УДК 541. 135. 5

# ВЛИЯНИЕ ПРИРОДЫ РАСТВОРИТЕЛЯ И СТИМУЛЯТОРОВ НАВОДОРОЖИВАНИЯ НА ДИФФУЗИЮ ВОДОРОДА ЧЕРЕЗ СТАЛЬНУЮ МЕМБРАНУ

© 2010 И. В. Зарапина, Н. В. Шель, Е. Ю. Копылова, В. И. Вигдорович

Тамбовский государственный технический университет, ул. Советская 106, 392000 Тамбов, Россия Поступила в редакцию: 12.04.2010 г.

**Аннотация.** Изучена диффузия водорода через стальную мембрану (Ст3) из этиленгликолевых растворов HCl (0,01—0,99 моль/л), содержащих 0,1, 2 и 10 масс. % воды в присутствии стимуляторов наводороживания (гидроарсенат натрия и пиридин). Результаты интерпретированы с учетом степени заполнения поверхности двумя формами адсорбированного водорода: надповерхностной  $H^r_{\rm anc}$  и подповерхностной  $H^s_{\rm anc}$ .

**Ключевые слова:** сталь, мембрана, этиленгликоль, вода, ионы водорода, гидроарсенат натрия, пиридин, диффузия.

### **ВВЕДЕНИЕ**

Вопросы теории и практики наводороживания металлов широко изучаются в нашей стране и за рубежом. Но многие аспекты этой проблемы в настоящее время только обозначены. Вместе с тем, наводороживание металлов, вызывая их специфическую хрупкость и широкую потерю механических характеристик, приводит к огромным материальным потярям, экономическим затратам и экологическим проблемам.

Многочисленные работы по изучению водородопроницаемости проводились преимущественно в водных растворах электролитов и частично обобщены в [1, 2]. Однако исследования в подобных условиях не позволяют выявить влияние природы растворителя, в полной мере учесть закономерности и условия латеральной диффузии атомов водорода, определяемые различной природой адсорбированных частиц системы, и, прежде всего, молекул растворителя. Напротив, при изменении соотношения компонентов смешанного сольвента такая возможность появляется.

Ранее в работах [3—5] изучено влияние ряда факторов на кинетику реакции выделения водорода (PBB) на железе в этиленгликолевых и водноэтиленгликолевых растворах HCl с постоянной ионной силой. Использование смешанного растворителя за счет основных свойств воды по отношению к этиленгликолю посредством взаимодействия

$$C_{2}H_{4}(OH)_{2}H^{+} + H_{2}O \rightleftharpoons C_{2}H_{4}(OH)_{2} + H_{3}O^{+}$$
 (1)

позволило целенаправленно менять природу доноров протонов (объемная сольватация), с учетом, по крайней мере, трех вариантов: разряд  $C_2H_4(OH)_2H^+$  ( $C_{_{\rm воды}}$  до 0,1 масс. %); параллельный разряд  $C_2H_4(OH)_2H^+$  и  $H_3O^+$  ( $C_{_{\rm воды}}$  — 0,2...5,0 масс. %); разряд  $H_3O^+$  ( $C_{_{\rm воды}}$  — 10 и более масс. %).

Влияние природы поверхностной сольватации также регулировалось составом растворителя:  $C_2H_4(OH)_{2,a,nc}$  (содержание воды в объеме жидкой фазы до 0,1 масс. %); соадсорбция  $C_2H_4(OH)_{2,a,nc}$  и  $H_2O_{a,nc}$  (содержание воды в объеме жидкой фазы 2 и 10 масс. %); адсорбция только  $H_2O$  (содержание воды в объеме жидкой фазы больше или равно 50 масс. %).

Одновременно было изучено влияние на кинетику и механизм реакции выделения водорода ряда стимуляторов наводороживания, в частности, гидроарсената натрия [6] и пиридина [7].

Целью настоящей работы явилось исследование влияния состава смешанного этиленгликольводного растворителя и природы стимуляторов наводороживания на диффузию водорода через стальную мембрану из кислых хлоридных растворов.

#### МЕТОДИКА ЭКСПЕРИМЕНТА

Для приготовления растворов использовался этиленгликоль квалификации «ч.д.а.». Смешанные водно-этиленгликолевые растворители получено введением в условно безводный (у.б) этиленгликоль рассчитанного количества бидистиллята с после-

дующим насыщением их сухим хлороводородом. Содержание HCl контролировали титрованием щелочью предварительно разбавленных водой проб в присутствии фенолфталеина.

Использованы растворы состава x M HCl + (1-x) M LiCl, где x: 0,01—0,99 моль/л. Хлорид лития перед использованием предварительно высушивали при  $110 \pm 5$  °C в воздушном термостате. В качестве стимуляторов наводороживания использовали гидроарсенат натрия ( $C_{\text{Na,HAsO}_4} = 0,5$ —10 ммоль/л) и пиридин ( $C_{\text{C,H,N}} = 0,5$ —10 ммоль/л) классификации «х.ч.» без дополнительной очистки.

