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Abstract 
The literature data on the study of phase equilibria in systems zirconia with yttria and scandia are analysed. Possible 
schemes of low-temperature phase equilibria in ZrO2-Y2O3 and ZrO2-Sc2O3 systems are presented taking into account the 
third law of thermodynamics.
The coordinates of non-variant transformations in these systems are tabulated. A sign of non-equilibrium states is the 
observation of non-diffusion processes of ordering of solid solutions. The modified cryoscopy method is used to calculate 
the distribution coefficients of scandia and yttria during the crystallization of the ZrO2 melt.
The possibilities for the existence of a set of ordered phases in the ZrO2-Y2O3 system and diffuse phase transition in the 
cubic modification of zirconia are discussed.
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1. Introduction
Phase diagrams are the physical and chemical 

basis for the synthesis of functional materials. In 
addition, they allow predicting the behaviour of 
the material under operating conditions. Solid 
solutions of oxides of rare earth elements (REE) 
R2O3 in high-temperature cubic modifications 
of zirconia Zr1–хRxO2–0.5x are among the most 
refractory oxides with a melting temperature 
above 2700°C [1, 2]. Materials based on them 
are widely used as jewellery crystals (fianites) 
[3, 4] and refractory and corrosion-resistant 
ceramics [5–9]. The high anionic conductivity 
of these solid solutions is combined with a low 
thermal conductivity [10]. These circumstances 
determine the use of appropriate materials 
in electrochemical devices (fuel cells, oxygen 
sensors) [11–13] and also as thermal barrier 
coatings [14, 15]. Materials based on zirconia are 
the basis of nuclear fuel with an inert matrix [16].

A lot of studies were dedicated to the study 
of phase equilibria in ZrO2-R2O3 systems, but the 
result of these studies is not satisfactory. These 
systems have been studied by various groups of 
researchers. A summary of the data is provided 
in [17, 18]. The results obtained for different REE 
do not fit well with each other. Difficulties are 
associated both with high melting temperatures 
and with very long time intervals required to 
achieve equilibrium in the low-temperature region 
[19-22]. As in previous studies, we will denote 
regions of phase diagrams where the time required 
to establish equilibrium exceeds a year as being 
low-temperature regions. Cubic solid solutions 
of Zr1–хRxO2–0.5x are obviously thermodynamically 
unstable at low temperatures. However, the 
negligibly small diffusivity of cations [23] prevent 
the decomposition of solid solutions, which makes 
the corresponding materials indefinitely stable 
at ambient temperatures. The insufficiency of 
the annealing used in a number of studies was 
demonstrated by researchers from the Tokyo 
Institute of Technology [24, 25]. In particular, it 
turned out that the temperature of the eutectoid 
decomposition of a solid solution based on the 
medium-temperature tetragonal modification in 
the ZrO2-Er2O3 system, determined in the study 

[26], was underestimated by about 500 ºС [24]. 
The synthesis of samples under hydrothermal 

conditions sharply accelerates the processes 

of phase formation in refractory oxide systems 
[2, 27]. However, additional problems arise in 
this case, associated, in particular, with the 
contamination of samples with hydroxyl ions, 
which distort the pattern of phase equilibria 
[28]. In addition, the resulting nanocrystals 
of intermediate phases often “get stuck” in 
metastable states [29–30]. 

The purpose of this study is a critical analysis 
of the available data on the study of phase 
equilibria in key ZrO2-Y2O3 and ZrO2-Sc2O3 

systems and construction of assumed phase 
diagrams with extrapolation to absolute zero 
temperature in accordance with the third law of 
thermodynamics. 

2. Analysis methodology 

In this study, we applied the methodology 
that we used earlier in [31–33]. According to the 
consequence of the third law of thermodynamics, 
as the temperature tends to absolute zero in 
quasi-equilibrium processes, all phases of 
variable composition should disappear through 
the decomposition or contraction of compositions 
to stoichiometric ones [20, 34]. In this case, the 
limiting solubility curves should have vertical 
tangents as the temperature approaches absolute 
zero [33]. The second important thermodynamic 
condition is the so-called Hume-Rothery rule, 
according to which, when an ordered phase with 
a narrow homogeneity region appears, the region 
of existence of a neighbouring disordered phase 
should sharply narrow [35]. 

