

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 539.2 https://doi.org/10.17308/kcmf.2023.25/11260

Исследование локальной атомной структуры окружения ионов цинка различной концентрации при их взаимодействии с ленгмюровским монослоем арахиновой кислоты

В. Ю. Лысенко¹, М. А. Кременная¹, С. Н. Якунин², А. В. Рогачев², Г. Э. Яловега¹⊠

¹ФГАОУ ВО «Южный федеральный университет» ул. Большая Садовая, 105/42, Ростов-на-Дону 344006, Российская Федерация

²ФГБУ НИЦ «Курчатовский институт», пл. Академика Курчатова, 1, Москва 123182, Российская Федерация

Аннотация

Жизненно важные клеточные процессы зависят от контролируемого транспорта ионов металлов через биологические мембраны. Биологическая мембрана является сложной системой, состоящей из липидов и белков, поэтому для ее моделирования используют упрощенные системы, в частности – мономолекулярные слои.

В представленной работе впервые было проведено исследование взаимодействия ионов цинка из водной субфазы с ленгмюровским монослоем арахиновой кислоты методом рентгеновской спектроскопии поглощения в геометрии полного внешнего отражения. Рассмотрено влияние концентрации раствора ZnCl₂ водной субфазы на изменение локального окружения ионов цинка при взаимодействии с липидным монослоем сразу после его формирования. На основе теоретического анализа экспериментальных спектров XANES показано, что одним из способов взаимодействия молекул арахиновой кислоты с ионами цинка, сразу после формирования монослоя, является внутримолекулярное взаимодействие с образованием сподиевых (донорно-акцепторных) связей между катионом цинка и группой ОН карбоксильной группы арахиновой кислоты.

Ключевые слова: арахиновая кислота, рентгеновская спектроскопия поглощения, полное внешнее отражение, липидный слой, Ленгмюровская ванна, субфаза, тонкие пленки

Источник финансирования: Исследование выполнено при финансовой поддержке гранта Президента Российской Федерации (грант № МК-2767.2021).

Для цитирования: Лысенко В. Ю., Кременная М. А., Якунин С. Н., Рогачев А. В., Яловега Г. Э. Исследование локальной атомной структуры окружения ионов цинка различной концентрации при их взаимодействии с ленгмюровским монослоем арахиновой кислоты. *Конденсированные среды и межфазные границы*. 2023;25(3): 367– 372. https://doi. org/10.17308/kcmf.2023.25/11260

For citation: Lysenko V. Yu., Kremennaya M. A., Yakunin S. N., Rogachev A. V., Yalovega G. E. A study of the local atomic structure the environment of zinc ions of different concentrations during their interaction with the arachidic acid Langmuir monolayer. *Condensed Matter and Interphases.* 2023;25(3): 367–372. https://doi.org/10.17308/kcmf.2023.25/11260

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

[🖂] Яловега Галина Эдуардовна, e-mail: yalovega@sfedu.ru

[©] Лысенко В. Ю., Кременная М. А., Якунин С. Н., Рогачев А. В., Яловега Г. Э., 2023

В. Ю. Лысенко и др.

Исследование локальной атомной структуры окружения ионов цинка...

1. Введение

Одной из важнейших проблем биологии и медицины остается вопрос строения и функционирования биологических мембран. Биологические мембраны – молекулярные «оболочки», отделяющие содержимое клеток от внешней среды. Они обеспечивают барьерную, транспортную, рецепторную, энергетическую и другие функции клеток. Регулируют взаимодействие клетки с внешней средой, а также являются средой протекания множества биохимических процессов [1]. Такие разнообразные функции невозможны без сложной структуры, которая обеспечивается многообразием основных компонентов мембраны и их взаимодействиями. Биологические мембраны состоят из двух основных компонентов: липидов и белков. Структурным остовом мембраны является липидный бислой, в который встроены различные белки [2].