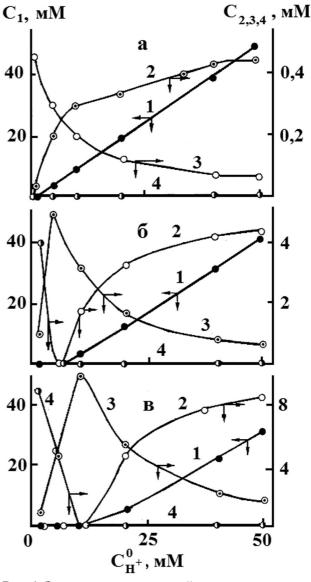
Диффузию водорода через вертикальную мембрану из стали (Ст3) площадью 3,63 см² и толщиной 300 мкм изучали по методике [8] в двухкамерной ячейке типа ячейки Деванатхана, выполненной из стекла «Пирекс». В поляризационную часть ячейки вводили рабочий раствор, а в диффузионную — точно фиксированный объем перманганата калия. Продолжительность экспериментов, проводимых при потенциале коррозии 2—8 часа (комнатная температур).

# СОСТОЯНИЕ ИЗУЧЕННЫХ СТИМУЛЯТОРОВ НАВОДОРОЖИВАНИЯ В РАСТВОРЕ

**Гидроарсенат-ионы.** Гидроарсенат — ионы при наличии достаточной исходной концентрации  $C_{\operatorname{H}^+}$  протонируется по реакциям:

$$HAsO_4^{2-} + H^+ \rightleftharpoons H_2AsO_4^-$$
 (2)

$$H_2AsO_4^- + H^+ \rightleftharpoons H_3AsO_4.$$
 (3)


Для водных сред в изотермических условиях (25 °C) выражения  $C_{\text{H}^+} \times C_{\text{HASO}_4^2} / C_{\text{H}_2\text{AsO}_4}$  и  $C_{\text{H}^+} \times C_{\text{H2ASO}_4^2} / C_{\text{H2ASO}_4}$  и  $C_{\text{H}^+} \times C_{\text{H2ASO}_4} / C_{\text{H3ASO}_4}$  равны соответственно 1,05×10<sup>-7</sup> и 5,98×10<sup>-3</sup> [9]. Таким образом, в растворе одновременно могут присутствовать два вида мышьяксодержащих частиц (МСЧ), различающихся, возможно, по адсорбционной способности, стимулированию диффузии водорода в металл, воздействию на кинетику восстановления ионов водорода в различной сольватной форме и скорости собственного восстановления на катоде в качестве доноров протонов.

Учитывая равновесия реакций (2) и (3) и материальный баланс по мышьяку с учетом электронейтральности, имеем [9]:

$$\begin{split} \left(C_{\mathrm{H^{+}}}^{2}+C_{\mathrm{HA}}^{0}\cdot C_{\mathrm{H^{+}}}-K_{_{W}}\right)\cdot &\left[C_{\mathrm{H^{+}}}^{2}+K_{_{\theta}}^{I}\left(C_{\mathrm{H^{+}}}+K_{_{\theta}}^{II}\right)\right]+\\ &+C_{_{1}}\cdot C_{_{\mathrm{H^{+}}}}+2C_{_{\mathrm{H^{+}}}}\cdot K_{_{a}}^{II}=0 \end{split}$$
 где  $C_{_{1}}=C_{_{\mathrm{H_{3}AsO_{_{4}}}}}+C_{_{\mathrm{H_{2}AsO_{_{4}}^{-}}}}+C_{_{\mathrm{HAsO_{_{4}^{-}}}}},K_{_{a}}^{I}$  и  $K_{_{a}}^{II}$ — кон-

станты кислотности мышьяковой кислоты по первой и второй ступени электролитической диссоциации. Используя (4), при известных для водных сред  $K_a^I$  и  $K_a^{II}$  [10] нетрудно рассчитать распределительные диаграммы всех частиц в зависимости от исходных концентраций  $C_{\rm H^+}^0$  и  $C_{\rm HAsO_4^{2-}}^0$  [6, 10].

Согласно таким диаграммам (рис. 1), при минимальной исходной концентрации  ${\rm HAsO_4^{2^-}}$  (0,5 мМ) и  $C_{\rm H^+}^0 \le 1$  мМ основной мышьяксодержащей частицей в растворе является  ${\rm H_2AsO_4^-}$  (рис. 1a). Примерно, на порядок ниже  $C_{{\rm H_3AsO_4^-}}$  и исчезающе мала  $C_{{\rm HAsO_4^{2^-}}}$ . С ростом  $C_{{\rm H^+}}^0$  до 10 мМ содержание мышьяковой кислоты быстро возрастает, а



**Рис. 1.** Зависимость равновесной концентрации ионов водорода (*I*),  $H_3AsO_4$  (*2*),  $H_2AsO_4^-$  (*3*),  $HAsO_4^{2-}$  (*4*) от исходной концентрации  $H_3O^+$  в растворе одноосновной сильной кислоты.  $\Sigma As$ , ммоль/л: a - 0.5;  $\delta - 5$ ;  $\epsilon - 10$ 

гидроарсенат-иона, напротив, снижается. Равенство  $C_{\rm H_3AsO_4}$  и  $C_{\rm H_2AsO_4^-}$  достигается при  $C_{\rm H^*}^0$ , равной 7 мМ (  $C_{\rm HAsO_4^{2-}}$  близка к нулю).

