

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 541.123.3 https://doi.org/10.17308/kcmf.2023.25/11110

Фазовые отношения в системе Si-Sn-As

Т. П. Сушкова⊠, Г. В. Семенова, Е. Ю. Проскурина

Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

Аннотация

Цель работы заключалась в исследовании фазовых отношений в трехкомпонентной системе Si–Sn–As: установлении секущих разрезов, построении схемы фазовых равновесий, определении температуры нонвариантных превращений.

Трехкомпонентные сплавы были получены прямым синтезом из простых веществ и подвергались длительному твердофазному отжигу. Методами рентгенофазового и дифференциального термического анализа были исследованы сплавы четырех политермических разрезов системы Si–Sn–As. Результаты порошковой рентгеновской дифракции позволили установить, что фазовое субсолидусное разграничение осуществляют сечения SnAs–SiAs₂, SnAs–SiAs, Sn₄As₃–SiAs и Sn₄As₃–Si.

По результатам эксперимента с учетом теоретического анализа предложена схема фазовых равновесий в системе, предполагающая реализацию эвтектического и четырех перитектических нонвариантных равновесий; методом дифференциального термического анализа определена температура этих четырехфазных превращений.

Установлено, что протяженных твердых растворов в системе не образуется, лишь на основе моноарсенида олова вдоль разреза SnAs–SiAs₂ образуется твердый раствор замещения шириной не менее 3 мол. %.

Ключевые слова: фазовая диаграмма, политермическое сечение, тройная система Si-Sn-As

Благодарности: Исследования методом порошковой рентгеновской дифракции были выполнены на оборудовании Центра коллективного пользования научным оборудованием ВГУ.

Для цитирования: Сушкова Т. П., Семенова Г. В., Проскурина Е. Ю. Фазовые отношения в системе Si–Sn–As. *Конденсированные среды и межфазные границы*. 2023;25(2): 237–248. https://doi.org/10.17308/kcmf.2023.25/11110

For citation: Sushkova T. P., Semenova G. V., Proskurina E. Yu. Phase relations in the Si–Sn–As system. *Condensed Matter and Interphases*. 2023;25(2): 237–248. https://doi.org/10.17308/kcmf.2023.25/11110

[🖂] Сушкова Татьяна Павловна, e-mail: sushtp@yandex.ru

[©] Сушкова Т. П., Семенова Г. В., Проскурина Е. Ю., 2023

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

1. Введение

Соединения класса А^{IV}В^V в виде объемных моно- и поликристаллов активно исследовали, начиная с 70-х годов XX века, в том числе на кафедре общей и неорганической химии Воронежского государственного университета [1–4]. Несмотря на то, что ряд этих соединений обладает полупроводниковыми свойствами и практически важными электрофизическими характеристиками, они долго не находили применения. В основном это связано с тем, что многие соединения А^{IV}В^V имеют слоистую структуру, могут расслаиваться на чешуйки при резке и шлифовке кристаллов, что считалось большим недостатком в эпоху широкого применения алмазоподобных полупроводников.

В последние 20 лет в связи с бурным развитием 2D-технологий исследователи вновь обратили свое внимание на этот класс соединений. Монопниктиды кремния и германия образуют семейство двумерных слоистых полупроводников с возможностью изменения ширины запрещенной зоны за счет варьирования количества слоев [5–8]. Они же могут использоваться как катализаторы и материалы для оптоэлектронных устройств [9–11]. Энергия отслаивания арсенидов и фосфидов кремния и германия сопоставима с этой величиной для графена, что предполагает высокую вероятность их успешного изготовления механическим отслаиванием от объемных кристаллов [5, 6].

Объемные кристаллы соединений $A^{IV}B^{V}$ также имеют практическое значение, обусловленное их способностью к реакциям межслоевого внедрения. Арсениды олова и кремния SnAs, Sn₄As₃, SiAs₂, SiAs являются подходящими материалами для создания электродов щелочных ионных аккумуляторов [12–14]. Например, Li₂SiAs₂ обладает расчетной шириной запрещенной зоны 1.4 эВ, низкой теплопроводностью при комнатной температуре и высоким удельным электрическим сопротивлением, благодаря чему весьма перспективен в качестве литий-ионного проводника с литий-ионной проводимостью при комнатной температуре 7 мкОм/см [13].