Чтобы лучше понять взаимодействие между липидами и клеточной средой на молекулярном уровне, используют упрощенные искусственные модели биологических мембран. Различают две группы моделей биологических мембран: везикулярные и планарные. Планарная модель предполагает использование липидных монослоев в качестве модели биологической мембраны. Несмотря на то, что биомембраны состоят из двойного слоя, метод молекулярного монослоя позволяет смоделировать некоторые процессы, идущие в липидных бислоях, в липидном монослое на поверхности воды [3].

Модель липидного монослоя также пригодна для изучения мембранного связывания путем введения исследуемого вещества в водную субфазу под монослой. В частности, жизненно важные клеточные процессы зависят от контролируемого транспорта ионов металлов через мембрану. В этих случаях ленгмюровские монослои на границе воздух-вода являются лучшей моделью для изучения взаимодействия липидов с ионами металлов.

Одними из подходящих кандидатов на роль модели клеточной мембраны являются слои арахиновой кислоты. Арахиновая кислота представляет собой насыщенную длинноцепочечную жирную кислоту с двадцатью углеродными цепями, содержащую алифатический хвост. Цинк является эссенциально важным микроэлементом почти для всех существующих живых форм, а при высоких концентрациях может выступать в роли токсиканта [4]. Его высокая биоаккумуляция в организмах и растениях обусловлена, в том числе, хорошей растворимостью хлоридов цинка в воде [5]. В нашей работе мы рассматривали взаимодействие арахиновой кислоты с ионами цинка из водного раствора ZnCl₂, как модель взаимодействия ионов цинка из физиологической жидкости с липидным слоем биомембраны.

Наличие неорганических ионов в субфазе изменяет упорядочение молекул монослоя арахиновой кислоты на границе воздух-вода. Неорганические ионы разных видов по-разному влияют на структурную организацию монослоя и поверхностно-объемное разделение стеариновых и кислотных слоев [6].

В настоящее время разработан мощный арсенал физико-химических методов изучения биохимических процессов в клетках. Однако изучение влияния микроэлементов на течение разнообразных клеточных процессов остается достаточно сложной задачей в связи с их присутствием в организме в следовых количествах. В отличие от других методов рентгеновская абсорбционная спектроскопия в ближней к краю поглощения области (XANES – X-ray Absorption Near Edge Structure) может применяться практически к любому виду атомов и любой концентрации исследуемого элемента. Рентгеновская абсорбционная спектроскопия чувствительна к локальному химическому окружению конкретного элемента, к характеру химической связи, количеству и типу лигандов, расстояниям металл-лиганд и степени окисления металла [7, 8].

Измерения XANES в флуоресцентном режиме в условиях полного внешнего отражения (ПВО) на поверхности жидкой субфазы - развивающийся метод, открывающий новые возможности для *in situ* мониторинга процессов структурообразования в двумерных монослоях и изучения объектов с экстремально низкими концентрациями поглощающего атома, такими как монослои металлопротеинов и липидов [9, 10].

Данная работа посвящена исследованию взаимодействия ионов цинка из водной субфазы с ленгмюровским слоем арахиновой кислоты методом рентгеновской спектроскопии поглощения XANES. В зависимости от концентраций раствора ZnCl₂ анализировались изменения в локальном окружение ионов цинка. На основе теоретического анализа экспериментальных спектров рассматривался один из способов взаимодействия монослоя с ионами цинка.

2. Экспериментальные и теоретические методы

Подготовка образцов. Арахиновая кислота приобретена у Sigma-Aldrich Со. Водный рас-

В. Ю. Лысенко и др.

Исследование локальной атомной структуры окружения ионов цинка...

твор ZnCl₂ использовался в качестве субфазы в ленгмюровской ванне. Измерения проводились для трех концентраций ZnCl₂ в растворе: $6 \cdot 10^{-4}$, $6 \cdot 10^{-5}$, $3 \cdot 10^{-6}$ моль/л. Раствор арахиновой кислоты наносили на поверхность субфазы. Слои сжимали до поверхностного давления $\pi = 20$ мH/м, давление поддерживали постоянным во время рентгеновских измерений.