The corresponding approach using the 
extrapolation of the most reliable experimental 
data in the study of phase equilibria allows 
by extrapolating phase fields to the region of 
low temperatures, to obtain information for 
those regions of phase diagrams where an 
experiment aimed at realizing equilibrium states 
is complicated or simply impossible. Previously, 
using this approach, we outlined the scheme of 
phase equilibria in the ZrO2-Er2O3 system [22].

An alternative technique is the thermodynamic 
computer simulation of phase equilibria. The 
construction of thermodynamic models of the 
studied systems is an ideal goal to strive for [36–
38]. However, there are problems associated, 
among other things, with the determination 
of the thermodynamic properties of phases of 
variable composition and with the choice of 
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reliable experimental data for their processing 
[39–42]. The thermodynamic modelling of phase 
equilibria in ZrO2-Y2O3 system was performed in 
[43–46]. The results differ significantly. 

3. Results 

3.1. ZrO
2
-Y

2
O

3
 system

The ZrO2-Y2O3 system is a classic and model 
system. It has been studied by various groups of 
researchers [17, 18, 47]. Solid-liquid equilibria 
were studied by Rouanet [48], Noguchi et 
al. [49], Lopato et al. [50]. The most detailed 
studies of phase equilibria in the solid state 
were carried out by Pascual and Duran [51] and 
Stubican et al. [52], with an annealing duration 
of up to 8   months. These studies provided 
similar results. 

Based on the work data Pascual and Duran, see 
Fig. 1a. In this study the samples were annealed 
for 3 hours at 2000°C, 10 hours at 1800°C, and 
385 hours at 1450°C, which appears acceptable 
[22]. However, it is obvious that the 8 months 
used in this study for annealing at 800°C were 
completely insufficient. The corrected pattern of 
phase equilibria is shown in Fig. 1b. At the same 
time, the designations of the phase composition 

of the samples annealed and quenched in the 
study of Pascual and Duran were applied to the 
figure.

Extensive regions of heterovalent solid 
solutions based on the high-temperature 
polymorph of ZrO2 with fluorite structure

 
(phase 

F, space group Fm3m) and low-temperature cubic 
modification Y2O3 (phase C, bixbyite type, space 
group Ia3) were formed in the system. Although 
the bixbyite type is derived from the fluorite type 
with an ordered arrangement of vacancies [53], 
the presence of a two-phase F+C region in the 
phase diagram was reliably recorded as early as 
by Duwes et al. [36]. 

Dissolution of yttrium oxide in high-
temperature ZrO2 modification stabilizes the 
fluorite structure, and a maximum occurs on 
the liquidus curve. The maximum point on the 
melting curves of the solid solution is non-
variant, and the liquidus and solidus curves merge 
at it in the presence of a common horizontal 
tangent. When depicting phase equilibria in this 
region Pascual and Duran made an unfortunate 
mistake, which is corrected in Fig. 1b. The 
course of the liquidus curve in this system was 
determined using a solar furnace in the studies 

Fig. 1. Phase diagram of the ZrO2-Y2O3 system according to [51] (a) and its correction taking into account the 
requirements of the third law of thermodynamics (b)
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[48–50], see Fig. 2. When constructing Fig. 1b, we 
used data of Shevchenko et al. [50].

At a high concentration of yttrium oxide, 
the melt and three solid phases F, C, and H (a 
solid solution based on the high-temperature 
modification of Y2O3) should provide two 
three-phase equilibria, displayed as horizontal 
segments on the phase diagram. Experimentally, 
the temperatures of these equilibria are not 
resolved, and computer simulation [43-46] 
provides a difference in temperatures within 10-
25 degrees. Thus, this system at normal pressure 
is located in the vicinity of the bifurcation point 
of A1II type [54] corresponding to the equilibrium 
of four condensed phases. 