Десятикратное повышение содержания гидроарсената натрия заметно меняет картину (рис. 16): начиная с  $C_{\text{H}^+}^0 > 5$  мМ, зависимость  $C_{\text{H}_4\text{ASO}_4}$  от  $C_{\text{H}^+}^0$  существенно проявляется, а функция  $C_{\text{H}_2\text{ASO}_4^-} = f(C_{\text{H}^+}^0)$  проходит через максимум (5 мМ HCl). До  $C_{\text{H}^+}^0 \le 1$  мМ анион HAsO $_4^2$  остается основной мышьяксодержащей частицей. Концентрации  $H_2\text{AsO}_4^-$  и HAsO $_4^2$  равны между собой при  $C_{\text{H}^+}^0 \approx 1,5$  мМ, когда  $C_{\text{H}_3\text{AsO}_4}$  много меньше содержания заряженных форм мышьяксодержащих частиц. Последующий рост исходной концентрации HAsO $_4^2$  вдвое качественно не изменяет характера зависимости в координатах  $C_{\text{H}_3\text{AsO}_4}$ ,  $C_{\text{H}^+}^0$  (номер указывает на то, что речь идет об исходном содержании частиц) (рис. 16).

В этиленгликолевых растворах соответствующие константы кислотности  $K_a^I$  и  $K_a^{II}$  неизвестны. Ситуация усугубляется тем, что в нивелирующих растворителях, каким является С<sub>2</sub>Н<sub>4</sub>(ОН)<sub>2</sub>, сила незаряженных кислот линейно зависит от  $1/\varepsilon$  [11]. Так как диэлектрическая проницаемость спирта  $\varepsilon$ =37,7 [12], то при переходе от воды к этиленгликолю  $K^{I}_{a}$ , вероятно, снижается на полтора — два порядка. Вместе с тем,  $K_a^i$  катионных кислот  $(H_2AsO_4^-, HAsO_4^{2-})$  практически не зависит от природы спирта и величины его  $\varepsilon$  [11]. Таким образом, в этиленгликоле  $K_a^I$  и  $K_a^{II}$  должны сближаться по сравнению с водой, протонирование H<sub>2</sub>AsO<sub>4</sub> усиливаться, а мышьяк, очевидно, в большей мере находится в виде H<sub>3</sub>AsO<sub>4</sub>. Это тем более вероятно, что кислотные свойства этиленгликоля выражены слабее, чем воды [2].

**Ионы пиридиния.** Закономерности адсорбции  $C_5H_5N$  в кислых средах на ртути и, в меньшей мере, на железе обобщены в обзоре [13]. Там же рассмотрено влияние  $C_5H_5N$  на кинетические параметры парциальных электродных реакций при коррозии Fe. Адсорбция пиридина на Hg происходит преимущественно на отрицательно заряженной поверхности в виде катионов пиридиния, образующихся в результате его протонирования:

$$C_5H_5N + H^+ \rightarrow C_5H_5NH^+.$$
 (5)

Отношение  $C_{\text{С,H,NH}^+}/C_{\text{С,H,N}}$  порядка  $10^4$  [11]. Это вытекает из следующих соображений. В водных растворах  $pK_a$  пиридина (20 °C) равен 5,23 [14], и действительна зависимость:

$$1/K_a = [C_5H_5NH^+] / [C_5H_5N] [H^+],$$
 (6)

откуда

$$[C_5H_5NH^+]/[C_5H_5N]=1,7\times10^5[H^+]$$
 (7) и в присутствии  $C_{H^+}$  в пределах 1,0—10<sup>-2</sup> моль/л отношение концентрации ионов пирилиния к не-

отношение концентрации ионов пиридиния к непротонированной молекулярной форме пиридина составляет  $1,7\times10^5$ — $1,7\times10^3$ . Следовательно, в них С.Н. N практически отсутствует.

