{th}N_c \exp\left[\frac{E_c - E_1}{kT}\right]$ — коэффициент эмиссии электронов с первого ГУ, соответствующего однократной ионизации донора (σ_{1n} — сечение захвата для электронов, находящих-ся на этом уровне); $e_{2n}(T) = \sigma_{2n}v_{th}N_c \exp\left[\frac{E_c - E_2}{kT}\right]$ — коэффициент эмиссии электронов со второго ГУ, соответствующего двукратной ионизации донора (σ_{2n} — сечение захвата для электронов, находящих-ся на данном уровне); $e_{1p}(T) = \sigma_{1p}v_{th}N_v \exp\left[\frac{E_1 - E_v}{kT}\right]$ — коэффициент эмиссии электронов, находящих-ся на данном уровне); $e_{1p}(T) = \sigma_{1p}v_{th}N_v \exp\left[\frac{E_1 - E_v}{kT}\right]$ — коэффициент эмиссии электронов из валентной зоны на ионизированный первый ГУ (σ_{1p} — сечение захвата, характеризующее захват электрона из валентной зоны на ионизированное состояние E_1, N_v — эффективная плотность состояний в валентной зоне); $e_{2p}(T) = \sigma_{2p}v_{th}N_v \exp\left[\frac{E_2 - E_v}{kT}\right]$ — коэффи

Рис. 6. Временные зависимости неравновесных коэффициентов эмиссии электронов (кривые 1, 2) и степени заполнения уровней дырками (кривые 3, 4) для двукратно ионизируемого донора с энергиями теплового возбуждения $E_1 \approx E_c - 0.41$ эВ и $E_2 \approx E_c - 0.6$ эВ при температуре T = 256 К

циент эмиссии электронов из валентной зоны на ионизированный второй ГУ (σ_{2p} — сечение захвата, характеризующее захват электрона из валентной зоны на ионизированное состояние E_2); $\delta(t,T) = \sigma_{21}v_{th}n(t,T) \exp\left[\frac{E_1 - E_2}{kT}\right]$ — коэффициент эмиссии электронов со второго на ионизированный первый ГУ (σ_{21} — сечение захвата, характеризующее переход электрона с уровня E_2 на уровень E_1).

Рассмотрим решение системы дифференциальных уравнений (12) во временном диапазоне $0 \le t < t_0$, где t_0 — момент времени, когда степень ионизации уровней (n(t,T)/N и m(t,T)/N) становится равной единице. Очевидно, что в случае перезарядки двукратно ионизируемого донора, коэффициенты термоэлектронной эмиссии для обоих глубоких уровней будут являться функциями времени. Действительно, коэффициент термоэмиссии ГУ есть количество электронов, покидающих данное энергетическое состояние в единицу времени. Следовательно, в произвольный момент

Рис. 7. Зависимости Аррениуса, рассчитанные для двукратно ионизируемого донора с энергиями $E_1 \approx E_c - 0.41$ эВ и $E_2 \approx E_c - 0.6$ эВ

времени эта величина может быть определена как отношение скорости заполнения ГУ дырками к концентрации электронов на этом уровне:

$$\begin{cases} \tilde{e}_n(t,T) = \frac{1}{N - n(t,T)} \frac{\partial n(t,T)}{\partial t} = \\ = e_{1n}(T) - \delta(t,T) A(t,T) - e_{1p}(T) B(t,T) \\ \tilde{e}_m(t,T) = \frac{1}{n(t,T) - m(t,T)} \frac{\partial m(t,T)}{\partial t} = \\ = e_{2n}(T) + \delta(t,T) - e_{2p}(T) \Gamma(t,T) \end{cases}$$
(13)

где $\tilde{e}_n(t,T)$ — количество электронов, ушедших в единицу времени с ГУ, соответствующего однократной ионизации центра; $\tilde{e}_n(t,T)$ — количество электронов, ушедших в единицу времени с глубокого уровня, соответствующего двукратной ионизации центра; $A(t,T) = \frac{n(t,T) - m(t,T)}{N - n(t,T)}$; $B(t,T) = \frac{n(t,T)}{N - n(t,T)}$; $\Gamma(t,T) = \frac{m(t,T)}{n(t,T) - m(t,T)}$.