As the temperature decreases, the solid 
solutions based on the F and C phases undergo or-
de ring with the separation of Y4Zr3O12 

and Y6ZrO11 

phases (idealized composition), respectively. 
The data of [51] and [52] studies agree very 
well (± 10  ºС) in terms of the phase transition 
temperature F ↔ Y4Zr3O12. Our correction in the 
region of high concentrations of yttrium oxide 
includes a significant decrease in the region of 
homogeneity of the ordered phase, which, as the 
temperature is lowered, must shrink to the ideal 
Y6ZrO11 composition, as well as the position of the 
decomposition curve of the solid solution based 
on the cubic modification of yttrium oxide, which 
should come to the point of the pure component 
at T → 0 K.

Probably, the observation of a wide region 
of the ordered phase “Y6ZrO11” 

in the absence 
of a two-phase region with phase C was caused 
by the fact that the ordering in this system in 

an experimental study [51] occurred according 
to a non-equilibrium non-diffusion mechanism 
that does not require overcoming the potential 
barrier to the nucleation of a new phase in the 
volume of the old one. A similar phenomenon, 
as shown by the analysis, was observed during 
low-temperature ordering in the Ni-Pt system 
[33], as well as in the HfO2-R2O3 systems (fluorite-
pyrochlore transitions) [22]. 

The region of low concentrations of yttrium 
oxide (the decomposition of the tetragonal phase – 
a solid solution based on the medium-temperature 
modification of ZrO2) was corrected by analogy 
with the data of Yashima and others [24], which, 
when studying equilibria in a similar ZrO2-Er2O3 

system, annealed samples at 1690 ºC for 48 hours 
and 8 months at 1315 ºC. At the same time, the 
temperature of the eutectoid decomposition of 
the tetragonal phase was raised by us by several 
hundred ºС in comparison with the variants of the 
phase diagram presented in [51, 52]). 

The dotted line denotes the metastable 
continuation of the curve of the maximum 
concentration of this solid solution (the solvus 
curve of phase F). This curve must pass through 
the origin of the coordinates and have a vertical 
tangent at this point. This condition can be 
fulfilled only if there is a point of inflexion on 
the solvus curve (in this case, on the metastable 
part of this curve). It should be noted that the 
eutectoid corresponding to the decomposition 
of the fluorite phase should be located above 
the metastable solvus curve. Accordingly, the 
temperature of the eutectoid decomposition of 
the cubic solid solution was presumably targeted 
at 600 ± 100 ºС. This is much higher than is 
accepted in all studies on phase equilibria in this 
system, both experimental and calculated. 

Thus, the proposed version of the phase 
diagram of the ZrO2-Y2O system (Fig. 1b) is 
characterized by the following non-variant 
equilibria, presented in Table 1. 

3.2. ZrO
2
-Sc

2
O

3
 system

Phase equilibria in the ZrO2-Sc2O3 system have 
been studied in numerous papers [55–66]. The 
approximate phase diagram of ZrO2-Sc2O3 system, 
plotted in accordance with the data of Spiridonov 
et al. [57], Shevchenko et al. [60–62] and Fujimori 
et al. [65, 66] with extrapolation to 0 K is shown in 
Fig. 3. The coordinates of the non-variant points 

Fig. 2. Liquidus of the ZrO2-Y2O3 system.
 
1 – data [48], 

2 – data [50], 3 – data [49]
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are summarized in Table 2. Wide regions of solid 
solutions based on scandia (bixbyite type, phase 
C) and cubic high-temperature modification of 
zirconia (phase F) were formed in the system. A 
maximum was formed on the melting curves of the 
fluorite solid solution. A comparison of the liquidus 
curves obtained in [58, 60] is shown in Fig. 4. 

