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Abstract 
The purpose of the research is to develop and study biocatalysts based on complexes of cysteine proteases with fullerenes 
and carbon nanotubes.
During the formation of ficin complexes with fullerenes and carbon nanotubes, the activity of hybrid preparations was 70 
and 45%, respectively. During the formation of papain complexes with fullerenes and carbon nanotubes, the proteolytic 
ability of the enzyme remained at the same level for the samples with fullerene and decreased by 27% for the preparations 
with carbon nanotubes. The formation of bromelain complexes with fullerenes and carbon nanotubes contributed to a 
decrease in the proteolytic activity of the biocatalyst by 18 and 48% as compared to the free enzyme. While determining 
the stability of complexes of nanomaterials and cysteine proteases during a 7-day incubation in 0.05 M tris-HCl buffer 
(pH 7.5) at 37 °C, we noticed a decrease in the proteolytic activity of the samples.
Complexation with carbon nanoparticles and fullerenes increased the stability of ficin and bromelain, while the stability 
of papain in the complexes remained unchanged.
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1. Introduction
Carbon materials are of great interest to 

various areas of science. Currently, there is a 
growing amount of research aimed at expending 
the application of carbon nanomaterials, including 
fullerenes and nanotubes. These nanostructures 
are to some extent considered as possible 
synthons for biologically active substances [1].

Fullerenes are a new allotropic modification 
of carbon. The fullerene molecule is a spheroidal 
hollow framework molecule of an even number 
of covalently bonded carbon atoms located at the 
vertices of hexagons or pentagons [2]. Inside the 
molecule, there is a cavity into which atoms and 
molecules of other substances can be introduced 
[3]. It has been established that fullerenes have 
a stabilising effect on enzymes, which protects 
them from thermal inactivation and oxidation 
[4]. In biological systems, fullerenes can have 
both an antioxidant effect (they add reactive 
oxygen species) and oxidising effect due to their 
photosensitising properties. Fullerene molecules 
are lipophilic and exhibit a membranotropic 
effect. They interact with various biological 
structures and can alter their functions, which 
increases the lipophilicity of the active molecule. 
Fullerenes can enable the targeted delivery of 
some therapeutic agents [5], they can be used 
in X-ray imaging as inhibitors of the process of 
human immunodeficiency virus multiplication 
and chemotherapeutic agents. A distinctive 
feature of fullerenes is their ability to combine 
several functions, which allows using them in 
precision medicine. Precision medicine opens a 
new path to personalised nanomedicine, where 
the course of the treatment can be controlled and 
thus adapted for each individual patient [6-8].

Carbon nanotubes are extended cylindrical 
hollow structures with a diameter of one to 
several tens of nanometres, a length of tens of 
microns or, in some cases, of even a centimetre , 
which are formed by one or more graphene sheets 
rolled into a seamless tube. Their advantages 
include a large specific surface area, high 
stability, strength, thermal conductivity, and 
unusual electronic and emission properties [5]. 
The specific surface area of carbon nanotubes 
is from 150 to 1,500 m2·g–1, which is many times 
higher than that of fullerenes [9, 10]. Carbon 
nanotubes have the potential to be used as safe 

and effective alternatives to existing drug delivery 
methods: they can pass through the membranes 
together with treatment medications, vaccines, 
and nucleic acids and penetrate deep into the 
cell to reach substrate targets; they serve as ideal 
non-toxic carriers, which in some cases increase 
the solubility of the preparation and enhance its 
efficiency and safety [11]. Carbon nanotubes were 
used to develop estrogen and progesterone test 
strips, DNA and protein microarrays, and NO2 and 
cardiac troponin sensors. Similar sensors have 
been used to detect gases and toxins [12-14].

A high specificity of enzyme catalysis provides 
for an impressive target product yield and an 
almost waste-free production. Proteolytic plant 
enzymes are often used in medicine. The most 
popular among them are ficin (EC 3.4.22.3), 
bromelain (EC 3.4.22.32), and papain (EC 
3.4.22.2) [15,16].

Ficin (EC 3.4.22.3) is made from the Ficus 
plants. It is a cysteine proteolytic enzyme. The 
molecular weights of the enzyme is 25-26 kDa. 
Ficin has a wide range of pH values (6.5-9.5) in 
which it exhibits high activity [17]. The isoelectric 
point of the enzyme is 9.0. The ficin molecule 
consists of a single polypeptide chain with an 
N-terminal leucine residue [18-20]. Ficin exhibits 
antimicrobial activity against gram-positive and 
gram-negative bacteria. In addition, it is also 
known to have anti-inflammatory, anthelminthic, 
antithrombotic, fibrinolytic, and anti-cancer 
properties and an immunomodulatory effect 
[21, 22].

Papain (EC 3.4.22.2) is extracted from 
papaya (Carica papaya). Its molecular weight 
is 23 kDa. The enzyme consists of 212 amino 
acid residues with isoleucine at the N-terminus 
and asparagine at the C-terminus. Papain has a 
high activity in different media: at pH 5.0-7.5, it 
hydrolyses proteins, peptides, and amides. The 
most favourable temperature for the enzyme 
functioning is in the range of 50–60  °C. Its 
isoelectric point is 8.75 [23–25]. Papain can 
break down proteins with a greater speed and 
efficiency than many animal and bacterial 
enzymes, it can contribute to a faster healing 
of wounds, bedsores, and trophic ulcers, it has 
anti-inflammatory properties, and allows other 
drugs to penetrate the skin without violating its 
integrity [26–29].
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Bromelain (EC 3.4.22.32) is a proteolytic 
plant enzyme which is made from pineapples. 
The molecular weight of bromelain is 33 kDa 
and the isoelectric point is 9.55. The most 
favourable temperature for the enzyme is 
62 °C, and the pH is 7.0 [30, 31]. Bromelain 
is used to improve digestion, to mitigate the 
symptoms of inflammatory processes, to reduce 
edema, and to increase the rate of tissue 
regeneration. It is characterised by anti-cancer 
properties, it can prevent thrombus formation, 
accelerates tissue regeneration processes during 
depolymerisation of intercellular structures, 
changes the permeability of blood vessels, and 
has an immunomodulatory effect [32–35].