Усовершенствование функциональных свойств материала в некоторой степени возможно за счет легирования, применения твердых растворов, а не чистых соединений. С этой точки зрения представляет интерес исследование фазовых диаграмм многокомпонентных систем, образованных элементами IVA и VA групп. Фазовые диаграммы систем А^{IV}–B^V–C^V с анионным замещением изучены в большей степени, чем диаграммы систем с катионным замещением [15, 16]. В литературе отсутствуют сведения о диаграмме состояний системы Si–Sn–As, что обусловливает актуальность данной работы.

Цель работы заключалась в теоретическом анализе и экспериментальном исследовании фазовых отношений в трехкомпонентной системе Si–Sn–As: установлении секущих разрезов, построении схемы фазовых равновесий и определении температуры нонвариантных превращений.

2. Экспериментальная часть

2.1. Методика получения образцов

В связи с высокой температурой плавления кремния, которая не может быть достигнута при синтезе в кварцевых трубках, длительностью твердофазной реакции и значительным давлением пара мышьяка при высоких температурах экспериментальное изучение фазовой диаграммы Si–Sn–As является весьма трудоемким процессом.

Образцы, составы которых принадлежат четырем политермическим сечениям тройной системы SnAs–SiAs₂, SnAs–SiAs, SnAs–Si и SiAs–Sn, получали однотемпературным синтезом из простых веществ в кварцевых ампулах, вакуумированных до остаточного давления $5 \cdot 10^{-4}$ гПа. Для синтеза применяли кремний марки КЭФ 4.5/0.1-43.5, олово ОВЧ-000, мышьяк ОСЧ-9-5. Мышьяк предварительно очищали от оксидов вакуумной сублимацией. Взвешивание проводили на электронных весах AR2140 с погрешностью $\pm 1 \cdot 10^{-3}$ г.

Максимальная температура нагрева печи при синтезе составляла 1353 К, что ниже температуры плавления кремния (1683 К). Для обеспечения возможности протекания гетерогенной реакции проводили шестичасовую выдержку при 1353 К, а после синтеза – твердофазный отжиг образцов в течение 250 часов при температуре 753 К (сплавы сечения SiAs–Sn, богатые оловом, отжигали при 473 К).

Чтобы убедиться, что температура, время синтеза и отжига достаточны для того, чтобы кремний прореагировал, в таких же условиях был приготовлен двухкомпонентный сплав, состав которого $Si_{0.48}As_{0.52}$ соответствует эвтектической смеси $SiAs_2$ и SiAs в бинарной системе Si-As. На рентгеновской дифрактограмме этого сплава наблюдались рефлексы моноарсенида и диарсенида кремния и отсутствовали реф-

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

лексы кремния. Таким образом, температура и время синтеза и отжига достаточны, чтобы кремний полностью прореагировал в условиях нашего эксперимента.

2.2. Методика рентгенофазового и дифференциального термического анализа

Сплавы были исследованы методами рентгенофазового анализа (РФА) и дифференциального термического анализа (ДТА).

Рентгенофазовый анализ проводили методом порошка на дифрактометре ARL X'TRA в геометрии $\Theta-\Theta$ с фокусировкой по Бреггу-Брентано. Источник изучения – рентгеновская трубка с медным анодом: λ (Cu-K_{a1}) = 0.1541 нм; λ (Cu-K_{a2}) = 0.1544 нм. При съемке дифрактограмм шаг составлял 0.04°, время выдержки – 3 секунды. Погрешность определения межплоскостных расстояний d_{hkl} не превышала 5·10⁻⁴ нм. Параметры решетки фаз были рассчитаны с помощью компьютерной программы High Score Plus-305 и уточнены по методу Паули.

Дифференциальный термический анализ осуществляли на установке ДТА с программируемым нагревом печи при скорости нагревания 5 К/мин (для наиболее тугоплавких образцов – 7 К/мин). Были использованы прокаленные хромель-алюмелевые термопары и оксид алюминия в качестве эталона. Обработка оцифрованного сигнала термопар производилась при помощи компьютерной программы «MasterSCADA». Погрешность определения температуры фазовых превращений не превышала ±1 К. Сплавы исследуемой системы склонны к переохлаждению, поэтому температуру фазовых переходов определяли по кривым нагревания. В случаях, когда на термограмме пик, соответствующий ликвидусу, был растянутый и нечеткий, температуру определяли по кривой охлаждения, вводя поправку на величину переохлаждения.