With decreasing temperature, the fluorite solid 
solution (phase F) undergoes ordering with the 

release of ordered phases, which were originally 
assigned the designations b, g, and d and Zr7Sc2O17, 
Zr5Sc2O15 and Zr3Sc4O12 compositions (cubic 
solid solution, phase F was designated as phase 
a). The decodering of crystal structures [67–69] 
allowed refining the composition of the b phase: 
Zr50Sc12O118. Compound Zr3Sc4O12 was described

 

as a rare mineral found in meteorites
 
[70]. This 

compound isostructural to the corresponded 
yttrium phase Zr3Y4O12 and forms a continuous 
solid solution with it [63].

The low-temperature phases b, g, and d are 
characterized by the trigonal distortion of the 
fluorite lattice due to the ordered arrangement 
of anion vacancies [61]. The differentiation of 
cations over crystallographic positions practically 
does not occur due to frozen diffusion [55], 
although it is energetically favourable [69]. 

Table 1. Non-variant equilibria in the ZrO2-Y2O3 system

Name Phase balance Composition, mol % Y2O3 Temperature, ºC Temperature, К
Dystectics (maximum 
on the solid solution 

melting curve)
L ↔ F 20±2 2750±25 3023

А1II type bifurcation L+F+C+H – 2360±50 2633
Distectoid F ↔ Y4Zr3O12 40 1380±10 1653
Distectoid С ↔ Y6ZrO11 75 1750±50 2023
Eutectoid T ↔ M + F 3±1 950±25 1223
Eutectoid F ↔ Y4Zr3O12+ M 18±3 600±100 873
Eutectoid F ↔ Y4Zr3O12+ Y6ZrO11 45±3 1350±25 1623
Eutectoid С ↔ Y6ZrO11+ F 68±2 1650±50 1923

Fig. 3. Summary phase diagram of the ZrO2-Sс2O3 

system

Fig. 4. Liquidus of the ZrO2-Sc2O3 system 1 – data [60], 
2 – data [58]
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The transition temperature of the phase b to a 
disordered state (phase F) is close according to 
the data of [57, 60–62, 65–66], and is 650±50 ºС. 
Phase disorder temperatures g and d indicated in 
the literature are very different. This may be due 
to the non-quenchability of the high-temperature 
disordered cubic phase upon cooling [57]. Data of 
Zyrin et al. were preferential for the construction 
of Fig. 4 [61]. In particular, for the transition 
a↔g, Spiridonov et al. [57] and Ruh et al. [59] 
reported a temperature of ~1100 ºС. The same 
group of researchers reported a g phase disorder 
temperature equal to 1480°C [61] and 1650°C [62]. 
This region of the phase diagram of ZrO2-Sc2O3 

system requires further research. 
It should be noted that the continuation of the 

line of the maximal concentration of the cubic 
solid solution (solvus curve of the phase F) to 
zero coordinates (ZrO2) subject to the presence 
of a vertical asymptote is impossible without the 
assumption of the presence of an inflection point 
on the metastable continuation of this curve.

3.3. Distribution coefficients 
Accurate measurement of the liquidus curve of 

solid solutions allow calculating the distribution 
coefficients of the impurity component during 
the crystallization of the matrix from the melt 
using the modified cryoscopy method. Previously, 
such calculations were carried out for a number of 
ZrO2–R2O3 systems [71]. The basis of the modified 
cryoscopy method is the Van’t Hoff limit equation:
m = [RT0

2 /ΔH](k-1),  (1)

where ΔH and T0 [K] are enthalpy of melting and 
melting temperatures of the matrix, R is the uni-
versal gas constant, k is the impurity distribution 

coefficient, m is the liquidus slope. This equation 
is valid for infinite dilution. 

In the modified cryoscopy method, the 
value m is not determined based on precision 
measurements of small values of temperature 
depression with the introduction of low impurity 
concentrations, but by approximating liquidus 
curves in a wide range of concentrations, followed 
by differentiation of analytical expressions [72, 73].