Однако при переходе от водных к этиленгликолевым растворам картина может существенно измениться в связи с влиянием природы растворителя на основность пиридина. В частности, для реакции (1) величина константы равновесия:

$$K_c = [H_3O^+] / [C_2H_4(OH)_2H^+] [H_2O]$$

равна 3,2 (20 °С, [14]). Данные по  $pK_a$  пиридина в этиленгликолевых и этиленгликоль — водных средах в литературе отсутствуют. В связи с этим  $K_a$  оценивали из величин предельных токов реакции:

$$C_2H_4(OH)_2H^+ + e \rightarrow C_2H_4(OH)_2 + \frac{1}{2}H_2.$$

Исходили из следующих соображений и допущений. Предварительно было экспериментально показано, что предельный катодный ток  $i_{\rm пред}$  реакции разряда ионов гликолия, характеризующихся аномальной подвижностью [2, 15] за счет эстафетного механизма передачи протона, имеет диффузионную природу. Постулировано, что аномальная подвижность громоздкого иона пиридиния отсутствует, и вкладом реакции:

$$C_5H_5NH^+ + e \rightarrow \frac{1}{2}H_2 + C_5H_5N$$
 (8)

в этой области потенциалов в  $i_{\rm пред}$  можно пренебречь. Тогда величина  $i_{\rm пред, \ H^+}$ , пропорциональная  $C_{\rm H^+}^{\rm равн}$ , в присутствии пиридина снижается в результате (5). Одновременно, при введении в раствор пиридина, из реакции (5) следует:

$$\begin{split} C_{\rm H^+}^{\rm pabh} &= C_{\rm H^+}^{\rm ucx} \times i_{\rm npeq} \: / \: i_{\rm npeq}^0 \: . \\ C_{\rm C_5H_5N}^{\rm pabh} &= C_{\rm C_5H_5N}^{\rm ucx} \: - C_{\rm H^+}^{\rm ucx} \: \times \Big( 1 - i_{\rm npeq} \: / \: i_{\rm npeq}^0 \: \Big) \: . \end{split}$$

Подставляя соответствующие величины в (6), можно получить  $pK_a$ . Статистическая обработка экспериментальных данных, частично в качестве примера приведенных на рис. 2, по методике малых выборок [16] с доверительной вероятностью  $\alpha = 0.95$  и  $\tau_{\alpha}$  по Стьюденту 2,365 привела к  $pK_a = 2.67 \pm 0.05$  для условно безводных (у. б.) сред.

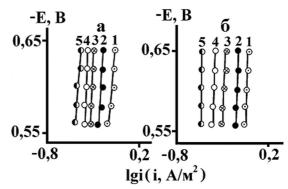
Из (7) следует, что в 1,0 М и близким к ним растворам HC1 в у. б.  $C_2H_4(OH)_2$  пиридин протонирован практически нацело, в 0,1 и 0,01 М средах доля протонированной формы составляет соответственно 98 и 82 %.

Для оценки корректности методики была предпринята попытка получить  $pK_a$  пиридина в кислых

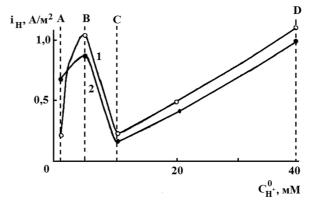
хлоридных средах для сопоставления с литературными данными. Полученная величина  $pK_a$  в  $10^{-3}$  и  $5\times10^{-3}$  молярных растворах HC1 (состав электролита x M HC1 + (1-x) M LiC1) равна  $2,78\pm0,05$ , что несколько ниже, чем приводимая в [14]. Но тем не менее, и в этом случае равновесие (8) нацело сдвинуто вправо.

#### ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

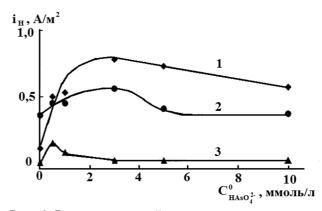
Растворы, содержащие гидроарсенат-ионы. В условно безводных этиленгликолевых растворах (до 0,1 масс. %) характер зависимости  $i_{\rm H} = f(C_{\rm H})$  представлен на рис. 3. На кривой 1 рост исходной концентрации ионов водорода  $(C_{\rm H}^0)$  от точки А к В вызывает резкое повышение величины  $i_{\rm H}$ . Равновесные концентрации  $C_{\rm H}^A$  и  $C_{\rm H}^B$  равны соответственно  $\approx 10^{-5}$  и  $\approx 10^{-4}$  ммоль/л. Последующий рост  $C_{\rm H}^0$  вдвое приводит к появлению минимума на зависимости  $i_{\rm H} = f(C_{\rm H}^0)$ . Дальнейшее увеличение  $C_{\rm H}^0$  при преобладающей (среди МСЧ) и практически постоянной  $C_{\rm H_3AsO_4}$  вызывает увеличение  $i_{\rm H}$ .


Для 0,5 ммоль/л  $Na_2HAsO_4$  зависимость  $i_H = f(C_H^0)$  имеет качественно тот же вид (рис. 3, кривая 2).

Связь величины  $i_{\rm H}$  с  $C_{{
m HAsO_4^{2-}}}^0$  при  $C_{{
m H}^{-}}^0$ = const носит сложный характер и определяется, при прочих равных условиях, соотношением  $C_{{
m H}^{+}}^{0_+}/C_{{
m HAsO_4^{2-}}}^0$  (рис. 4). В растворах с  $C_{{
m HCl}}^0$ , равной 0,05 мМ ( $C_{{
m H}^{+}}^0$ >  $C_{{
m HAsO_4^{2-}}}^0$ ) при продолжительности эксперимента  $\tau$   $\leq$  4 часов, наблюдается максимум (рис. 4, кривая 1).