3. Результаты эксперимента и их обсуждение

3.1. Результаты рентгенографического исследования и схема фазовых равновесий в тройной системе

Поскольку тройная система Si–Sn–As исследуется впервые, необходимо проанализировать возможность разделения ее на подсистемы с помощью секущих разрезов.

В бинарной системе Si–As образуются два промежуточных соединения: моноарсенид кремния, имеющий моноклинную кристалли-

ческую решетку и плавящийся конгруэнтно при температуре 1386 К, и диарсенид кремния с орторомбической решеткой, который разлагается по перитектической схеме на SiAs и расплав при 1250 К [17]. Моноарсенид кремния является односторонней фазой, смещенной в сторону кремния, причем стехиометрический состав практически совпадает с правой границей области гомогенности. Ширина области гомогенности SiAs составляет величину 0.45 мол. % при 1300 К [4, 15]. Мышьяк неплохо растворяется в кремнии, максимальная твердофазная растворимость составляет около 3.5 мол. % Аs при ~1473 К [17].

В системе Sn-As также образуются две промежуточные фазы [18]: плавящийся конгруэнтно при 868 К моноарсенид олова с кристаллической решеткой типа NaCl и Sn₄As₃, который кристаллизуется в тригональной нецентросимметричной пространственной группе R3m, при этом элементарная ячейка может быть выбрана как ромбоэдрическая, так и гексагональная [19]. Sn₄As₃ имеет заметную область гомогенности (~3 мол. %), направленную в сторону избытка олова [18]. В системе Si-Sn [20] промежуточных соединений нет, наблюдается вырожденная эвтектика со стороны олова с температурой 231.9 °C, что близко к температуре плавления чистого олова. Олово незначительно растворяется в кремнии, максимальная твердофазная растворимость 0.1 мол. % достигается при температуре 1339 К.

Таким образом, исходя из характера плавления промежуточных фаз и наличия заметных областей гомогенности у некоторых из них, возможно лишь субсолидусное фазовое разграничение. На рис. 1 представлены четыре возможных варианта разделения тройной системы секущими (ниже солидуса) разрезами на подсистемы, в каждой из которых сосуществуют в равновесии три твердые фазы.

Мышьяк может участвовать в равновесиях с ближайшими к нему фазами SnAs и SiAs₂, то есть часть концентрационного треугольника, где вершиной является As, отделяется единственным возможным способом. На рис. 2а в качестве примера приведен спектр порошковой рентгеновской дифракции сплава сечения SnAs–SiAs₂ с содержанием SiAs₂ 20 мол. %. Наблюдаются рефлексы диарсенида кремния и моноарсенида олова, интенсивность рефлексов второй фазы больше, так как она в данном сплаве преобладает. Следует отметить, что образец состава (SnAs)_{0 97}(SiAs₂)_{0 05} был однофазным,

Рис. 1. Варианты фазового субсолидусного разграничения тройной системы Si-Sn-As

а $(SnAs)_{0.93}(SiAs_2)_{0.07}$ уже двухфазным, что может свидетельствовать о формировании вдоль разреза SnAs–SiAs₂ твердого раствора на основе SnAs протяженностью не менее 3 мол. %.

В табл. 1 представлены параметр кубической решетки (*a*) и объем элементарной ячейки (*V*) фазы SnAs, присутствующей в сплавах политермического сечения SnAs–SiAs₂. Параметры решетки были рассчитаны с помощью компьютерной программы High Score Plus-305 и уточнены по методу Паули. Как параметр решетки, так и объем ячейки немного уменьшены по сравнению с данными для моноарсенида олова, приведенными в картотеке рентгеновской дифракции на порошках (база PDF2-2012). Это указывает на формирование твердого раствора замещения (атомы олова замещаются меньшими по размеру атомами кремния). Параметры орторомбической решетки SiAs₂ крайне мало и без какой-либо закономерности отличались от справочных значений.