Previously, this method was used to process 
the data of [48, 49] using the liquidus curve of 
the F phase in the ZrO2–Y2O3 system and study 
[60] for the ZrO2–Sc2O3 system. In this study, 
the data of Shevchenko et al. [50] for the ZrO2–
Y2O3 system and data of Sekiya et al. [58] for the 
ZrO2–Sc2O3 system were processed using this 
method. The points of the liquidus curves in a 
wide concentration range were processed using 
the least squares method in the form of a 3rd 
order polynomial. In this case, the melting point 
of ZrO2 (2710 °C) was fixed by the provision of a 
tenfold weight to this point. Primary data were 
obtained by digitizing the graph provided in [58]. 

Data for ZrO2-Y2O3 [50] and ZrO2-Sc2O3 

[58] systems are well described by third-order 
polynomials with correlation coefficients of 0.999 
and 0.980, respectively. By differentiating the 
obtained equations for х = 0 , the values of the 
liquidus slope (depression) were obtained for 
an infinitesimal impurity content m = (∂T/∂x)x=0, 
namely 594 and 1005 deg/mol, respectively. Hence, 
according to equation (1) using the enthalpy 
of ZrO2 melting, ΔH = 16.40 kcal/mol [74], we 
obtain the distribution coefficients of Y2O3 and 
Sc2O3 during crystallization of the ZrO2 melt. 
The obtained value kY = 1.55 agrees well with 

Table 2. Non-variant equilibria in the ZrO2-Sc2O3 system

Name Phase balance Composition, mol % Sc2O3 Temperature, ºC Temperature, К
Distectics (maximum on 

the solid solution 
melting curve)

L ↔ F 15±5 2800±50 3073

Eutectic L ↔ F+ С 78±2 2400±50 2673
Distectoid F ↔ b 650±50 923
Distectoid F ↔ g 750±50 1023
Peritectoid F + С ↔ d 40±2 1550±100 1733
Eutectoid T ↔ M + F 3±1 800±100 1073
Eutectoid F ↔ M + b 11±1 600±50 873
Eutectoid F ↔  b + g 13±1 600±50 873
Eutectoid F ↔ b + d 21±2 700±50 973
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the calculated value obtained from the data of 
Noguchi et al. [49], but diverges from the value 
obtained from the data of Rouanet [48], see [22]. 
The calculated value kSc = 1.93 significantly differs 
from the value kSc = 2.87 calculated according 
to Shevchenko et al. [22]. The discrepancies are 
determined by the complexity of conducting 
experiments at temperatures above 2700 °C, see 
Figs. 2 and 4.

4. Discussion 
The wide regions of solid solutions formed 

in ZrO2-R2O3, systems are striking examples of 
the so-called grossly nonstoichiometry [55]. 
The maxima on the melting curves of these 
solid solutions are a characteristic feature 
of heterovalent isomorphism with a variable 
number of atoms in the unit cell and correlate 
with high ionic conductivity and low thermal 
conductivity [9, 75, 76].

The formation of such solid solutions is 
characterized by the accumulation of defects 
associated with charge compensation and the 
formation of ordered phases with decreasing 
temperature. This effect that is observed in the 
studied systems and in this case it is weakened 
and smeared out due to low cationic diffusion. 
The absence of pronounced differentiation of 
cations over crystallographic positions during 
the formation of ordered fluorite-like phases 
sharply distinguishes oxide systems from 
analogous fluoride systems. It can be assumed 
that the complete cationic ordering will change 
the thermodynamic stability of the corresponding 
phases and, thus, it will shift the temperature limits 
of their existence in the phase diagrams of ZrO2-

R2O3. Probably, the observed pattern of ordering 
(the formation of only two fluorite-like phases 
Y4Zr3O12 and Y6ZrO11 in the ZrO2–Y2O3 system and 
three ordered phases in the ZrO2–Sc2O3 system) 
is not complete. For comparison, we can refer to 
the CeO2-Ce2O3 model system, where the set of 
ordered phases is much richer [77]. In particular, 
it can be expected that in the yttrium system the 
same ordered phases as in the scandium system are 
formed , and the absence of phases of the b and g 

types in the ZrO2–Y2O3 system associated only with 
kinetic difficulties [62]. In addition, the existence 
of the phase Y5Zr2O11.5, which is isostructural to the 
erbium analogue can be expected [78]. 