Увеличение продолжительности эксперимента до 8 часов смещает максимум на зависимости  $i_{\rm H}=f\left(C_{{\rm HAsO}_4^{2-}}^0\right)$  в область существенно меньших величин  $C_{{\rm HAsO}_4^{2-}}^0$ .

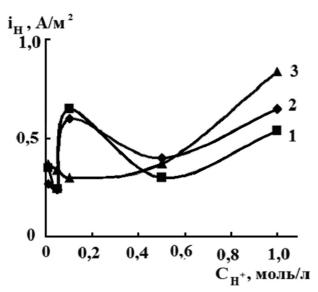
При введении 2 масс. % воды в этиленгликолевые растворы HCl, зависимость  $i_{\rm H}$ = $f(C_{\rm HAsO_4^{2-}}^0)$  при  $C_{\rm H^{-}}$ = const также проходит через максимум.


Увеличение концентрации воды до 10 масс. %  ${
m H_2O}$  приводит к более сложной зависимости потока твердофазной диффузии от концентрации кислоты при различной начальной концентрации  ${
m HAsO_4^{2-}}$  (рис. 5). Рост концентрации  ${
m C_{H^+}}$  до 0,1 моль/л обусловливает значительное увеличение  $i_{
m H}$ , как в отсутствии гидроарсенат-ионов, так и в присутствии их. Последующее повышение концентрации кислоты в 5 раз приводит к появлению минимума на зависимости  $i_{
m H}=f({
m C_{H^+}})$ . Дальнейший рост  ${
m C_{H^+}}$  вновь облегчает диффузию водорода в металл. Для  ${
m C_{HAsO_4^{2-}}^0}=10$  мМ зависимость  $i_{
m H}=f({
m C_{H^+}})$  имеет аналогичный вид. Отличие заключается лишь в отсутствии минимума в интервале концен-

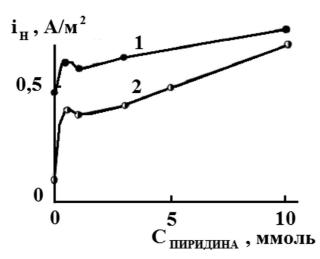


**Рис. 2.** Зависимость предельных диффузионных токов на железе в этиленгликолевых растворах, содержащих 50 масс.% воды, от концентрации пиридина. Состав электролита:  $a = 10^{-3}$  M HC1 + 0,999 M LiC1;  $\delta = 5 \times 10^{-3}$  M HC1 + 0,995 M LiC1. Комнатная атмосфера, неподвижный электрод.  $C_{\text{пиридина}}$ , мМ: I = 0, 2 = 1, 3 = 3, 4 = 5, 5 = 10




**Рис. 3.** Влияние исходной концентрации ионов водорода на величину потока диффузии через стальную мембрану из у.б. этиленгликолевых растворов с составом электролита x M HCl + (1-x) M LiCl + y мМ Na<sub>2</sub>HAsO<sub>4</sub>. y, ммоль/л: 1 — 10; 2 — 0,5. Водородная атмосфера, комнатная температура




**Рис. 4.** Влияние исходной концентрации ионов водорода на величину потока диффузии через стальную мембрану из у.б. этиленгликолевых растворов. Состав фонового электролита: 0,05 M HCl + 0,95 M LiCl. Продолжительность опытов, ч: 1-2; 2-4; 3-8. Водородная атмосфера, комнатная температура

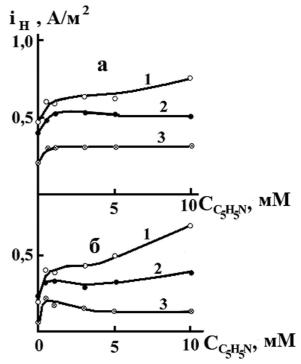
траций HCl 0,05—0,1моль/л (рис. 5, кривая 3). Возможно, это связано с тем, что преобладающей и постоянной в растворе остается концентрация мышьяковой кислоты, а  $C_{\mathrm{HAsO_4^{2-}}}$  и  $C_{\mathrm{H_2AsO_4^{-}}}$  незначительны.

**Растворы, содержащие пиридин.** В условно безводных средах протонированная форма пиридина является выраженным стимулятором наводороживания (рис. 6).