Трапецию $Sn_4As_3-SnAs-SiAs_2-SiAs$ можно разделить на треугольники, соответствующие равновесию трех твердых фаз, двумя способами: сечением SnAs-SiAs (рис. 1а) или сечением $Sn_4As_3-SiAs_2$ (рис. 1б). Если вторая схема верна, то сплавы, составы которых принадлежат сечению SnAs-SiAs и лежат правее точки пересечения с разрезом $Sn_4As_3-SiAs_2$, не должны содержать моноарсенид олова и должны содержать Sn_4As_3 . Рентгенофазовый анализ показал, что, напротив, SnAs в этих сплавах присутствует, а

Фазовые отношения в системе Si-Sn-As

Рис. 2. Дифрактограммы сплавов системы Si–Sn–As: a – $(SnAs)_{0.8}(SiAs_2)_{0.2}$; б – $(SnAs)_{0.4}(SiAs)_{0.6}$; в – $(SnAs)_{0.8}Si_{0.2}$. Обозначения фаз: \blacksquare – Si, \bullet – SnAs, \square – SiAs, Δ – SiAs₂, \blacktriangle – Sn₄As₃

Т. П. Сушкова и др.

```
Фазовые отношения в системе Si-Sn-As
```

Таблица 1. Параметр решетки и объем элементарной ячейки моноарсенида олова, присутствующего в сплавах разреза SnAs-SiAs₂

Данные PDF2		Состав сплавов, мол. д. SiAs ₂						
SnAs		0.03	0.07	0.2	0.4	0.6		
<i>a</i> , Å	5.7248	5.7245	5.7206	5.7225	5.7217	5.7212		
<i>V</i> /10 ⁶ pm ³	187.621	187.591	187.208	187.391	187.315	187.268		

 Sn_4As_3 – нет, таким образом, схему, представленную на рис. 16 исключаем из рассмотрения.

У кубической фазы SnAs не так много рефлексов, но почти все они наблюдались на дифрактограммах. На рис. 2б приведен спектр рентгеновской дифракции сплава (SnAs)_{0.4}(SiAs)_{0.6}. Помимо пиков SnAs и SiAs можно наблюдать несколько рефлексов диарсенида олова. Этот факт мы объясняем следующим образом: процесс кристаллизации сплава состава (SnAs)_{0.4}(SiAs)_{0.6} заканчивается в точке Р₂ (рис. 3), которая отвечает четырехфазному перитектическому превращению L+ SiAs, ↔ SnAs + SiAs. Возможно, время синтеза и отжига было недостаточным, чтобы данное превращение полностью завершилось, и осталось некоторое количество непрореагировавшего диарсенида кремния. Рассчитанный по данным РФА параметр решетки моноарсенида олова, присутствующего в сплавах сечения SnAs–SiAs, мало отличается от справочного значения; параметры а и b моноклинной решетки SiAs немного увеличены, параметр с немного уменьшен (табл. 2). Можно сделать вывод об очень малой твердофазной растворимости вдоль разреза SnAs-SiAs.

Трапецию Sn–SnAs–SiAs–Si можно разделить на треугольники, соответствующие равновесию трех твердых фаз, тремя способами (рис. 1а, в, г). Если верен вариант (в), то сечение SiAs–Sn отделяет кремний, и кремний не должен обнаруживаться в сплавах, составы которых в концентрационном треугольнике (точнее, в плоскости рисунка) лежат выше этого сечения. Если верен вариант (а), то не должен обнаруживаться SnAs в сплавах, составы которых в концентрационном треугольнике лежат ниже сечения Sn₄As₃–SiAs. Для решения этого вопроса наиболее информативным будет исследование образцов сечения SnAs–Si.

Например, в сплаве (SnAs)_{0.8}Si_{0.2} методом РФА был обнаружен кремний, причем его рефлексы доминировали (рис. 2в), таким образом, схема, представленная на рис. 1в, является неверной. Чтобы сделать выбор между схемами (а) и (г), необходимо более подробно рассмотреть пути кристаллизации сплавов политермического разреза SnAs-Si. На рис. 3 приведены две возможные схемы фазовых равновесий в тройной системе, соответствующие ситуациям (а) и (г) на рис. 1. В области составов, богатых мышьяком, процессы кристаллизации протекают одинаково по обеим схемам. Поле первичной кристаллизации мышьяка ограничено моновариантными кривыми е₃P₁ и е₁P₁, вдоль которых осуществляются эвтектические процессы L → As+SnAs и

Рис. 3. Схемы фазовых равновесий в тройной системе Si-Sn-As

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

Таблица 2.	Параметры	решетки	моноарсенида	кремния,	присутствующего	в сплавах разреза
SnAs–SiAs						

