

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

# Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

# Оригинальные статьи

Научная статья УДК 541.123/.123.8/9:546.57'289'28/22 https://doi.org/10.17308/kcmf.2023.25/11168

# Фазовые равновесия в системе Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> и некоторые свойства твердых растворов

Г. М. Аширов<sup>1</sup>, К. Н. Бабанлы<sup>1</sup>, Л. Ф. Машадиева<sup>1</sup>, Ю. А. Юсибов<sup>2</sup>, М. Б. Бабанлы<sup>1⊠</sup>

<sup>1</sup>Институт катализа и неорганической химии им. М. Нагиева, пр. Г. Джавида, 113, Баку Az1143, Азербайджан

<sup>2</sup>Гянджинский государственный университет, проспект Гейдара Алиева, 187, Гянджа АZ2000, Азербайджан

#### Аннотация

Фазовые равновесия в системе Ag<sub>2</sub>S–Ag<sub>8</sub>SiS<sub>6</sub>–Ag<sub>8</sub>GeS<sub>6</sub> исследованы методами дифференциального термического анализа и рентгенофазового анализа. Построена диаграмма состояния граничного разреза Ag<sub>8</sub>SiS<sub>6</sub> – Ag<sub>8</sub>GeS<sub>6</sub>, а также проекция поверхности ликвидуса, изотермическое сечение фазовой диаграммы при 300 К и некоторые политермические разрезы исследуемой системы.

Установлено, что в системе  $Ag_8SiS_6-Ag_8GeS_6$  образуются непрерывные ряды твердых растворов между обеими кристаллическими модификациями исходных соединений. Поверхность ликвидуса системы  $Ag_2S-Ag_8SiS_6-Ag_8GeS_6$  состоит из двух полей, отвечающих первичной кристаллизации высокотемпературных модификаций HT- $Ag_8Si_{1-x}Ge_xS_6$  и HT- $Ag_2S$ . На основании данных рентгенофазового анализа были рассчитаны параметры кристаллической решетки для обеих модификаций твердых растворов. Концентрационная зависимость параметров решетки подчиняется правилу Вегарда.

Полученные новые фазы представляют интерес как экологически безопасные материалы с термоэлектрическими свойствами и смешанной ионно-электронной проводимостью.

Ключевые слова: соединения семейства аргиродита, сульфид серебра-германия, сульфид серебра-кремния, фазовые равновесия, твердые растворы, *T-х* диаграмма, кристаллическая структура

*Благодарность*: работа выполнена при финансовой поддержке Азербайджанского научного фонда – грант № AEF-MCG-2022-1(42)-12/10/4-М-10.

**Для цитирования:** Аширов Г. М., Бабанлы К. Н., Машадиева Л. Ф., Юсибов Ю. А., Бабанлы М. Б. Фазовые равновесия в системе Ag<sub>2</sub>S–Ag<sub>8</sub>GeS<sub>6</sub>–Ag<sub>8</sub>SiS<sub>6</sub> и некоторые свойства твердых растворов. *Конденсированные среды и межфазные* границы. 2023;25(2): 292–301. https://doi.org/10.17308/kcmf.2023.25/11168

*For citation:* Ashirov G. M., Babanly K. N., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Phase equilibra in the Ag<sub>2</sub>S–Ag<sub>8</sub>GeS<sub>6</sub>–Ag<sub>8</sub>SiS<sub>6</sub> system and some properties of solid solutions. *Condensed Matter and Interphases*. 2023;25(2): 292–301. https://doi.org/10.17308/kcmf.2023.25/11168

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

•

<sup>🖂</sup> Бабанлы Магомед Баба; email: babanlymb@gmail.com

<sup>©</sup> Аширов Г. М., Бабанлы К. Н., Машадиева Л. Ф., Юсибов Ю. А., Бабанлы М. Б., 2023

Фазовые равновесия в системе Ag<sub>2</sub>S-Ag<sub>2</sub>GeS<sub>2</sub>-Ag<sub>2</sub>SiS<sub>2</sub> и некоторые свойства...

#### 1. Введение

Бинарные и более сложные халькогениды меди и серебра являются ценными функциональными материалами [1-3]. Среди этих соединений синтетические аналоги минерала аргиродита с формулой А<sub>8</sub>В<sup>IV</sup>Х<sub>6</sub> (A-Cu, Ag; B<sup>IV</sup>-Si, Ge, Sn; X-S, Se, Te) представляют особый интерес как экологически безопасные материалы, обладающие высокими термоэлектрическими характеристиками при низких температурах [4-12]. В то же время эти соединения обладают полупроводниковыми, фотовольтаическими и оптическими свойствами [13-18]. С другой стороны, благодаря особенности кристаллической структуры этого класса соединений, которая обеспечивает наличие высококонцентрированных и высокоподвижных ионов Cu<sup>+</sup>(Ag<sup>+</sup>), распределенных в жестком анионном каркасе, некоторые аргиродитные фазы обладают высокой ионной проводимостью по катионам меди (серебра), что делает их весьма перспективными для использования при получении фотоэлектродных материалов, электрохимических преобразователей солнечной энергии, ионоселективных сенсоров ит.д. [19-22].