However, there are several reasons that 
prevent the large-scale use of the enzymes: the 
instability of the preparations under various 
conditions, high cost, and impossibility of their 
repeated use. These problems can be largely 
overcome by using associated enzymes, which are 
more stable and have a sustained action [36, 37]. 

Therefore, the aim of this research was to 
develop biocatalysts based on complexes of 
cysteine proteases with carbon nanotubes and 
fullerenes and to study their catalytic activity.

2. Experimental
Ficin, papain, and bromelain were in the focus 

of the study and azocasein (Sigma, USA) was used 
as a substrate for hydrolysis. For complexation, 
the following certified carbon nanomaterials were 
used: Nanocyl-7000 nanotubes (NANOCYL S.A.) 
with a length of 0.7–3.0 μm and a diameter of 
5–35 nm; C60 NeoTechProduct fullerenes with a 
purity of 99.5%.

The enzyme complex with carbon nanotubes 
and fullerenes was prepared as follows: an 
enzyme solution (2 mg/ml in 50 mM of glycine 
buffer, pH 10.0 and 9.0 for ficin and papain and in 
50 mM of tris-glycine buffer, pH 9.0 for bromelain) 
was mixed in equal volumes with a solution of 
carbon nanotubes and fullerenes and kept at room 

temperature for 2 h. The protease activity of the 
obtained compounds was measured as described 
in [38].

To determine the sizes and surface charges of 
the nanoparticles, we used a Nano Zetasizer ZS 
(Malvern Instruments, USA) equipped with a 4 
mW He/Ne laser with l = 632.8 nm, the scattering 
angle was 173°.

3. Results and discussion
In the first series of experiments, we 

determined the size and zeta potential of 
fullerenes and carbon nanotubes. The parameters 
of the nanoparticles are presented in Table 1. The 
average size of fullerenes was 113 nm and the 
average size of carbon nanotubes was 153 nm. The 
median zeta potential was –12 mV for fullerenes 
and –20 mV for carbon nanotubes.

During the formation of ficin complexes with 
fullerenes and carbon nanotubes, the activity of 
the associates was 70 and 45% of the values for the 
native enzyme, respectively. During the formation 
of papain complexes with fullerenes and carbon 
nanotubes, the proteolytic ability of the enzyme 
remained at the same level for the fullerene and 
decreased by 27% for the carbon nanotubes. The 
formation of bromelain complexes with fullerenes 
and carbon nanotubes contributed to an 18 and 
48% decrease in proteolytic activity as compared 
to the free enzyme (Fig. 1).

We conducted experiments aimed to determine 
the residual activity of cysteine proteases at 37 °C 
and pH 7.5 in 0.05 M HCl buffer for free enzymes 
and their complexes with fullerenes and carbon 
nanotubes. All samples showed a decrease in their 
activity within 7 days.

A solution of native ficin after a 7 day 
incubation retained 8% of its original proteolytic 
activity, its complexes with fullerenes and carbon 
nanotubes showed 46 and 43% of their ability to 
hydrolyse azocasein, respectively. Native papain 
after its incubation for 7 days retained 15% of 
its activity, and papain samples with fullerenes 

Table. 1. Parameters of nanoparticles

Nanoparticles Average size, nm Size range, nm Median  
zeta-potential, mV

Zeta-potential 
range, mV

Fullerenes 113.8 91.2-141.8 –12.3 from –25.8 to 13.9

Carbon nanotubes 153.4 122.4-190.1 –20.1 from –35.7 to –5.99
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and carbon nanotubes showed 27 and 22%. The 
bromelain solution retained 13% of its proteolytic 
activity after 7 days of incubation, while its 
complexes with fullerenes and carbon nanotubes 
retained 26 and 29% (Fig. 2).

4. Conclusions
Therefore, as a result of research we obtained 

complexes of cysteine proteases with fullerenes 
and carbon nanotubes. Papain complexes with 
fullerenes showed higher values of proteolytic 
activity in relation to azocasein than the other 
studied biocatalysts.

While determining the stability of the 
complexes of nanoparticles and cysteine proteases, 

we noticed a decrease in the proteolytic activity of 
the samples within seven days. Both complexation 
with fullerenes and carbon nanotubes increased 
the stability of ficin and bromelain, while the 
stability of papain in the complexes remained at 
the level of the free enzyme.
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Fig. 1. Catalytic activity of ficin, papain, and bromelain, units/ml (A) and its change, % (B): soluble ficin (1); 
ficin complex with fullerene (2); ficin complex with carbon nanotubes (3); soluble papain (4); papain complex 
with fullerene (5); papain complex with carbon nanotubes (6); soluble bromelain (7); bromelain complex with 
fullerene (8); bromelain complex with carbon nanotubes (9). The activity of free enzymes under optimum 
hydrolysis conditions was taken as 100%
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