Данные PDF2		Состав сплавов, мол. д. SiAs						
SiAs		0.2	0.3	0.4	0.6	0.8		
<i>a,</i> Å	15.97	15.979	15.980	15.976	15.977	15.979		
<i>b,</i> Å	3.668	3.670	3.672	3.669	3.667	3.666		
<i>c,</i> Å	9.529	9.520	9.526	9.527	9.526	9.526		
β°	106.0	106.1	106.1	106.0	106.0	106.0		

 $L \rightarrow As+SiAs_2$ соответственно. Точке P_1 соответствует четырехфазное перитектическое равновесие L+As \leftrightarrow SnAs+SiAs₂.

Вдоль кривой p_1P_2 осуществляется перитектический процесс L+SiAs \leftrightarrow SiAs₂, а вдоль кривой P_1P_2 идет эвтектический процесс L \rightarrow SnAs+SiAs₂. Кривые e_1P_1, P_1P_2 и p_1P_2 ограничивают поле первичной кристаллизации диарсенида кремния. Перитектическая точка P_2 отвечает нонвариантному равновесию L+SiAs₂ \leftrightarrow SnAs+SiAs.

Дальнейшие процессы будут различными для двух схем. Сначала рассмотрим вариант, представленный на рис. За. Четырехфазному равновесию с участием расплава и твердых фаз SnAs+SiAs+Sn₄As₃ соответствует точка P₃, она также является перитектической, так как лежит за пределами треугольника, соединяюще-го составы сосуществующих в равновесии твердых фаз. Вдоль кривой P_2P_3 протекает процесс L \rightarrow SiAs+SnAs. Кривая p_2P_3 разделяет поля первичной кристаллизации SnAs и Sn₄As₃.

Кривая $P_{3}P_{4}$ разделяет поля первичной кристаллизации фаз $Sn_{4}As_{3}$ и SiAs. Вдоль линии $e_{2}P_{4}$ идет эвтектический процесс $L \rightarrow SiAs+Si$, а вдоль линии $P_{4}E: L \rightarrow Sn_{4}As_{3}+Si$. Точка P_{4} соответствует перитектическому процессу $L+SiAs \rightarrow Sn_{4}As_{3}+Si$. Точка Е лежит внутри треугольника твердых фаз и соответствует эвтектическому равновесию $L \rightarrow Sn_{4}As_{3}+Si+Sn$. Она является вырожденной, так как эвтектики e_{4} и e_{5} в бинарных системах вырожденные.

На второй схеме (рис. 36) точка P_5 соответствует нонвариантному перитектическому процессу L+SiAs \rightarrow SnAs+Si, а точка P_6 – перитектическому процессу L+SnAs \rightarrow Sn₄As₃+Si. При дальнейшем понижении температуры идут те же процессы, что и на первой схеме (рис. 3а). Рассмотрим возможную последовательность процессов кристаллизации сплава $(SnAs)_{0.8}Si_{0.2}$ в соответствии с первой схемой. Фигуративная точка расплава лежит на поле первичной кристаллизации SiAs. После выделения из расплава кристаллов моноарсенида кремния вторичная кристаллизация идет вдоль кривой P_3P_4 и заканчивается процесс кристаллизации в точке P_4 : L+SiAs $\rightarrow Sn_4As_3$ +Si. Согласно второй схеме (рис. 3б) состав $(SnAs)_{0.8}Si_{0.2}$ оказывается на поле первичной кристаллизации кремния, после выделения кремния кремния процесс идет вдоль линии e_2P_5 и завершается перитектическим процессом L+SiAs $\rightarrow SnAs+Si$.

На дифрактограмме сплава (SnAs)_{0.8}Si_{0.2} наблюдаются четкие интенсивные рефлексы кремния и Sn_4As_3 , тогда как рефлексы моноарсенида олова отсутствуют (рис. 2в). Аналогичные дифрактограммы были получены и для более богатых кремнием образцов сечения SnAs-Si, изменялась лишь интенсивность рефлексов. Это позволяет утверждать, что верна схема, представленная на рис. 1а и 3а, согласно которой субсолидусное фазовое разграничение осуществляют сечения SnAs–SiAs₂, SnAs–SiAs, Sn₄As₃–SiAs, Sn₄As₃–Si. Параметр решетки кремния, присутствующего в сплавах разреза, изменялся в пределах ошибки эксперимента и без какой-либо закономерности. Расчет параметров ромбоэдрической решетки Sn₄As₃ в гексагональной установке (табл. 3) также не позволяет сделать вывод, что на основе этого соединения формируется твердый раствор сколь-нибудь значимой протяженности.