Получение и исследование новых многокомпонентных материалов основано на информации о фазовых равновесиях соответствующих систем и термодинамических свойствах образующихся в них фаз [23–26]. Поскольку большинство соединений семейства аргиродита изоструктурны, вероятность образования твердых растворов в системах, состоящих из этих фаз, высока. В работах [27–34] изучены фазовые равновесия в ряде систем, состоящих из аргиродитных фаз, в которых были обнаружены непрерывные ряды твердых растворов.

Целью этой работы было получение полной картины фазовых равновесий в области составов  $Ag_2S-Ag_8GeS_6-Ag_8SiS_6$  квазитройной системы  $Ag_2S-GeS_2-SiS_2$ .

Исходные соединения системы  $Ag_2S$ - $Ag_8GeS_6-Ag_8SiS_6$  достаточно изучены. Соединение  $Ag_2S$  плавится конгруэнтно при 1113 К и подвергается полиморфному переходу при 449 и 844 К [35]. Соединение  $Ag_8SiS_6$  плавится конгруэнтно при 1231 К и претерпевает полиморфное превращение при 526 К [36]. Соединение  $Ag_8GeS_6$  плавится конгруэнтно при 1221 К [36] или 1223 К [37]. Температура полиморфного перехода этого соединения составляет 488 К [36] или 496 К [37]. Обе низкотемпературные модификации  $Ag_8SiS_6$  и  $Ag_8GeS_6$  кристаллизуются в ортором-

бической системе (пр. гр.  $Pna2_1$ ) и имеют следующие параметры решетки:  $Ag_8SiS_6$ , a = 15.024 Å, b = 7.428 Å, c = 10.533 Å [38];  $Ag_8GeS_6$ , a = 15.149, b = 7.476, c = 10.589 Å [39].

Высокотемпературные модификации тройных соединений имеют кубическую структуру (пр. гр. *F-43m*) с параметрами: Ag<sub>8</sub>SiS<sub>6</sub>, a = 10.63 Å [38]; Ag<sub>8</sub>GeS<sub>6</sub>, a = 10.7 Å [40].

О квазибинарных граничных сечениях  $Ag_2S$ - $Ag_8GeS_6$  и  $Ag_2S$ - $Ag_8SiS_6$  сообщалось в в работах [35, 46]. Обе системы образуют диаграмму эвтектического типа. Эвтектические смеси кристаллизуются, соответственно, при 1080 К (20 мол. % –  $Ag_8GeS_6$ ) [35] и 1085 К (24 мол. % –  $Ag_8SiS_6$ ) [36]. Система  $Ag_8GeS_6$ - $Ag_8SiS_6$  не изучена.

#### 2. Экспериментальная часть

#### 2.1. Синтез

Соединения Ag<sub>2</sub>S, Ag<sub>8</sub>SiS<sub>6</sub> и Ag<sub>8</sub>GeS<sub>6</sub> были синтезированы путем сплавления стехиометрических количеств соответствующих элементов высокой степени чистоты (не менее 99.9999 %) в кварцевых ампулах в условиях вакуума (10<sup>-2</sup> Па). Поскольку давление насыщенных паров серы (*T*<sub>кип</sub> = 717 К) при температуре плавления всех трех соединений высокое, их синтез проводили в двухзонной печи. Печь постепенно нагревали до температуры на 40–50 К выше температуры плавления синтезируемого соединения. Часть ампулы, находящаяся вне печи, постоянно охлаждалась, за счет чего сера, накопившаяся в виде паров на конце ампулы, конденсировалась и направлялась в зону реакции. После поглощения большей части серы ампула полностью помещалась в печь. Далее ампула выдерживалась в печи в течение 4-5 часов, с последующим охлаждением в режиме выключенной печи.

Синтезированные соединения были идентифицированы методами дифференциального термического анализа (ДТА) и рентгенфазового анализа (РФА). Результаты ДТА соединений  $Ag_2S$ ,  $Ag_8SiS_6$  и  $Ag_8GeS_6$  показали, что их температуры полиморфного перехода и плавления хорошо согласуются с приведенными выше литературными данными. Рентгенфазовый анализ подтвердил гомогенность синтезированных образцов, а дифрактограммы всех трех соединений согласуются с литературными данными [19–28]. Результаты ДТА и РФА синтезированных соединений приведены в табл. 1.