Измерения спектров рентгеновского поглощения (XANES) на монослое арахиновой кислоты на межфазной границе воздух/жидкость были выполнены в Курчатовском центре синхротронного излучения на линии поворотного магнита LANGMUIR. Спектры XANES для К-краев цинка были зарегистрированы во флуоресцентном режиме в условиях полного внешнего отражения с использованием монохроматора Si(111) со спектральной шириной ~2 эВ. Рентгеновский пучок наклонялся к поверхности жидкости с помощью двух плоских зеркал. Измерения спектров XANES проводились при фиксированном угле падения 0.8 критического угла θ_c. Глубина проникновения рентгеновских лучей, определяющая чувствительность измерений, составляла примерно 85 Å.

Теоретический анализ спектров рентгеновского поглощения для К-краев цинка проводился методом конечных разностей в полном потенциале в программе FDMNES [11]. Размер кластеров, включаемых в расчет, подбирался таким образом, чтобы в него входили все атомы исследуемой модели. Для полученных спектров проводилась процедура лоренцевской свертки для учета эффектов уширения.

3. Результаты и обсуждение

Арахиновая кислота ($C_{20}H_{40}O_2$) включает в свой состав гидрофильную карбоксильную группу и гидрофобные гидрокарбоновые цепочки. Такая структура арахиновой кислоты определяет расположение этих молекул в составе монослоя на поверхности водной субфазы раствора ZnCl₂ в ленгмюровской ванне. Полярные карбоксильные группы погружены в жидкую фазу, а неполярные гидрокарбоновые цепочки обращены в воздушную среду (рис. 1).

Поверхностное давление липидного монослоя является важным параметром, используемым при анализе динамических и структурных свойств монослоев [12]. Для исследования связывания липидов интересующее биоактивное вещество вводят в водную субфазу под монослоем липидов, и его проникновение в липидный слой можно контролировать, регистрируя изменения поверхностного давления или изменения площади монослоя при определенных значениях давления [13]. В данном эксперименте изменения площади монослоя использовались для контроля за динамикой происходящих процессов.

Измерения спектров XANES за K-краем цинка в системе – монослой арахиновой кислоты на поверхности раствора ZnCl_2 (обозначено на рисунке как AK+ZnCl₂) – начинались практически сразу (примерно через 7 минут) после достижения поверхностного давления 20 мH/м. Измерения проводились для 3-х концентраций ZnCl₂ в растворе: $6 \cdot 10^{-4}$, $6 \cdot 10^{-5}$, $3 \cdot 10^{-6}$ моль/л. Для всех значений концентраций давление в монослое во время проведения измерений удавалось поддерживать постоянным.

Общей тенденцией изменения спектров для системы (AK+ZnCl₂) при увеличении концентрации ZnCl₂ в растворе является сдвиг края поглощения на ~1.1 эВ, уменьшение интенсивностей пика А и С при одновременном увеличении энергетических расстояний между ними, а также увеличение интенсивности пика В (рис. 2, направление изменений показано стрелками). Наблюдаемые различия в спектрах отражают изменения в локальном окружении ионов цинка в присутствии арахиновой кислоты в зависимости от концентрации раствора ZnCl₂. Как видно из рис. 2, спектры для системы AK+ZnCl₂ совпадают по форме (одинаковый набор максимумов и перераспределение интенсивностей между пиками) со спектром раствора ZnCl₂ (в отсутствие арахиновой кислоты) [10], но различаются по интенсивности и энергетическому расстоянию между пиками. Это говорит о различиях

Рис. 1. Схематичное изображение расположения молекул арахиновой кислоты на поверхности раствора ZnCl₂ (голубая плоскость)

В. Ю. Лысенко и др.

Исследование локальной атомной структуры окружения ионов цинка...