Также были исследованы несколько сплавов политермического разреза SiAs–Sn, который не участвует в фазовом субсолидусном разграниче-

Таблица 3. Параметры решетки фазы Sn₄As₃, присутствующей в сплавах разреза SnAs-Si

Данные PDF2		Состав сплавов, мол. д. Si						
Sn ₄ As ₃		0.1	0.2	0.3	0.4	0.6	0.8	
a, Å	4.089(1)	4.088	4.086	4.086	4.090	4.078	4.088	
<i>c</i> , Å	36.059(6)	36.081	36.0174	36.006	36.140	36.120	36.119	

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

нии. Этот разрез пересекается с секущим разрезом Sn_4As_3 –Si, поэтому сплавы с низким и высоким содержанием олова участвуют в разных равновесиях. Рентгенофазовый анализ показал присутствие в сплаве состава (SiAs)_{0.8}Sn_{0.2} фаз Sn₄As₃, Si и SiAs (рис. 4a), а в сплаве состава (SiAs)_{0.4}Sn_{0.6} – Sn₄As₃, Si и Sn (рис. 46). Это означает, что процесс кристаллизации первого сплава заканчивается в точке P₄, а второго сплава – в точке E (рис. 3а).

3.2. Результаты дифференциального термического анализа сплавов. Определение температур четырехфазных превращений

В настоящей работе дифференциальный термический анализ проводился в первую очередь для определения температуры четырехфазных превращений. Построить *T-х* диаграммы политермических сечений и проекцию поверхности ликвидуса тройной системы только по экспериментальным данным было невозможно, так как максимальная температура нагрева (1273 К) была ограничена как техническими характеристиками печи, так и риском разгерметизации кварцевых сосудов Степанова при высоких температурах и давлении пара мышьяка. Поэтому при проведении ДТА ликвидус достигали не для всех образцов.

На рис. 5 представлены термограммы некоторых сплавов, выбранных таким образом, чтобы температура начала первого эффекта на кривой нагревания соответствовала температуре определенного четырехфазного нонвариантного равновесия. Например, у образцов сечения SnAs–SiAs₂, чьи составы лежат левее точки пе-

Рис. 4. Дифрактограммы сплавов системы Si–Sn–As: a – (SiAs)_{0.8}Sn_{0.2}; б – (SiAs)_{0.4}Sn_{0.6}. Обозначения фаз: ■ – Si, * – Sn, \Box – SiAs, \blacktriangle – Sn₄As₃

в Рис. 5. Термограммы сплавов: а – $(SnAs)_{0.8}(SiAs_2)_{0.2}$; б – $(SnAs)_{0.4}(SiAs)_{0.6}$; в – $(SnAs)_{0.9}Si_{0.1}$; г – $(SiAs)_{0.9}Sn_{0.1}$; д – $(SiAs)_{0.4}Sn_{0.6}$

Фазовые отношения в системе Si-Sn-As

ресечения этого разреза с кривой р₁Р₂ (рис. 3а), процесс кристаллизации заканчивается в т. Р₁. На термограмме сплава, содержащего 20 мол. % диарсенида кремния температура начала первого эффекта составляет 850±1 К (рис. 5а), именно эта температура соответствует четырехфазному превращению L+As ↔ SnAs+SiAs₂.

Для составов, лежащих правее точки пересечения разреза $SnAs-SiAs_2$ и кривой p_1P_2 , а также для всех сплавов сечения SnAs-SiAs кристаллизация заканчивается в т. P_2 процессом L+SiAs₂ \leftrightarrow SnAs+SiAs. Для этих сплавов зафик-

сирована температура начала первого эндоэффекта 847±1 К (на рис. 5б приведена термограмма образца (SnAs)_{0.4}(SiAs)_{0.6}).

Температуру перитектического процесса L+SnAs ↔ SiAs+Sn₄As₃ (т. P₃) мы определяли, термографируя сплав (SnAs)_{0.9}Si_{0.1}. Она составляет 845±1 К (рис. 5в).