Сплавы системы Ag<sub>2</sub>S–Ag<sub>8</sub>GeS<sub>6</sub>–Ag<sub>8</sub>SiS<sub>6</sub> готовили сплавлением синтезированных исходных соединений в различных соотношениях в ваку-

Фазовые равновесия в системе Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>4</sub>-Ag<sub>8</sub>SiS<sub>4</sub> и некоторые свойства...

умированных кварцевых ампулах. Для приведения образцов в состояние, максимально близкое к равновесному, их подвергали длительной (500 ч) термической обработке при 900 К. Для каждого состава в системе Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> готовили по два образца, один из которых постепенно охлаждали в режиме выключенной печи после термической обработки, а другой закаливали путем опускания ампулы в холодную воду от 900 К.

#### 2.2. Методы исследования

Все сплавы были проанализированы методами РФА и ДТА. Рентгенофазовый анализ порошков проводили на дифрактометре Bruker D2 PHASER с использованием излучения СиКа<sub>1</sub> в диапазоне сканирования 20 =5 ÷ 75. Измерения ДТА регистрировали с помощью дифференциально сканирующего калориметра "Netzsch 404 F1 Pegasus system" (в продувочной атмосфере аргона) и многоканальной установки на базе электронного «термопарного регистратора данных TC-08» (в герметичных кварцевых трубках). Результаты измерений обрабатывали с помощью программного обеспечения NETZSCH Proteus. Точность измерения температуры не превышала ±2 К.

# 3. Результаты и их обсуждение

На основании результатов проведенных экспериментов и литературных данных о составляющих двойных систем  $Ag_2S-Ag_8GeS_6$  и  $Ag_2S-Ag_8SiS_6$  была получена полная картина фазовых равновесий в системе  $Ag_2S-Ag_8GeS_6-Ag_8SiS_6$ .

# 3.1. Граничная система Ag<sub>8</sub>SiS<sub>6</sub>-Ag<sub>8</sub>GeS<sub>6</sub>

По результатам ДТА и РФА построена фазовая диаграмма системы Ag<sub>8</sub>SiS<sub>6</sub>–Ag<sub>8</sub>GeS<sub>6</sub>. Как видно из рис. 1, между низкотемпературными (γ-фаза) и высокотемпературными модификациями (δ-фаза) исходных соединений образуются непрерывные ряды твердых растворов. Стоит отметить, что несмотря на то, что температуры плавления (1231 и 1218 К) и полиморфного превращения (512 и 491 К) исходных соединений очень близки, экстремумы на ликвидусе, солидусе и кривых фазового перехода δ↔γ не наблюдаются.

Использованием компьютерной программы TOPAS 3.0 были рассчитаны параметры решетки тройных соединений и твердых растворов. Результаты приведены в табл. 1.

Соединения Ag<sub>8</sub>GeS<sub>6</sub> и Ag<sub>8</sub>SiS<sub>6</sub> имеют орторомбическую структуру при комнатной температуре (пр. гр. *Pna2*<sub>1</sub>). Высокотемпературные модификации обоих соединений кристаллизуются в кубической структуре (пр. гр. *F-43m*). В табл. 1 приведены температуры тепловых эффектов и



**Рис. 1.** Фазовая диаграмма системы Ag<sub>o</sub>SiS<sub>6</sub>-Ag<sub>o</sub>GeS<sub>6</sub>

| Таблица | 1. | Результаты | ДТА | И | ΡФА | для | системы | Ag <sub>8</sub> SiS <sub>6</sub> | — | Ag <sub>s</sub> ( | GeS | 6 |
|---------|----|------------|-----|---|-----|-----|---------|----------------------------------|---|-------------------|-----|---|
|---------|----|------------|-----|---|-----|-----|---------|----------------------------------|---|-------------------|-----|---|

| Содержание<br>Ag <sub>8</sub> GeS <sub>6</sub> , мол.<br>% | Температуры<br>эффектов по<br>данным ДТА, К | Низкоте<br>полученая<br>Пара | мперататур<br>медленным<br>ем до 298 К<br>метры реше<br>(Пр.гр. <i>Pna2<sub>1</sub></i> | ная фаза,<br>охлажени-<br>гки, Å<br>) | Высокотемперататурная<br>фаза, полученая закаливани-<br>ем от 900 К<br>Параметры решетки, Å<br>(Пр.гр. <i>F-43m</i> ) |  |  |
|------------------------------------------------------------|---------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
|                                                            |                                             | а                            | b                                                                                       | С                                     | а                                                                                                                     |  |  |
| $0 (Ag_8SiS_6)$                                            | 512;1231                                    | 15.0264                      | 7.4384                                                                                  | 10.5311                               | 10.6225                                                                                                               |  |  |
| 10                                                         | 510;1229                                    | 15.0524                      | 7.4439                                                                                  | 10.5411                               | 10.6348                                                                                                               |  |  |
| 20                                                         | 506;1227                                    | 15.0751                      | 7.4412                                                                                  | 10.5429                               | 10.6436                                                                                                               |  |  |
| 40                                                         | 503;1225-1228                               | 15.0926                      | 7.4523                                                                                  | 10.5562                               | 10.6552                                                                                                               |  |  |
| 60                                                         | 499;1223                                    | 15.0962                      | 7.4601                                                                                  | 10.5626                               | 10.6785                                                                                                               |  |  |
| 80                                                         | 497;1121                                    | 15.1265                      | 7.4694                                                                                  | 10.5774                               | 10.6935                                                                                                               |  |  |
| 90                                                         | 494;1219                                    | 15.1345                      | 7.4705                                                                                  | 10.5823                               | 10.7026                                                                                                               |  |  |
| 100                                                        | 491;1218                                    | 15.1442                      | 7.4713                                                                                  | 10.5912                               | 10.7124                                                                                                               |  |  |