It should be noted that all thermodynamic 
models for the ZrO2–Y2O3 system provide for the 
presence of only one ordered phase Y4Zr3O12, which 
significantly limits their reliability. In this case, 
the temperature of the eutectoid decomposition 
of the cubic phase in the ZrO2-Y2O3 system differs 
according to the data of different models by 
hundreds of degrees [43–46], and in [46] it falls 
below absolute zero, which contradicts the third 
law of thermodynamics. The diagram constructed 
by us (Fig. 1b) is closest to the thermodynamic 
model of Degtyarev and Voronin [43]. 

The inflection points on the extrapolated 
solvus curves of the F phases deserve special 
attention. Such points are characteristic of 
all binary systems with heterovalent solid 
solutions based on compounds with the fluorite 
structure [79], which is associated with diffuse 
phase transitions in fluorite matrices [80, 81]. 
In particular, such a behaviour of the solvus line 
takes place in the system UO2–UO3 [82], and the 
presence of a diffuse phase transition in uranium 
dioxide is discussed [80, 83–85]. Thus, the results 
of low-temperature extrapolation of the solvus 
curves both in the analysed systems and the 
corresponding curves in other systems with the 
participation of zirconia and hafnium oxides [22] 
suggest the presence of a diffuse phase transition 
in the cubic ZrO2 and HfO2 polymorphs. For 
zirconium and hafnium oxides, we do not know 
any indications of its existence. 

Conditional estimation of approximate 
temperature of this transition (since this 
is diffuse transition, and it is not a phase 
transition in the thermodynamic sense) based 
on T  ~  (0.7–0.8)Tmelt [K] ratio provides a value 
of 1680–2100 °C, i.e. below the temperature of 
polymorphic transformation between the cubic 
and tetragonal modifications of ZrO2 (2170 °С 
[2]). Thus, probably, all solid solutions of the 
fluorite structure formed in systems with the 
participation of zirconia are solid solutions in 
the disordered initial ZrO2 form. This creates 
additional difficulties for constructing the 
corresponding thermodynamic models. 

On numerous published “phase diagrams” of 
(Zr,Hf)O2-R2O3 systems at temperatures below 
1300 °С frozen states are shown instead of 
equilibrium phase regions. The actual behaviour 
of materials in these systems upon cooling is 
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determined mainly not by equilibrium phase 
transformations, but by non-diffusion phase 
transitions. Accordingly, on phase diagrams, in 
some cases, two-phase regions degenerate, and 
instead of them lines of phase transformations 
of the martensitic type are present. 

A scandium solid solution of optimal 
concentration is thermodynamically stable at 
temperatures above 700 °С, i.e., the corresponding 
products are stable in terms of phase composition 
for an indefinitely long period of time if they are 
operated at this temperature without lowering it. 

5. Conclusions 
Phase equilibria at low temperatures in 

systems involving zirconia and hafnia are 
among the unresolved fundamental issues. Since 
the time of achieving equilibrium controlled 
by cationic diffusion increases exponentially 
with decreasing temperature, the study of low-
temperature equilibria is a very complicated and 
often unsolvable problem. 

It should be noted that ordering processes in 
systems with zirconia and hafnium oxides have 
been very poorly studied. Significant discoveries 
can be expected here. 

Other methods for the investigation of low-
temperature phase formation in the discussed 
systems are required. It can be expected that the 
use of salt melts will allow progress to be made 
in solving this problem. It should be noted that 
salt melts, in contrast to hydrothermal synthesis, 
contribute to the formation of micron rather than 
nanoscale powders, which probably less prone to 
the formation of metastable equilibria. 
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