УДК 546.137:546.82

РАСЧЕТ КРИВЫХ ДИФФЕРЕНЦИАЛЬНОЙ ЕМКОСТИ ПРИ АДСОРБЦИИ НАСЫЩЕННЫХ СПИРТОВ ИЗ НЕЙТРАЛЬНЫХ РАСТВОРОВ НА ПОВЕРХНОСТИ НЕКОТОРЫХ ПЕРЕХОДНЫХ МЕТАЛЛОВ

© 2010 А.А. Попова, Л. Ж. Паланджянц

Майкопский государственный технологический университет, ул. Первомайская 191, 385000 Майкоп, Россия Поступила в редакцию: 04.10 2010 г.

Аннотация. Рассмотрена возможность привлечения изотермы Парсонса к описанию зависимости дифференциальной емкости переходных металлов IV, V групп Периодической системы от потенциала при анодной поляризации в перхлоратных спиртовых средах. Проведен анализ адсорбционных параметров модели в системе Me/ROH+0,1M LiClO₄ (Me=Ti, Zr, V, Nb; $R=-CH_3$; $-C_2H_5$; $-C_3H_7$; $-C_4H_9$) в сравнении с изотермой Фрумкина, дополненной моделью Алексеева-Попова — Колотыркина.

Ключевые слова: адсорбция, дифференциальная емкость, переходные металлы, спирты.

введение

Использование в электрохимической практике широко известного модельного подхода к строению двойного электрического слоя Грэма — Парсонса [1—3], отличающегося простотой изотермы и легкостью определения независимых переменных, необходимых для построения неравновесных кривых дифференциальной емкости, ограничено, в основном, ртутным электродом [4—6]. Для окисляющихся Fe, Ni, Ag, Au и их сплавов применительно к анодным процессам использованы изотермы Темкина, Конуэя — Гилеади в рамках модели квазиравновесной конкурирующей соадсорбции алифатического спирта и воды на энергетическинеоднородной поверхности [7, 8].

Наибольшее соответствие экспериментальным данным как в случае ртутного электрода в системе (0,1M NaF+x M H-C₄H₉OH), для которой рассмотрены закономерности специфической адсорбции ионов, в том числе и сопровождающейся частичным переносом заряда [9—11], так и в случае переходных металлов, анодно поляризуемых в системе (0,1M LiClO₄+ROH, R=-CH₃; -C₂H₅; -C₃H₇; -C₄H₉) [12, 13], показала изотерма Фрумкина, дополненная моделью Алексеева — Попова — Колотыркина (АПК).

Целью настоящей работы было проведение анализа возможности использования более простой системы уравнений Грэма — Парсонса для расчета кривых дифференциальной емкости *d*-металлов в спиртовых перхлоратных средах и сравнение полученных результатов с рассмотренной ранее моделью на основе изотермы Фрумкина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследованию подвергали электроды из Ті (ВТ1-0), Zr (99,99%), V (99,99%), Nb (НБ-I), Та (Т4). Растворы готовили непосредственно перед опытом из предварительно высушенного при 120 °С перхлората лития «о.с.ч.» и алифатических спиртов: метанола, этанола, н-пропанола, н-бутанола (Merk), абсолютированных по методикам [14]. Подготовку электродов и измерения проводили в условиях деаэрации (Аг в течение 0,5—1 ч перед опытом) и вакуумирования.

Отсутствие воды в рабочем растворе контролировали с помощью газового хроматографа «Кристаллюкс — 4000» с детектором ДТП-1: газноситель гелий (скорость 30 мл/мин), ток моста ДТП 60 мА, насадочная колонка 1,8 м х 4 мм с полимерным сорбентом, объем пробы 0,5 мл. Обработка данных осуществлялась с помощью программы «Net Chrom».