Из анализа соотношений (13) видно, что поскольку функция $\delta(t, T)$, ответственная за переход электронов с первого ГУ на второй ГУ, имеет сильную временную зависимость, то коэффициенты эмиссии с обоих ГУ ($\tilde{e}_n(t,T)$ и $\tilde{e}_m(t,T)$) являются неравновесными величинами, и их значения сильно зависят от степени заполнения уровней дырками. Кроме того, так как на временном интервале $0 < t < t_0$ функции A(t, T), B(t, T) и Г(t, T) являются положительными возрастающими функциями, то неравновесный коэффициент эмиссии $\tilde{e}_n(t,T)$ с течением времени будет убывать, а $\tilde{e}_m(t,T)$ — возрастать. Это подтверждают и результаты численного анализа, проведенные для ГУ атомов кислорода в арсениде галлия ($N = 10^{14}$ см⁻³). Значения сечений захвата $\sigma_{1n} = 1.5 \cdot 10^{-14} \,\mathrm{cm}^2 \,\mathrm{u} \,\sigma_{2n} = 1.4 \cdot 10^{-13} \,\mathrm{cm}^2$ взяты из работы [16]. Для простоты полагалось, что $\sigma_{1p} = \sigma_{1n}; \sigma_{2p} = \sigma_{21} = \sigma_{2n}$. Начальные условия для решения системы уравнений (12) приняты следующими: n(0,T) = 10 см⁻³ и m(0,T) = 0 см⁻³. Результаты расчета представлены на рис. 6. Из рисунка видно, что неравновесный коэффициент эмиссии $\tilde{e}_m(t,T)$ для ГУ, соответствующего двукратной ионизации (рис. 6, кривая 2), через 2 с после начала процесса заполнения уровней дырками приблизительно на порядок начинает превышать значение $\tilde{e}_n(t,T)$ для ГУ, соответствующего однократной ионизации (рис. 6, кривая 1). Это соответствует данным, полученным методом LL-DLTS и представленным на рис. 4.

Для анализа температурных зависимостей неравновесных коэффициентов эмиссии для двукратно ионизируемого донора и сравнения их с соответствующими равновесными коэффициентами были построены аррениусовские зависимости (рис. 7). На этом рисунке прямые 1 и 2 соответствуют равновесным коэффициентам $e_{1n}(T)$ и $e_{2n}(T)$. Графики 3 и 4 отображают температурные зависимости средних по времени неравновесных коэф-

фициентов	$\left\langle \tilde{e}_n(T) \right\rangle = \frac{1}{t}$	$\int_{0}^{t} \tilde{e}_{n}(t',T)dt'$	и $\left< \tilde{e}_m(T) \right> =$
$=\frac{1}{t}\int_{0}^{t}\tilde{e}_{m}(t',T)dt$	t' (t = 5 c).	у Из анализа, 1	представлен-

ных на рисунке 7 данных, видно, что графики 3 и 4 имеют точку пересечения при той же температуре $T \approx 211$ К, что и соответствующие графики, полученные методом LL-DLTS (рис. 5, зависимости 1 и 2). Кроме того, при температурах, превышающих 211 К, зависимость Аррениуса для менее глубокого уровня (рис. 7, график 3) оказывается ниже, чем зависимость для более глубокого уровня (рис. 7, график 4). В целом результаты моделирования аналогичны результатам, полученным при

анализе экспериментальных данных методом LL-DLTS.

Таким образом, предлагаемый в работе метод позволяет не только разделять сигналы от нескольких глубоких центров с близкими коэффициентами термоэмиссии, но и определять параметры метастабильных центров, что классический метод DLTS делать не позволяет. Действительно, как следует из соотношений (1) и (2), если бы ГУ E_1 и E_2 были бы однократно ионизируемыми донорами, то температуры максимумов DLTS-сигнала T_{max1} и T_{max2} были бы различными. Об этом свидетельствуют аррениусовские зависимости (прямые 1 и 2 на рис. 7), которые достаточно далеко отстоят друг от друга (то есть коэффициенты эмиссии для этих ГУ при одной и той же температуре отличаются на порядки). В случае двукратно ионизируемого донора из-за обменного взаимодействия зарядами между уровнями коэффициенты термоэмиссии для обоих ГУ оказываются соизмеримыми, причем при температуре T > 211 К выполняется соотношение $\langle \tilde{e}_n(T) \rangle < \langle \tilde{e}_n(T) \rangle$ (рис. 7, зависимости 3 и 4). При этом степени заполнения дырками ГУ с энергиями E_1 и E_2 (рис. 6, кривые 3 и 4) отличаются не более, чем в два раза. Следовательно, поскольку величина DLTS-сигнала пропорциональна концентрации дырок на ГУ, то при температурах T > 211 К исследуемый в работе DLTS-пик (рис. 2, выделенная область) является суперпозицией сигналов от двух ГУ, разность между энергиями которых составляет 14 % от ширины запрещенной зоны. Для подтверждения этого факта смоделирован классический DLTS-спектр для рассматриваемой бивалентной примеси при различных значениях времен t_1 и t_2 . Затем с помощью соотношения (3) построена зависимость Аррениуса (рис. 7, зависимость 5) и определены энергия теплового возбуждения и частотный фактор, значения которых составили $E = E_c - 0.46$ эВ и $e^* = 17.12$ с⁻¹. Результаты моделирования свидетельствуют, что классический DLTS-метод идентифицирует сигналы от двух ГУ, как сигнал от моноэнергетического состояния. При этом полученное значение энергии теплового возбуждения отличается от энергии активации Е, на 11 %, а от энергии *E*₂ — на 23 %.