Фазовые равновесия в системе Ag, S-Ag, GeS, -Ag, SiS, и некоторые свойства...

параметры кристаллических решеток исходных соединений и твердых растворов.

Были построены графики зависимости параметров кристаллической решетки от концентрации (рис. 2). Как видно, параметры решетки обеих модификаций твердых растворов изменяются линейно при замещении Ge↔Si, т. е. соблюдается правило Berapga.

На рис. 3 представлены порошковые дифрактограммы термически обработанных и медленно охлажденных сплавов. Как видно, все промежуточные сплавы имеют такую же дифракционную картину, как и исходные соединения. Это свидетельствует об образовании непрерывного ряда твердых растворов в системе  $Ag_8SiS_6-Ag_8GeS_6$  между низкотемпературными модификациями исходных соединений при комнатной температуре во всем диапазоне концентраций. Наблюдается небольшой сдвиг дифракционных линий в сторону малых углов при замещения Si $\rightarrow$ Ge. Это связано с тем, что ионный радиус германия больше, чем у кремния.

На рис. 4 представлены порошковые рентгенограммы сплавов  $Ag_8SiS_6 - Ag_8GeS_6$ , закаленных от 900 К. Анализ рентгенограмм закаленных сплавов показывает образование непрерывного ряда твердых растворов между высокотемпературными модификациями. Как видно, дифрактограммы закаленных сплавов имеют характерную для кубической структуры дифракционную картину.



**Рис. 2.** Зависимости параметров решетки низкотемпературной (стабильной при комнатной температуре) и высокотемпературной модификаций твердых растворов Ag<sub>8</sub>SiS<sub>6</sub> – Ag<sub>8</sub>GeS<sub>6</sub> от состава



**Рис. 3.** Порошковые рентгенограммы сплавов Ag<sub>8</sub>SiS<sub>6</sub> – Ag<sub>8</sub>GeS<sub>6</sub> (медленно охлажденные до комнатной температуры образцы)





**Рис. 4.** Порошковые рентгенограммы сплавов Ag<sub>8</sub>SiS<sub>6</sub> – Ag<sub>8</sub>GeS<sub>6</sub> (образцы, закаленные от 900 K)

# 3.2. Твердофазные равновесия в системе Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> при 300 К

На основании результатов РФА ряда равновесных сплавов в пределах концентрационного треугольника Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> и фазовых диаграмм граничных квазибинарных систем построена диаграмма твердофазных равновесий этой системы при 300 К (рис. 5). Образование γ-фазы в граничной системе Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> и отсутствие других фаз в концентрационном треугольнике приводит к образованию двухфазного поля  $\alpha' + \gamma$  (где  $\alpha'$  – твердый раствор, образующийся на на основе низкотемпературного Ag<sub>2</sub>S). Между α'- и γ-фазами образуются коннодные линии. Методом РФА определены фазовые составы сплавов системы Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> при комнатной температуре. На рис. 5 отмечены также исследуемые вертикальные разрезы и сплавы. К примеру, на рис. 6 представлены дифрактограммы и фазовые составы сплавов 1 и 2 из рис. 5. Как видно, дифрактограммы обоих сплавов состоят из суммы дифракционных линий низкотемпературной модификации Ag<sub>2</sub>S и γ-фазы.

3.3. Проекция поверхности ликвидуса системы  $Ag_{7}S-Ag_{8}GeS_{6}-Ag_{8}SiS_{6}$ 

Проекция поверхности ликвидуса этой системы состоит из двух полей, которые соответствуют первичной кристаллизации  $\delta$ -фазы и  $\alpha$ -твердых растворов на основе высокотемпературной модификации соединения Ag<sub>2</sub>S (рис. 7). Эти поля ограничены моновариантной эвтектической кривой  $e_1e_2$ :

$$\mathbf{L} \leftrightarrow \boldsymbol{\alpha} + \boldsymbol{\delta}. \tag{1}$$