Энергия (эВ)

Рис. 2. Экспериментальные спектры XANES за К-краем цинка: (а) раствора ZnCl₂ концентрации 10⁻³ моль/л в сопоставлении со спектром из работы [15]; (б) монослоя арахиновой кислоты (AK) на поверхности растворов ZnCl₂ с концентрациями 6·10⁻⁴, 6·10⁻⁵, 3·10⁻⁶ моль/л

в локальном окружении ионов цинка в чистом растворе и в присутствии арахиновой кислоты. Спектр раствора с концентрацией 10^{-3} моль/л практически полностью совпадает со спектром из работы [14] (рис. 2, пунктир), где Zn^{2+} находится в октаэдрическом окружении. Следует отметить, что спектры раствора получены тем же методом регистрации, что и в системе AK+ZnCl₂, но из объема субфазы, т. е. при угле падения рентгеновского пучка больше критического угла θ_c .

Чтобы проследить за направлением изменений в локальной структуре Zn^{2+} при контакте ионов цинка с монослоем, было использовано теоретическое моделирование экспериментальных спектров XANES. Хлориды цинка в водном растворе могут образовывать комплексы разных видов с разным количеством связанных молекул воды в различном геометрическом окружении [15]. При низких концентрациях < 1 моль/л одну из доминирующих ролей в растворе играют комплексы $Zn(H_2O)_6^{2+}$ [16]. Для этого комплекса (рис. За) были рассчитаны теоретические

спектры XANES за К-краем цинка. Межатомные расстояния Zn-O в комплексе Zn(H₂O)²⁺ по данным различных литературных источников варьируются в диапазоне от 2.05 до 2.14 Å. На рис. 3 показана чувствительность спектров XANES к изменению ближайшей симметрии окружения Zn²⁺. Отклонение от октаэдрической геометрии окружения цинка лигандами Н₂О в сторону искаженного октаэдра приводит к более явному проявлению пика В на спектре и изменению формы основного пика. Искажения в октаэдре состояли в удлинении аксиальных расстояний до 2.7 Å по сравнению с расстояниями, типичными для водного комплекса Zn(H₂O)₆²⁺. Далее были проведены расчеты для структурной модели, в которой гидроксильная группа ОН карбоксильной группы арахиновой кислоты замещает молекулу воды в вершине октаэдра (рис. 3 б). Межатомные расстояния Zn-OH в этом случае также были равны 2.7 А. Данная модель использовалась для рассмотрения возможности образования внутримолекулярных Zn…O сподиевых (донорно-акцепторных) связей между катионом цинка и группой ОН арахиновой кислоты, когда межатомные расстояния превышают сумму ковалентных радиусов. Подобный тип взаимодействия является альтернативой водородной связи и наблюдается в комплексах Zn²⁺ [17]. Для данной модели наблюдается хорошее согласие с экспериментом. Следует отметить, что при более длительном взаимодействии арахиновой кислоты с раствором ZnCl, наблюдается усиление тенденции изменения спектров XANES в системе AK+ZnCl₂, что может свидетельствовать о наличии других видов связывания в этой системе [18].

4. Заключение

В работе впервые получены спектры рентгеновского поглощения для К-края цинка в режиме полного внешнего отражения для системы монослой арахиновой кислоты на поверхности раствора ZnCl₂ различной концентрации (6·10⁻⁴, 6·10⁻⁵, 3·10⁻⁶ моль/л). Анализ спектров XANES свидетельствует о том, что локальное окружение ионов цинка изменяется сразу после формирования ленгмюровского монослоя и зависит даже от незначительных изменений концентрации. На основе анализа теоретических спектров XANES можно предположить, что одним из способов взаимодействия арахиновой кислоты с водными комплексами Zn²⁺ является внутримолекулярное взаимодействие с образованием сподиевых (донорно-акцепторных) связей

Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2023;25(3): 367–372

В. Ю. Лысенко и др.

Исследование локальной атомной структуры окружения ионов цинка...