Для импедансных измерений применяли мост переменного тока Р 5083 и потенциостат ПИ-50=1.1. Измерения проводили при частоте 1 кГц в стандартной термостатируемой электрохимической ячейке с разделенными катодным и анодным пространствами. В качестве вспомогательного электрода использовали платинированный платиновый электрод ($S=20 \text{ см}^2$), электрод сравнения — насыщенный хлоридсеребрянный электрод с пересчетом всех потенциалов на ст.в.э. Электролитический мостик заполняли насыщенным раствором RbCl в исследуемом растворителе для устранения диффузионного скачка потенциала на границе неводный раствор электролита — хлоридсеребряный электрод.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для построения кривых дифференциальной емкости в системе ROH + 0,1M LiClO₄ / Me (R=-CH₃; -C₂H₅; -C₃H₇; -C₄H₉; Me=Ti, Zr, V, Nb) использовали два модельных подхода.

В соответствии с моделью Парсонса (модель 1) уравнение изотермы имеет вид:

$$\ln \beta(E) + \ln c_1 = \ln \left(\frac{\theta}{1-\theta}\right) - a(E) \frac{\theta(2+n\theta-\theta)}{(1-n\theta-\theta)^2}, \quad (1)$$

Зависимости $\beta(E)$ и a(E) описываются уравнениями:

$$\ln \beta(E) = \ln \beta_0 - n \frac{\Delta \sigma_0 + C_1 E(E_N - \frac{1}{2}E)}{RT\Gamma_m}, \quad (2)$$

$$a(E) = a_0 + n(n-1)\frac{\Delta\sigma_0 + C_1 E(E_N - \frac{1}{2}E)}{RT\Gamma_m}, \quad (3)$$

Выражение для дифференциальной емкости соответствует уравнению:

$$C = \frac{C_0(1-\theta) + nC_1\theta}{1+n\theta-\theta} + \frac{\frac{n^2(C_1(E-E_N)-q_0)^2}{RT\Gamma_m(1+n\theta-\theta)^4}}{\frac{1}{\theta(1-\theta)} - \frac{2a(E)}{(1-n\theta-\theta)^3}}, \quad (4)$$

где c — объемная концентрация органического вещества; θ — степень заполнения им поверхности; $\beta(E)$ — константа адсорбционного равновесия, a— безразмерный параметр межмолекулярного взаимодействия; n — безразмерный параметр, характеризующий переход от одной модели к другой; E — потенциал электрода; β_0 — значение β при $E_{q=0}$; a_0 — значение параметра a при $E_{q=0}$; C дифференциальная емкость; C_1 — значение равновесной дифференциальной емкости при $\theta=1$; C_0 — значение равновесной дифференциальной емкости при $\theta=0$; E_N — сдвиг потенциала нулевого заряда при переходе от $\theta=0$ к $\theta=1$; R — универсальная газовая постоянная, T — абсолютная температура; Γ_m — предельная поверхностная концентрация органического вещества при $\theta = 1$; $\Delta \sigma_0$ величина двумерного давления ($\Delta \sigma_0 = \int_0^E q_0 dE$); $q_0 = \int_0^E C_0 dE$ — заряд электрода в растворе фона при потенциале *E*.

Для вычисления параметра межмолекулярного взаимодействия задали параметры: $a_0 = 0$, n = 2, $C_0 = 0,2 \text{ мк} \Phi \cdot \text{м}^{-1}$, $C_1 = 0,04 \text{ мк} \Phi \cdot \text{м}^{-1}$, $RT\Gamma_m = 0,01$ Дж $\cdot \text{м}^{-2}$ и определили вид зависимости a(E):

$$a(E) = 16E^2 + 2,4E \tag{5}$$

Из уравнений (1) и (2), исключая $\ln \beta$ (при $\ln \beta_0 c_i = 3,1$), получаем для соотношения $\theta(E)$:

$$\ln\frac{\theta}{1-\theta} + \frac{(1+4\theta^2)(16E^2+2,4E)}{(1+\theta)^2} - 3, 1 = 0$$
 (6)

Уравнение (6) задает зависимость $\theta(E)$ в неявном виде. Для построения графика $\theta(E)$ воспользуемся приближением функции нормальной кривой $y=D \exp(-\lambda(x-x_0))^2$ по аналогии с подходом [12].