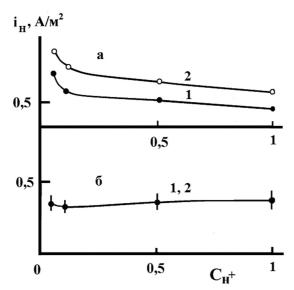


**Рис. 5.** Зависимость потока твердофазной диффузии водорода через стальную мембрану из этиленгликолевых растворов с 10 масс. %  $\rm H_2O$  и составом электролита x M  $\rm HCl+(1-x)$  M LiCl от концентрации кислоты при разной концентрации  $C^0_{\rm HAsO_4^{2-}}$ , ммоль/л: I=0.0; 2=0.5; 3=10.0




**Рис. 6.** Влияние концентрации ионов пиридиния на диффузию водорода через стальную (Ст3) мембрану при  $E_{\text{кор}}$  ее входной стороны из условно безводных этиленгликолевых растворов HC1 с постоянной ионной силой. С<sub>НС1</sub>, моль/л: I = 0.99; 2 = 0.1. Комнатная температура, атмосфера — воздух

Однако функция  $i_{\rm H} = f(C_{\rm пиридиния})$  достаточно сложна, и ее вид не связан с кислотностью среды. Наличие 0,5 мМ  ${\rm C_5H_5NH^+}$  приводит к резкому возрастанию потока твердофазной диффузии. Затем  $i_{\rm H}$  несколько снижается с увеличением  $C_{{\rm C,H,NH^+}}$  вдвое, и далее наблюдается его систематическое повышение, симбатное  $C_{{\rm пиридиния}}$ . Существенно, что с ростом продолжительности эксперимента  $i_{\rm H}$  снижается при  $C_{{\rm H^+}} = {\rm const}$  и  $C_{{\rm пиридиния}} = {\rm const}$  (рис. 7). В растворах с 2 масс. % воды и  $C_{{\rm C,H,NH^+}} = {\rm const}$ 


В растворах с 2 масс. % воды и  $C_{\rm C,H,NH}^-={\rm const}$  поток твердофазной диффузии снижается с ростом кислотности (рис. 8a), хотя, из самых общих соображений [1, 17], можно было прогнозировать обратную картину.

С повышением  $C_{\rm H,O}$  до 10 масс.% наблюдается независимость  $i_{\rm H}$  от  $C_{\rm H^2}$  (рис.  $8 \delta$ ). Отсутствие связи величины  $i_{\rm H}$  с кислотностью можно объяснить, в первом приближении, лимитирующим процесс массопереносом. Вместе с тем снижение  $i_{\rm H}$  (рис. 8 a) не коррелирует ни с ростом скорости PBB, ни с наличием диффузионных ограничений.

В условиях поверхностной сольватации преимущественно молекулами спирта (2 масс. % воды) функция  $i_{\rm H}$ = $f(C_{\rm C.H.NH}^{\star})$  проходит через максимум



**Рис. 7.** Зависимость потока диффузии водорода через стальную мембрану в условно безводных этиленгликолевых растворах от концентрации пиридина при  $E_{\text{кор}}$ . Состав электролита: a — 0,99 M HC1 + 0,01 M LiC1;  $\delta$  — 0,10 M HC1 + 0,90 M LiC1. Продолжительность эксперимента, ч: I — 2; 2 — 4; 3 — 8. Комнатная температура, воздушная атмосфера



**Рис. 8.** Зависимость потока диффузии водорода через стальную мембрану (Ст3) от исходной концентрации  $C_{\text{H}^-}$  в этиленгликолевом растворе с 2 (*a*) и 10 (*б*) масс. %  $\text{H}_2\text{O}.$   $C_{\text{пиридиния}}$ , мМ: I — 1; Z — 10. Комнатная температура, атмосфера — воздух

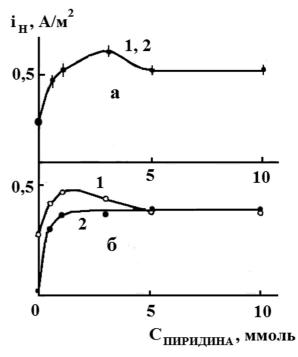
(3 мМ  $C_5H_5NH^+$ ) (рис. 9a). Рост величины  $\theta_{\text{воды}}$  (10 масс. %  $H_2O$ ) слабо влияет на абсолютную величину  $i_{\text{H}}$ , в целом, несколько понижая ее (рис.  $9 \hat{o}$ ). Максимум зависимости  $i_{\text{H}}$  от  $C_{\text{С,H,NH}^+}$  смещается в область меньших концентраций катионов пиридиния (1 мМ  $C_5H_5NH^+$ ). В области 0,5 мМ  $\leq C_{\text{С,H,NH}^+} \leq 3$  мМ повышение кислотности стимулирует абсорбцию водорода. При  $C_{\text{С,H,NH}^+} \geq 5$  мМ отсутствует связь  $i_{\text{H}}$  с  $C_{\text{H}^+}$ .

#### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Следует учитывать, что, как уже отмечалось выше, на железе существуют две формы адсорбированного водорода [2, 18, 19]: надповерхностная —  $H^r$  и подповерхностная —  $H^s$ . Подчеркнем, что  $H^s$  — именно адсорбированный водород. Его не следует отождествлять с возможным третьим, абсорбированным видом таких частиц. Обе адсорбированные формы находятся в равновесии, но зависимость соотношения поверхностных концентраций участников процесса имеет необычный вид. Построенная по данным [18], она приведена в [4]. Там же постулировано, что форма  $H^r$  ответственна за поверхностную диффузию и кинетику стадии рекомбинации, а  $H^s$  — за диффузию в металл (абсорбция). Им соответствуют, в терминах двумерной концентрации,  $\theta_{\rm H}^r$  и  $\theta_{\rm H}^s$ . Это может привести, по крайней мере, к двум эффектам:

1. Наличие параллельно адсорбирующихся с атомами водорода частиц смещает равновесие

$$heta_{\scriptscriptstyle 
m H}^{\scriptscriptstyle r} 
ightleftharpoons heta_{\scriptscriptstyle 
m H}^{\scriptscriptstyle s}.$$


Сдвиг его вправо, при прочих равных условиях, когла

$$\theta_{\rm H}^r + \theta_{\rm H}^s = {\rm const},$$

увеличивает  $i_{\rm H}$ , влево — снижает поток твердофазной диффузии водорода. Подобный эффект должен иметь место и при отсутствии постоянства  $\Sigma \, \theta_{\rm H}^i$ , если соответствующим образом изменяется соотношение  $\theta_{\rm H}^s/\theta_{\rm H}^r$ . Рост указанного соотношения стимулирует  $i_{\rm H}$ , обратный характер изменения — его уменьшает.

2. Частицы, адсорбирующиеся с атомами водорода на одних и тех же активных центрах, снижают  $\theta_{\rm H}^r$ . Соответственно изменяется и  $\theta_{\rm H}^s$ . Однако, согласно [20], изменения  $\theta_{\rm H}^r$  и  $\theta_{\rm H}^s$  могут происходить непропорционально, т. к. отношение  $\theta_{\rm H}^s/\theta_{\rm H}^r$ , согласно [18], является функцией статистической суммы состояний системы, связанной с определенным заполнением поверхности адсорбатом. Тогда, независимо от характера изменения скорости PBB,  $i_H$  может как возрастать, так и уменьшаться под влиянием одних и тех же факторов.

Кроме того, для объяснения наблюдаемых явлений учтем высокую вероятность энергетической неоднородности активных центров (АЦ), приняв,



**Рис. 9.** Влияние концентрации ионов пиридиния на диффузию водорода через стальную (Ст3) мембрану при  $E_{\text{кор}}$  ее входной стороны из этиленгликолевых растворов HC1 с постоянной ионной силой, содержащих 2 (a) и 10 ( $\delta$ ) масс. % H<sub>2</sub>O.  $C_{\text{HCI}}$ , моль/л: I — 0,99; 2 — 0,1. Комнатная температура, атмосфера — воздух

что кинетика адсорбции МСЧ и катионов пиридиния является функцией природы и, безусловно, величины  $\Delta H_{\rm a,c}$  адсорбционных центрах. Представляется очевидным, что энергия активации адсорбции на центрах с большой  $\Delta H_{\rm a,c}$  мала. Тогда они быстро «отравляются» при посадке частиц стимулятора. На оставшиеся свободные АЦ в результате реакции разряда садятся атомы H, определяя соответствующие величины  $\theta_{\rm H}$  и  $i_{\rm H}$ . Напротив, на менее активных центрах равновесие:

$$MCH_V \rightleftharpoons MCH_S$$
,  
 $C_sH_sNH_V^+ \rightleftharpoons C_sH_sNH_S^+$ ,

где v и s — индексы частиц в объеме раствора и на поверхности металла, устанавливается гораздо медленнее, и, в первом приближении, возможно, имеет вид:

$$\begin{split} \mathbf{H}_{\text{agc}} + \mathbf{MCY}_{V} &\rightleftarrows \mathbf{MCY}_{S} + \frac{1}{2}\mathbf{H}_{2} \\ \mathbf{H}_{\text{agc}} + \mathbf{C}_{S}\mathbf{H}_{S}\mathbf{NH}_{V}^{+} &\rightleftarrows \mathbf{C}_{S}\mathbf{H}_{S}\mathbf{NH}_{S}^{+} + \frac{1}{2}\mathbf{H}_{2}. \end{split}$$

Иначе говоря, первоначально занимающие такие АЦ ад — атомы Н вытесняются частицами стимулятора. Тогда  $\theta_{H}$ , равная  $\theta_{\text{общ}} - \theta_{\text{стимулятора}}$ , а соответственно и  $i_{\text{H}}$  должны уменьшаться во времени до достижения стационарного состояния, что и наблюдается экспериментально.