Рис. 3. Сравнение теоретических спектров XANES (сплошная линия) за К-краем цинка для модели $Zn(H_2O)_6^{2+}(a)$ и AK+ $ZnCl_2$ (б) с экспериментальными спектрами (символы) раствора $ZnCl_2$ и AK+ $ZnCl_2$ (6·10⁻⁴ моль/л)

между катионом цинка и группой ОН карбоксильной группы арахиновой кислоты. При этом симметрия окружения цинка изменяется от октаэдра к искаженному октаэдру с увеличением аксиального расстояния Zn-OH. Различия в степени изменения локальной структуры цинка в системе «монослой арахиновой кислоты – раствор ZnCl₂» при различных концентрациях могут быть связаны с количеством провзаимодействовавших молекул арахиновой кислоты, либо с другим типом взаимодействия.

Заявленный вклад авторов

Лысенко В. Ю. – теоретическое моделирование спектров рентгеновского поглощения ХАNES, литературный поиск. Кременная М. А. – построение и обоснование структурных моделей. Якунин С. Н. – Разработка методики и измерения спектров рентгеновского поглощения ХАNES во флуоресцентном режиме в условиях полного внешнего отражения с использованием синхротронного излучения. Рогачев А. В. - Измерения спектров рентгеновского поглощения ХАNES во флуоресцентном режиме в условиях полного внешнего отражения с использованием синхротронного излучения. Яловега Г. Э. – анализ литературных источников, анализ и интерпретация экспериментальных и теоретических спектров XANES, обоснование результатов и выводов.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Watson H. Biological membranes. *Essays in Biochemistry*. 2015;59: 43–69. https://doi.org/10.1042/bse0590043

2. Мухомедзянова С. В., Пивоваров Ю. И., Богданова О. В., Дмитриева Л. А., Шулунов А. А. Липиды биологических мембран в норме и патологии (обзор литературы). *Acta Biomedica Scientifica*. 2017;2(5(1)): 43–49. https://doi.org/10.12737/article 59e8bcd3d6fcb1.49315019

3. Wiśniewska-Becker A., Gruszecki W. I. 2 -Biomembrane models. In: *Drug-biomembrane interaction studies*. Woodhead Publishing. 2013: 47–59. https://doi.org/10.1533/9781908818348.47

4. Sandstead H. H. *Handbook on the Toxicology of Metals*, 4th ed. Elsevier. 2014: 1369–1386.

5. Pipan-Tkalec Z., Drobne D., Jemec A., Romih T., Zidar P., Bele M. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl₂ solution. *Toxicology*. 2010;269(2-3): 198–203. https://doi.org/10.1016/j.tox.2009.08.004 Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2023;25(3): 367–372

В. Ю. Лысенко и др.

Исследование локальной атомной структуры окружения ионов цинка...

6. Li S., Du L., Wei Z., Wang W. Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions. *Science of the Total Environment*. 2017;580: 1155–1161. https://doi.org/10.1016/j.scito-tenv.2016.12.072

7. Bokhoven J. A., Lamberti C. (eds.). *X-Ray absorption and X-Ray emission spectroscopy: Theory and Applications*. John Wiley & Sons. 2016. https://doi. org/10.1002/9781118844243

8. Шматко В. А., Мясоедова Т. Н., Михайлова Т. А., Яловега Г. Э. Особенности электронной структуры и химических связей в композитах на основе полианилина, полученных бескислотным методом. *Конденсированные среды и межфазные границы*. 2019;4(4): 567-578. https://doi.org/10.17308/ kcmf.2019.21/2367

9. Konovalov O. V., Novikova N. N., Kovalchuk M. V., ... Yakunin S. N. XANES measurements for studies of adsorbed protein layers at liquid interfaces. *Materials*. 2020;13(20): 4635. https://doi.org/10.3390/ ma13204635