#### 3.4. Некоторые политермические сечения

**Разрез Ад**<sub>2</sub>**S**-[**A**] ([**A**] – твердый раствор Ag<sub>8</sub>Si<sub>0.5</sub>Ge<sub>0.5</sub>Se<sub>6</sub>). Ликвидус этого разреза (рис. 8) состоит из двух кривых, отвечающих первичной кристаллизации  $\alpha$ - и  $\delta$ -твердых растворов. Процесс кристаллизации заканчивается образованием двухфазного поля  $\alpha + \delta$ . Ниже ликвидуса кристаллизация протекает по эвтектической реакции (1). Поскольку температуры эвтектических равновесий e<sub>1</sub> и e<sub>2</sub> на граничных системах Ag<sub>2</sub>S-Ag<sub>8</sub>SiS<sub>6</sub> и Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub> отличаются незначительно (рис. 7), температурный ин-





**Рис. 5.** Изотермический разрез системы Ag<sub>8</sub>SiS<sub>6</sub>-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>2</sub>S при 300 К



**Рис. 6.** Порошковые рентгенограммы (300 К) сплавов Ag<sub>2</sub>S−Ag<sub>8</sub>SiS<sub>6</sub> – Ag<sub>8</sub>GeS<sub>6</sub>: а – сплав № 1 и б – сплав № 2 на рис. 5

Г. М. Аширов и др. Фазовые равновесия в системе Ag<sub>2</sub>S–Ag<sub>2</sub>GeS<sub>2</sub>–Ag<sub>2</sub>SiS<sub>2</sub> и некоторые свойства...



**Рис. 7.** Проекция поверхности ликвидуса системы  $Ag_2S-Ag_8GeS_6-Ag_8SiS_6$ . Поля первичной кристаллизации: *1* ( $\delta$ ), *2* ( $\alpha$ ). Штриховыми линиями обозначены изученные разрезы



**Рис. 8.** Политермическое сечение Ag<sub>2</sub>S-[A] ([A] – твердый раствор Ag<sub>8</sub>Si<sub>0.5</sub>Ge0.5Se<sub>6</sub>)

тервал этого моновариантного эвтектического равновесия очень мал (2–3°). Поэтому на рис. 8 трехфазное поле L +  $\alpha$  +  $\delta$  ограничено пунктирной линией. Термические эффекты в диапазоне 503-510 К соответствуют моновариантному равновесию  $\delta \leftrightarrow \alpha + \gamma$ . Область гомогенности на основе высокотемпературной модификации Ag<sub>2</sub>S не превышает 5 %. Горизонтальная линия при 443 К соответствует полиморфному превращению  $\alpha \leftrightarrow \alpha'$ . **Разрез**  $Ag_8SiS_6$ –[B] ([В] – сплав системы  $5Ag_2S$ – $Ag_8GeS_6$ , с составом 50 мол. %  $Ag_8GeS_6$ ). Этот участок целиком находится в области первичной кристаллизации  $\delta$ -фазы (рис. 9). Сначала из жидкой фазы кристаллизуются  $\delta$ -твердые растворы. Кристаллизация продолжается по моновариантной эвтектической реакции (1) и заканчивается образованием двухфазной смеси  $\alpha + \delta$ . Далее протекает моновариантная эвтекто-идная реакция (512–491)  $\delta \leftrightarrow \alpha + \gamma$  и полиморфное превращение  $Ag_2S$  (443 K).





**Рис. 9.** Политермическое сечение Ag<sub>8</sub>SiS<sub>6</sub>–[B]. ([B]- сплав системы 5Ag<sub>2</sub>S–Ag<sub>8</sub>GeS<sub>6</sub>, содержащий 50 мол. % Ag<sub>8</sub>GeS<sub>6</sub>)

# 4. Заключение

Исследованы фазовые равновесия плоскости Ag<sub>2</sub>S-Ag<sub>8</sub>SiS<sub>6</sub>-Ag<sub>8</sub>GeS<sub>6</sub> системы Ag-Si-Ge-S. Построены проекция поверхности ликвидуса указанной подсистемы, диаграмма твердофазных равновесий при 300 К, а также два политермических сечения фазовой диаграммы. Установлено, что между обеими кристаллографическими модификациями исходных соединений в граничной системе Ag<sub>8</sub>SiS<sub>6</sub>-Ag<sub>8</sub>GeS<sub>6</sub> образуются непрерывные ряды твердых растворов. На основании порошковых дифрактограмм подтверждена гомогенность обоих твердых растворов, определены типы и параметры их кристаллических решеток. Показано, что зависимость параметров решетки от состава подчиняется правилу Вегарда. Полученные новые нестехиометрические фазы представляют особый интерес как экологически безопасные, термоэлектрические и смешанные ионно-электронные проводящие материалы.