Исходя из полученных экспериментальных данных, можно постулировать, что величина  $i_{\rm H}$  является функцией природы молекул растворителя, участвующих в поверхностной сольватации, в частности:

• преимущественно

$$C_2H_4(OH)_{2,agc} \to (d\lg i_K/d\lg C_{H^+})_{C_i} < 0;$$

• сравнимые величины

$$\theta_{\text{спирта}}$$
 и  $\theta_{\text{воды}} \rightarrow (d \lg i_{\scriptscriptstyle{K}}/d \lg C_{\scriptscriptstyle{\text{H}}^{+}})_{\scriptscriptstyle{C_{i}}} = 0;$ 

• преимущественно

$$H_2O_{anc} \rightarrow (dlgi_K/dlgC_{H^+})_{C_i} > 0.$$

## СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов В.В., Халдеев Г.В., Кичигин В.И. Наводороживание металлов в электролитах. М.: Машиностроение, 1993. 244 c.

- 2. Вигдорович В.И., Цыганкова Л.Е. Электрохимическое коррозионное поведение металлов в кислых спиртовых и водно-спиртовых средах. М.: Радиотехника, 2009. 328 с.
- 3. *Вигдорович В.И., Цыганкова Л.Е.* // Журнал физической химии. 1976. Т. 50. № 11. С. 2968—2970.
- 4. *Вигдорович В.И.*, Дьячкова Т.П., Пупкова О.Л. и др. // Электрохимия. 2001. Т. 37. № 12. С. 1437—1445.
- 5. Шель Н.В., Зарапина И.В., Копылова Е.Ю. и др. // Вестник Тамбовского государственного технического университета. 2008. Т. 14. № 4. С. 917—927.
- 6. Вигдорович В.И., Цыганкова Л.Е., Копылова Е.Ю. // Электрохимия. 2003. Т. 39. № 7. С. 836—843.
- 7. Вигдорович В.И., Цыганкова Л.Е., Зарапина И.В. и др // Коррозия: материалы, защита. 2006. № 9. С. 7—14
- 8. *Кардаш Н.В., Батраков В.В.* // Защита металлов. 1995. Т. 31. № 4. С. 441—446.
- 9. Справочник химика. М.: Л.: Химия, 1964. Т. 3. 1005 с.
- 10. Вигдорович В.И. Копылова Е.Ю., Брюске Я.Э. // Вестник ТГУ. 2002. Т. 7. № 1. С. 153—157.
- 11. *Измайлов Н.А.* Электрохимия растворов. М.: Химия, 1976. 488 с.
- 12. Крешков А.П., Быкова Л.Н., Казарян Н.А. // М.: Химия, 1967. 192 с.
- 13. *Антропов Л.И.*, *Погребова И.С.* // Итоги науки и техники. 1972. Т. 2. С. 27—112.
- 14. Альберт А., Сержент Е. Константы ионизации кислот и оснований. М.: Л.: Химия, 1964. 179 с.
- 15. *Вигдорович В.И*. Автореф. дисс... докт. химич. наук. М. 1990. 48 с.
- 16. Физико-химические методы анализа / под ред. В.Б. Алесковского и К.Б. Яцимирского // Л.: Химия, 1971.424 с.
- 17. *Кудрявцев В.Н., Балакин Ю.П., Ваграмян А.Т.* // Защита металлов. 1965. Т. 1. № 5. С. 477—481.
- 18. *Хориути Д., Тоя Т.* Поверхностные свойства твердых тел. / Под ред. М. Грина. М.: Мир, 1972. С. 3—103.
- 19. *Тоя Т., Ито Т., Иши И.* // Электрохимия. 1978. Т. 14. № 5. С. 703—710.
- 20. Вигдорович В.И., Цыганкова Л.Е., Дьячкова Т.П. // Электрохимия. 2002. Т. 38. № 6. С. 719—729.

Зарапина Ирина Вячеславовна — старший преподаватель кафедры «Химия» Тамбовского государственного технического университета; e-mail: Irina-Zarapina@mail.ru

*Шель Наталья Владимировна* — профессор кафедры «Химия» Тамбовского государственного технического университета; e-mail: vits21@mail.ru

Zarapina Irina V. — senior lecturer of Department «Chemistry», Tambov State Technical University; e-mail: Irina-Zarapina@mail.ru

Shel Natalya V. — professor of Department «Chemistry», Tambov State Technical University; e-mail: vits21@ mail.ru

## ВЛИЯНИЕ ПРИРОДЫ РАСТВОРИТЕЛЯ И СТИМУЛЯТОРОВ НАВОДОРОЖИВАНИЯ НА ДИФФУЗИЮ...

Копылова Елена Юрьевна — старший преподаватель кафедры «Химия» Тамбовского государственного технического университета; e-mail: vits21@mail.ru

Вигдорович Владимир Ильич — профессор кафедры «Химия» Тамбовского государственного технического университета; e-mail: vits21@mail.ru

Kopylova Elena Yu. — senior lecturer of Department «Chemistry», Tambov State Technical University; e-mail: vits21@mail.ru

Vigdorovich Vladimir I. — professor of Department «Chemistry», Tambov State Technical University; e-mail: vits21@mail.ru