Температура перитектического превращения L+SiAs \rightarrow Sn₄As₃+Si (т. P₄) может быть установлена при термографическом исследовании богатых кремнием сплавов разреза SnAs–Si, а также сплавов разреза Sn–SiAs с большим со-

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

держанием моноарсенида кремния. На рис. 5г представлена термограмма образца (SiAs)_{0.9}Sn_{0.1}, температура начала первого эндоэффекта определена равной 840±1 К.

В т. Е (рис. 3а) заканчивается процесс кристаллизации сплавов разреза Sn–SiAs с высоким содержанием олова. Температура соответствующего эвтектического процесса L \rightarrow Sn₄As₃+Si+Sn была установлена по результатам ДTA сплава (SiAs)_{0.4}Sn_{0.6}, она равна 503±1 К (рис. 5д), что чуть ниже температуры плавления олова.

4. Заключение

Методами рентгенофазового и дифференциального термического анализа проведено исследование фазовых отношений в тройной системе Si-Sn-As. Установлено, что субсолидусное фазовое разграничение осуществляют сечения SnAs-SiAs₂, SnAs-SiAs, Sn₄As₃-SiAs и Sn₄As₃-Si. С учетом теоретического анализа и результатов РФА предложена схема фазовых равновесий в системе, предполагающая существование одного эвтектического и четырех перитектических нонвариантных равновесий с участием расплава и трех твердых фаз. Методом дифференциального термического анализа установлены температуры, при которых осушествляются эти четырехфазные превращения: $L+As \leftrightarrow SnAs+SiAs_2(850\pm1 \text{ K}); L+SiAs_2 \leftrightarrow SnAs+SiAs$ $(847\pm1 \text{ K}); \text{ L+SnÅs} \leftrightarrow \text{SiAs+Sn}_{4}\text{As}_{3}(845\pm1 \text{ K});$ L+SiAs \rightarrow Sn₄As₃+Si (840±1 K); L \rightarrow Sn₄As₃+Si+Sn (503±1 К). По данным рентгенофазового анализа твердофазная растворимость вдоль изученных разрезов очень мала, лишь на основе моноарсенида олова вдоль разреза SnAs-SiAs формируется твердый раствор замещения протяженностью не менее 3 мол. %. Дальнейшее исследование системы Si-Sn-As предполагает более тщательное изучение этого вопроса, а также построение Т-х диаграмм политермических сечений и проекции изотерм поверхности ликвидуса тройной системы.

Заявленный вклад авторов

Все авторы внесли равноценный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Угай Я. А., Мирошниченко С. Н., Гончаров Е. Г. Исследование *P-T-х* диаграммы системы Si-As. *Изв. АН СССР. Неорганические материалы*. 1974;10(10): 1774–1777. Режим доступа: https://www.elibrary.ru/ item.asp?id=29085699

2. Угай Я. А., Попов А. Е., Гончаров Е. Г., Лукин А. Н., Самойлов А. М. Электрофизические свойства и область гомогенности арсенида германия. *Изв. АН СССР. Неорганические материалы.* 1983;19(2): 190–192. Режим доступа: https://www. elibrary.ru/item.asp?id=29095704

3. Гончаров Е. Г., Гладышев Н. Ф., Угай Я. А. Физико-химическая природа промежуточных фаз в системе германий – мышьяк. *Журнал неорганической химии*. 1977;22(7): 1951–1956. Режим доступа: https://www.elibrary.ru/item.asp?id=29091830

4. Гончаров Е. Г., Попов А. Е., Завражнов А. Ю. Полупроводниковые фосфиды и арсениды кремния и германия. *Неорганические материалы*. 1995;31(5): 579–591. Режим доступа: https://www. elibrary.ru/item.asp?id=29113633

5. Cheng A-Q., He Z., Zhao J., Zeng H., Chen R-Sh. Monolayered silicon and germanium monopnictide semiconductors: excellent stability, high absorbance, and strain engineering of electronic properties. *ACS Applied Materials & Interfaces*. 2018;10(6): 5133–5139. https://doi.org/10.1021/acsami.7b17560

6. Zhou L., Guo Y., Zhao J. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures. *Physica E: Low-dimensional Systems and Nanostructures*. 2018;95: 149–153. https://doi. org/10.1016/j.physe.2017.08.016