# Заявленный вклад авторов

Аширов Г. М. – концепция исследования, проведение исследования, синтез соединений, написание статьи, обсуждение результатов. Л. Ф. Машадиева – анализ научной литературы, обсуждение результатов. К. Н. Бабанлы – обсуждение результатов. Юсибов Ю. А. – обсуждение результатов. М. Б. Бабанлы – концепция исследования, окончательные выводы.

#### Конфликт интересов

Авторы заявляют, что у них нет известных конкурирующих финансовых интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

# Список литературы

1. Sanghoon X. L., Tengfei L. J., Zhang L. Y. *Chalcogenides: From 3D to 2D and beyond*. Elsevier; 2019. 398 p.

2. Ahluwalia G. K. *Applications of chalcogenides: S, Se, and Te*. Springer; 2016. 461 p.

3. Fujikane M., Kurosaki K., Muta H., Yamanaka S.. Thermoelectric properties of  $\alpha$ - and  $\beta$ -Ag<sub>2</sub>Te. *Journal* of Alloys and Compounds. 2005;393(1-2): 299–301. https://doi.org/10.1016/j.jallcom.2004.10.002

4. Schwarzmüller S., Souchay D., Günther D., ... Oeckler O. Argyrodite-type  $Cu_8GeSe_6$ -x Te x( $0 \le x \le 2$ ): temperature-dependent crystal structure and thermoelectric properties. *Zeitschrift für anorganische und allgemeine Chemie*. 2018;644(24): 1915–1922. https:// doi.org/10.1002/zaac.201800453

5. Acharya S., Soni A. High thermoelectric power factor in *p*-type Cu<sub>8</sub>GeSe<sub>6</sub>. *DAE Solid State Physics Symposium 2018*. 2019;2115(1): 1–3. https://doi. org/10.1063/1.5113463

Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2023;25(2): 292–301

Г. М. Аширов и др.

Фазовые равновесия в системе Ag<sub>2</sub>S-Ag<sub>8</sub>GeS<sub>6</sub>-Ag<sub>8</sub>SiS<sub>6</sub> и некоторые свойства...

6. Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag<sub>8</sub>SnSe<sub>6</sub>. *Advanced Science*. 2016;3(11): 1600196. https://doi.org/10.1002/advs.201600196

7. Ghrib T., Al-Otaibi A. L., Almessiere M. A., Assaker I. B., Chtourou R. High thermoelectric figure of merit of Ag<sub>8</sub>SnS<sub>6</sub> component prepared by electrodeposition technique. *Chinese Physics Letters*. 2015;32(12: 127402. https://doi.org/10.1088/0256-307x/32/12/127402

8. Jin M., Lin S., Li W., ... Pei Y. Fabrication and thermoelectric properties of single-crystal argyrodite Ag<sub>8</sub>SnSe<sub>6</sub>. *Chemistry of Materials*. 2019;31(7): 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393

9. Shen X., Yang C.-C., Liu Y., Wang G., Tan H., Tung Y.-H., Zhou X.. High-temperature structural and thermoelectric study of argyrodite Ag<sub>8</sub>GeSe<sub>6</sub>. ACS Applied Materials & Interfaces. 2018;11(2): 2168– 2176. https://doi.org/10.1021/acsami.8b19819

10. Charoenphakdee A., Kurosaki K., Muta H., Uno M., Yamanaka S.  $Ag_8SiTe_6$ : A new thermoelectric material with low thermal conductivity. *Japanese Journal of Applied Physics*. 2009;48(1): 01160– 01169. https://doi.org/10.1143/jjap.48.011603

11. Jiang Q., Li S., Luo Y., Xin J., Li S., Li W., Yang J. Ecofriendly highly robust Ag<sub>8</sub>SiSe<sub>6</sub>-based thermoelectric composites with excellent performance near room temperature. *ACS Applied Materials & Interfaces*. 2020;12(49): 54653–54661. https://doi.org/10.1021/ acsami.0c15877

12. Fujikane M., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Ag<sub>8</sub>GeTe<sub>6</sub>. *Journal of Alloys and Compounds*. 2005;396(1-2): 280–282. https://doi.org/10.1016/j.jallcom.2004.12.038

13. Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag<sub>8</sub>SnSe<sub>6</sub> argyrodite synthesis and optical properties. *Opto-Electronics Review*. 2017;25(1): 37–40. https:// doi.org/10.1016/j.opelre.2017.04.002

14. Lu C.-L., Zhang L., Zhang Y.-W., Liu S.-Y., Mei Y. Electronic, optical properties, surface energies and work functions of Ag<sub>8</sub>SnS<sub>6</sub>: First-principles method. *Chinese Physics B*. 2015;24(1): 017501. https://doi.org/10.1088/1674-1056/24/1/017501

15. Boon-on P., Aragaw B. A., Lee C.-Y., Shi J.-B., Lee M.-W.  $Ag_8SnS_6$ : a new IR solar absorber material with a near optimal bandgap. *RSCAdvances*. 2018;8(69): 39470–39476. https://doi.org/10.1039/c8ra08734b