10. Новикова Н. Н., Якунин С. Н., Ковальчук М. В.,... Топунов А. Ф. Возможности рентгеновской абсорбционной спектроскопии в геометрии полного внешнего отражения для исследования белковых пленок на жидкости. *Кристаллография*. 2019;64(6): 931–937. https://doi.org/10.1134/ s0023476119060134

11. Joly Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. *Physical Review*. 2001;63: 125120. https://doi. org/10.1103/physrevb.63.125120

12. Sujak A., Gagos M., Serra M. D., Gruszecki W. I. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin. *Molecular Membrane Biology*. 2007;24(5-6): 431–41. https://doi. org/10.1080/09687860701243899

13. Hereć M., Gagoś M., Kulma M., Kwiatkowska K., Sobota A., Gruszecki W. I. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane. *Biochim Biophys Acta*. 2008;1778(4): 872-9. https://doi. org/10.1016/j.bbamem.2007.12.004

14. Alloteau F., Valbi V., Majérus O., Biron I., Lehuede P., Caurant D., Seyeux A. Study of a surface treatment based on zinc salts to protect glasses from atmospheric alteration: Mechanisms and application to ancient glass objects in museum. In: *Glass Atmospheric Alteration: Cultural Heritage, Industrial and Nuclear Glasses.* Paris (France): Hermann edition, 2019. pp. 192–202.

15. Silber H. B., Simon D., Gaizer F. Octahedral-tetrahedral geometry changes for zinc(II) in the presence of chloride ions. *Inorganic Chemistry*. 1984;23(18): 2844–2848. https://doi.org/10.1021/ic00186a026

16. Parchment O. G., Vincent M. A., Hillier I. H. Speciation in aqueous zinc chloride. An *ab initio* hybrid microsolvation/continuum approach. *The Journal of Physical Chemistry A*. 1996;100(23): 9689–9693. https://doi.org/10.1021/jp960123z

17. Karmakar M., Frontera A., Chattopadhyay S., Mooibroek T., Bauzá A. Intramolecular spodium bonds in Zn(II) complexes: insights from theory and experiment. *International Journal of Molecular Sciences*. 2020;21(19): 7091. https://doi.org/10.3390/ ijms21197091

18. Kremennaya M. A., Lysenko V. Y., Novikova N. N., Yakunin S. N., Rogachev A. V., Yalovega G. E. X-ray spectral diagnostics of the local environment of zinc in the arachidic acid layers. *Journal of Physics: Conference Series*. 2021;2103: 012171. https://doi. org/10.1088/1742-6596/2103/1/012171

Информация об авторах

Лысенко Виктория Юрьевна, магистрант 2-го года обучения физического факультета Южного федерального университета (Ростов-на-Дону, Российская Федерация).

https://orcid.org/0000-0002-0538-7772 viktoriya.250699@mail.ru

Кременная Мария Андреевна, к. ф.-м. н., старший преподаватель физического факультета Южного федерального университета (Ростов-на-Дону, Российская Федерация).

https://orcid.org/0000-0002-0894-5733 kremennayamariya@gmail.com

Якунин Сергей Николаевич, к.ф.-м.н., первый заместитель руководителя Курчатовского комплекса синхротронно-нейтронных исследований Национального исследовательского центра «Курчатовский институт» (Москва, Российская Федерация).

s.n.yakunin@gmail.com

Рогачев Александр Владимирович, н. с. Национального исследовательского центра «Курчатовский институт» (Москва, Российская Федерация).

https://orcid.org/0000-0001-6026-1534 a.v.rogachev@ya.ru

Яловега Галина Эдуардовна, д. ф.-м. н., заведующая кафедрой физики наносистем и спектроскопии физического факультета, Южный федеральный университет (Ростов-на-Дону, Российская Федерация).

https://orcid.org/0000-0002-0157-6955 yalovega@sfedu.ru

Поступила в редакцию 14.12.2022; одобрена после рецензирования 22.12.2022; принята к публикации 26.12.2022; опубликована онлайн 25.09.2023.