7. Ramzan M. S., Bacic V., Jing Y., Kuc A. Electronic properties of a new family of layered materials from groups 14 and 15: first-principles simulations. *The Journal of Physical Chemistry C*. 2019;123(41): 25470– 25476. https://doi.org/10.1021/acs.jpcc.9b07068

8. Barreteau C., Michon B., Besnard C., Giannini E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. *Journal of Crystal Growth*. 2016;443(1): 75-80. https:// doi.org/10.1016/j.jcrysgro.2016.03.019

9. Reddy P. V. S., Kanchana V., Millichamp T. E., Vaitheeswaran G., Dugdale S. B. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles. *Physica B: Condensed Matter*. 2017;505: 33-40. https://doi.org/10.1016/j. physb.2016.10.026

10. Ma Z., Zhuang J., Zhang X., Zhou Zh. SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. *Frontiers of Physics*. 2018;13(138104). https://doi.org/10.1007/ s11467-018-0760-8

11. Shojaei F., Mortazavi B., Zhuang X., Azizi M. Silicon diphosphide (SiP₂) and silicon diarsenide

Т. П. Сушкова и др.

Фазовые отношения в системе Si-Sn-As

(SiAs₂): Novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. *Materials Today Energy*. 2020;16(100377). https://doi.org/10.1016/j.mtener.2019.100377

12. Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review. *Reviews on Advanced Materials Science*. 2011;27: 14–24. Режим доступа: https://www.elibrary.ru/item. asp?id=16869557

13. Kathleen L. Synthesis and characterization of tetrel pnictides and compounds in the lithium-tetrel-arsenic system. University of California. Davis ProQuest Dissertations Publishing: 2016. 136 р. Режим доступа: https://www.proquest.com/openview/6c5577b9817fa-2c2864fdeda33e2acfb/1?cbl=18750&diss=y&loginDi splay=true&pq-origsite=gscholar

14. Woo K. E., Dolyniuk J. A., Kovnir K. Superseding van der Waals with electrostatic interactions: Intercalation of Cs into the interlayer space of SiAs2. *Inorganic Chemistry*. 2019;*58*(8): 4997–5005. https://doi. org/10.1021/acs.inorgchem.9b00017

15. Семенова Г. В., Гончаров Е. Г. *Твердые растворы с участием элементов пятой группы*. М.: Изд. МФТИ; 2000. 160 с. Режим доступа: https://www. elibrary.ru/item.asp?id=25882424

16. Kononova E. Y., Sinyova S. I., Semenova G. V., Sushkova T. P. Phase equilibria in the Sn–As–Ge and Sn–As–P systems. *Journal of Thermal Analysis and Calorimetry*. 2014;117(3): 1171-1177. https://doi. org/10.1007/s10973-014-3883-3

17. Olesinski R. W., Abbaschian G. J. The As–Si (arsenic-silicon) system. *Bulletin of Alloy Phase Diagrams*. 1985;6(3): 254–258. https://doi.org/10.1007/BF02880410

18. Gokcen N. A. The As-Sn (tin-arsenic) system. *Bulletin of Alloy Phase Diagrams*. 1990;11(3): 271–278. https://doi.org/10.1007/BF03029298

19. Kovnir K., Kolen'ko Y. V., ... Shevelkov A. V. Sn₄As₃ revisited: Solvothermal synthesis and crystal and electronic structure. *Journal of Solid State Chemistry*. 2009;182(3): 630–639. https://doi.org/10.1016/j. jssc.2008.12.007

20. Olesinski R. W., Abbaschian G. J. The Si-Sn (silicon-tin) system. *Bulletin of Alloy Phase Diagrams;* 1984;5: 273–276. https://doi.org/10.1007/BF02868552

Сведения об авторах

Сушкова Татьяна Павловна, к. х. н., доцент, доцент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0003-1969-7082 sushtp@yandex.ru

Семенова Галина Владимировна, д. х. н., профессор, профессор кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0003-3877-985X semen157@chem.vsu.ru

Проскурина Елена Юрьевна, к. х. н., ассистент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0002-6149-1398 helko7@yandex.ru

Поступила в редакцию 03.10.2022; одобрена после рецензирования 01.11.2022; принята к публикации 15.11.2022; опубликована онлайн 25.06.2023.