16. Brammertz G., Vermang B., ElAnzeery H., Sahayaraj S., Ranjbar, S., Meuris M., Poortmans J. Fabrication and characterization of ternary  $Cu_8SiS_6$ and  $Cu_8SiSe_6$  thin film layers for optoelectronic applications. *Thin Solid Films*. 2016;616: 649–654. https://doi.org/10.1016/j.tsf.2016.09.049

17. Acharya S., Pandey J., Soni A. Enhancement of power factor for inherently poor thermal conductor Ag<sub>8</sub>GeSe<sub>6</sub> by replacing Ge with Sn. *ACS Applied Energy* 

*Materials*. 2019;2(1): 654–660. https://doi.org/10.1021/ acsaem.8b01660

18. Tim B., Riley H., Bjoern W., ... Wolfgang G. Z. Considering the role of ion transport in diffusondominated thermal conductivity. *Advanced Energy Materials*. 2022;12: 2200717. https://doi.org/10.1002/ aenm.202200717

19. Hull S., Berastegui P., Grippa A. Ag<sup>+</sup> diffusion within the rock-salt structured superionic conductor  $Ag_4Sn_3S_8$ . *Journal of Physics: Condensed Matter*. 2005;17(7): 1067–1084. https://doi.org/10.1088/0953-8984/17/7/002

20. Heep B. K., Weldert K. S., Krysiak Y., ... Tremel W. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite  $Ag_8SiSe_6$ . *Chemistry of Materials*. 2017;29(11): 4833–4839. https://doi. org/10.1021/acs.chemmater.7b00767

21. Boucher F., Evain M., Brec R. Distribution and ionic diffusion path of silver in  $\gamma$ -Ag<sub>8</sub>GeTe<sub>6</sub>: A temperature dependent anharmonic single crystal structure study. *Journal of Solid State Chemistry*. 1993;107(2): 332–346. https://doi.org/10.1006/jssc.1993.1356

22. Sardarly R. M., Ashirov G. M., Mashadiyeva L. F., ... Babanly M. B. Ionic conductivity of the Ag<sub>8</sub>GeSe<sub>6</sub> compound. *Modern Physics Letters B*. 2023;36(32): 2250171. https://doi.org/10.1142/S0217984922501718

23. West D. R. F. *Ternary phase diagrams in materials science*. 3rd edition. CRC Press; 2019. 236 p.

24. Saka Hiroyasu. *Introduction to phase diagrams in materials science and engineering*. World Scientific Publishing Company; 2020. 188 p. https://doi. org/10.1142/11368

25. Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some issues of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method. *Russian Journal of Inorganic Chemistry*. 2019;64(13): 1649– 1671. https://doi.org/10.1134/s0036023619130035

26. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B., Babanly M. B. Physicochemical aspects of development of multicomponent chalcogenide phases having the  $Tl_5Te_3$  structure: A Review. *Russian Journal of Inorganic Chemistry*. 2018;63(13): 1703–1730. https://doi. org/10.1134/s0036023618130041

27. Mashadieva L. F., Alieva Z. M., Mirzoeva R. D. Yusibov Yu. A. A., Shevel'kov V., Babanly M. B. Phase equilibria in the Cu<sub>2</sub>Se–GeSe<sub>2</sub>–SnSe<sub>2</sub> system. *Journal of Inorganic Chemistry*. 2022;67: 670–682. https://doi. org/10.1134/S0036023622050126

28. Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the  $2Cu_2S+GeS_2 \leftrightarrow Cu_2Se+GeS_2$  reciprocal system and thermodynamic properties of the  $Cu8GeS_6$ -xSex

Фазовые равновесия в системе Ag<sub>2</sub>S-Ag<sub>2</sub>GeS<sub>2</sub>-Ag<sub>2</sub>SiS<sub>2</sub> и некоторые свойства...

solid solutions. *Journal of Alloys and Compounds*. 2017;691: 255–262. https://doi.org/10.1016/j. jallcom.2016.08.251

29. Alverdiev I. J., Bagheri S. M., Aliyeva Z. M., Yusibov Y. A., Babanly M. B. Phase equilibria in the  $Ag_2Se-GeSe_2-SnSe_2$  system and thermodynamic properties of  $Ag_8Ge_{1-x}Sn_xSe_6$  solid solutions. *Inorganic Materials*. 2017;53(8), 786–796. https://doi. org/10.1134/s0020168517080027

30. Aliyeva Z. M., Bagheri S. M., Aliev Z. S., Alverdiyev I. J., Yusibov Y. A., Babanly M. B. The phase equilibria in the  $Ag_2S-Ag_8GeS_6-Ag_8SnS_6$  system. *Journal of Alloys and Compounds*.2014;611: 395–400. https://doi.org/10.1016/j.jallcom.2014.05.112

31. Bagheri S. M., Imamaliyeva S. Z., Mashadiyeva L. F., Babanly M. B. Phase equilibria in the Ag<sub>8</sub>SnS<sub>6</sub>-Ag<sub>8</sub>SnSe<sub>6</sub> system. *International Journal of Advanced Scientic and technical Research (India)*. 2014;4(2): 291–296.