Таким образом, метод LL-DLTS обладает значительно большей разрешающей способностью, чем традиционный DLTS метод. Это обусловлено тем, что в основе модифицированного метода лежит задача восстановления функции спектральной плотности по экспериментальным зависимостям изотермической релаксации емкости, т. е. решение интегрального уравнения (7). При реализации LL-DLTS метода происходит выделение экспоненциальных составляющих временной зависимости емкостного сигнала безотносительно природы этих составляющих. В то же время традиционный DLTS метод представляет собой задачу классификации ГУ в рамках упрощенной математической модели, описывающей кинетику заполнения однозарядных ГУ, и детально разработан только для случая экспоненциальной временной зависимости релаксации емкости. Поскольку метод LL-DLTS лишен этого недостатка, он является не только более точным, но и более универсальным.

Работа выполнена в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2007—2012 годы Федерального агентства по науке и инновациям (ГК № 02.552.11.7091).

СПИСОК ЛИТЕРАТУРЫ

1. *Lang D. V.* // J. Appl. Phys. 1974. V. 45. № 7. P. 3023.

2. Берман Л. С., Лебедев А. А. Емкостная спектроскопия глубоких центров в полупроводниках. Л.: Наука, 1981. 176 с.

3. *Nolte D. D., Haller E. E. //* J. Appl. Phys. 1987. V. 62. № 3. P. 900.

4. *Dobaczewski L., Kaczor P., Hawkins I.D., et al.* // J. Appl. Phys. 1994. V. 76. № 1. P. 194.

5. Берман Л. С. // ФТП. 1998. Т. 32. Вып. 6. С. 688.

6. Lawson C. L., Hanson R. J. Solving least squares problems. Prentice-Hall, Englewood Cliffs. 1974. 340 pp.

7. Hansen R. C. // SIAM Review. 1992. V. 34. P. 561.

8. Левин М. Н., Ахкубеков А. Э., Татаринцев А. В. и *др.*// Труды IX Международной научно-технической конференции «Кибернетика и высокие технологии XXI века». Воронеж, 2008. Т. 2. С. 941.

9. *Dobaczewski L., Peaker A. R., Bonde Nielsen K.* // J. Appl. Phys. 2004. V. 96. № 9. P. 4689.

10. *Provencher S. W.* // Computer Phus. Commun. 1982. V. 27. P. 213.

11. *Тихонов А. П., Арсенин В. Я.* Методы решения некорректных задач. М.: Наука, 1979. 288 с.

12. Морозов В. А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987. 240 с.

13. Левин М. Н., Татаринцев А. В., Ахкубеков А. Э. // ФТП. 2009. Т. 43. Вып. 5. С. 613.

14. Каданцев А. В., Котов Г. И., Левин М. Н. и др. // ПТЭ. 2004. № 6. С. 138.

15. *Зи С.* Физика полупроводниковых приборов. М.: Мир, 1984. 456 с.

16. Денисов А. А., Лактюшкин В. Н., Садофьев Ю. Г. // Обзоры по электронной технике. 1985. Сер. 7. Вып. 15. С. 3.

Левин Марк Николаевич — профессор Воронежского государственного университета; тел.: (4732) 208821; e-mail: levinmn@gmail.com

Бормонтов Александр Евгеньевич — аспирант Воронежского государственного университета, тел.: (4732) 208633, e-mail: bormontovae83@mail.ru

Ахкубеков Александр Эдуардович — аспирант Воронежского государственного университа, тел.: (4732) 208633; e-mail: xandersoap@mail.ru.

Татохин Евгений Анатольевич — доцент Воронежской государственной технологической академии, тел.: (920) 2186892; e-mail: teakph43@gmail.com *Levin Mark N.* — professor, Voronezh State University; tel.: (4732) 208821; e-mail: levinmn@gmail.com

Bormontov Alexander E. — the post graduate student, Voronezh State University, tel.: (4732) 208633; e-mail: bormontovae83@mail.ru

Ahkubekov Alexander E. — the post graduate student, Voronezh State University, tel.: (4732) 208633; e-mail: xandersoap@mail.ru

Tatokhin Evgeniy A. — associate professor of Voronezh State Technological Academy, tel.: (920) 2186892; e-mail: teakph43@gmail.com