32. Bayramova U. R., Poladova A. N., Mashadiyeva L. F. Synthesis and X-RAY study of the  $Cu_8Ge_{(1-X)}Si_xS_6$ solid solutions. *New Materials, Compounds & Applications*. 2022;6(3): 276–281.

33. Alieva Z. M., Bagkheri S. M., Alverdiev I. J., Yusibov Y. A., Babanly M. B. Phase equilibria in the pseudoternary system Ag<sub>2</sub>Se–Ag<sub>8</sub>GeSe<sub>6</sub>–Ag<sub>8</sub>SnSe<sub>6</sub>. *Inorganic Materials*. 2014;50(10): 981–986. https://doi. org/10.1134/s002016851410001x

34. Ashirov G. M. Phase equilibria in the Ag<sub>8</sub>SiTe<sub>6</sub>– Ag<sub>8</sub>GeTe<sub>6</sub> system. *Azerbaijan Chemical Journal*. 2022;1: 89–93. https://doi.org/10.32737/0005-2531-2022-1-89-93

35. Olekseyuk I. D., Kogut Y. M., Fedorchuk A. O., Piskach L. V., Gorgut G. P., Parasyuk O. V. The  $Ag_2S$ – GeS<sub>2</sub> system and  $Ag_2GeS_3$  crystal structure. *Naukovyi visnyk Volyns'koho Natsional'noho Universytetu im. Lesi Ukrainky. Neorhanichna Khimiia.* 2010;16: 25–33.

36. Venkatraman M., Blachnik R., Schlieper A. The phase diagrams of  $M_2X$ -SiX<sub>2</sub> (M is Cu, Ag; X is S, Se). *Thermochimica Acta*. 1995;249: 13–20. https://doi. org/10.1016/0040-6031(95)90666-5

37. Mikolaichuk A. G., Moroz N. V. *T-x* diagram of the Ag-Ge-S system in the Ag-Ge-GeS<sub>2</sub>-Ag<sub>8</sub>GeS<sub>6</sub>-Ag region: The glassy crystalline state of alloys. *Russian Journal of Inorganic Chemistry*. 2010;55(1): 87–92. https://doi.org/10.1134/S0036023610010171

38. Krebs B., Mandt J. Zur Kenntnis des argyrodit-strukturtyps: die kristallstruktur von  $Ag_8SiS_6$  / The argyrodite structure type : The crystal structure of  $Ag_8SiS_6$ . *Zeitschrift Für Naturforschung B*. 1977; 32(4): 373–379. https://doi.org/10.1515/znb-1977-0404

39. Eulenberger G. Die kristallstruktur der tieftemperaturmodifikation von  $Ag_8GeS_6$  – synthetischer argyrodit. *Monatshefto für Chemie*. 1977;108: 901–913. https://doi.org/10.1007/BF00898056

40. Gorochov O. Les composés  $Ag_8MX_6$  (M= Si, Ge, Sn et X= S, Se, Te). *Bull. Soc. Chim. France.* 1968;6: 2263–2275.

### Информация об авторах

*Аширов Гарай М.*, аспирант, н. с. Института катализа и неорганической химии имени академика Муртузы Нагиева (Баку, Азербайджан).

https://orcid.org/0000-0001-5050-9858 garayasirov@gmail.com

Бабанлы Камала Н., к. х. н., с. н. с. Института катализа и неорганической химии имени академика Муртузы Нагиева (Баку, Азербайджан).

https://orcid.org/0000-0002-3275-5833 leylafm@rambler.ru

*Машадиева Лейла Фархад*, к. х. н., с. н. с. Института катализа и неорганической химии имени академика Муртузы Нагиева (Баку, Азербайджан).

https://orcid.org/0000-0003-2357-6195 leylafm76@gmail.com

*Юсибов Юсиф А.*, д. х. н., профессор, ректор Гянджинского государственного университета https://orcid.org/0000-0003-4081-6170 babanlymb@gmail.com

*Магомед Б. Бабанлы*, д. х. н., профессор, членкорреспондент Национальной академии наук Азербайджана, исполнительный директор Института катализа и неорганической химии имени академика Муртузы Нагиева (Баку, Азербайджан).

https://orcid.org/0000-0001-5962-3710 babanlymb@gmail.com

Поступила в редакцию 05.10.2022; одобрена после рецензирования 24.11.2022; принята к публикации 15.15.2022; опубликована онлайн 25.06.2023.