Для преодоления проблемы разрывов первого рода, возникающих в точках $E_1 = -0.8$ В и $E_n = +0.8$ В, соответствующих скачкообразному заполнению поверхности электрода адсорбируемым продуктом, представим нормальную кривую в виде:

$$\theta = 0.999 \exp(-0.5x^2).$$
 (7)

На основании полученных данных в соответствии с обсуждаемой моделью построили график зависимости $\theta(E)$ (рис. 1).

Модельная C, E-кривая в интервале E = -1,0...+1,0 В характеризуется наличием выраженного минимума в области $E_{a=0}$ и резким увеличением C

Рис. 1. Зависимость коэффициента заполнения поверхности от потенциала электрода в приближении нормальной кривой

при удалении от него, высоким сглаженным пиком десорбции, расширением области потенциалов адсорбции с /σ*/ спирта (рис. 2, пунктир).

Значения параметров изотерм Парсонса для титана, циркония, ванадия, ниобия представлены в табл. 1.

Наличие экстремальных точек на графике *C*, *E*-зависимости соответствует экспериментальным данным, полученным для Ti, Zr, V, Nb в нейтральных спиртовых растворах.

Совпадение расчетных и опытных кривых максимально при потенциалах $E \langle E_{q=0}$ в интервале E=0,00...+0,80 В. По достижении потенциалов области адсорбционно-десорбционных максиму-

мов наблюдается наибольшее отклонение теоретической кривой от экспериментальной для всех исследуемых металлов (рис. 2).

Второй модельный подход, основанный на изотерме Фрумкина, дополненный и развитый в модели Алексеева — Попова — Колотыркина [15,16], а также в работах Дамаскина Б. Б. с сотр. [17, 18] (модель 2), для расчета дифференциальной емкости предлагает использование следующих уравнений:

$$B(\phi)c = \frac{\theta}{1-\theta} \exp[-2a(\phi)\theta], \qquad (8)$$

$$\ln B = \ln B_0 - \frac{[S(\phi) + C_{\theta=1}\phi(\phi_N - \phi/2)]}{A + a_0 - a}, \quad (9)$$

Рис. 2. Кривые дифференциальной емкости для: a — титана; δ — циркония; e — ванадия; e — ниобия в 0,1 М перхлоратных растворах спиртов: 1,1' — метанола; 2,2' — этанола; 3,3' — пропанола; 4,4' — бутанола (1-4 — экспериментальная кривая; 1'-4' — расчетная кривая по модели 1

$$C = C_{\theta=0}(1-\theta) + C_{\theta=1}\theta - Aa''\theta(1-\theta) + \frac{[q_{\theta=0} - C_{\theta=1}(\phi - \phi_N) + Aa'(1-2\theta)]^2}{A} \times (10) \times \frac{\theta(1-\theta)}{1-2a\theta(1-\theta)},$$

Здесь *С* — объемная концентрация органического вещества; θ — степень заполнения поверхности формирующимся продуктом адсорбции; *B* — константа адсорбционного равновесия; *a* — параметр межмолекулярного взаимодействия; φ потенциал электрода, отсчитанный от точки нулевого заряда в растворе фона; *B*₀ — значение *B* при φ =0; *a*₀ — значение *a* при φ =0; *C* — дифференциальная емкость; *C*_{θ =1} — значение равновесной дифференциальной емкости при θ =1; *C*_{θ =0} — значение равновесной дифференциальной емкости при $\theta=0$; S(ϕ) — снижение пограничного натяжения в растворе фона от $\phi=0$ до ϕ ; ϕ_N — сдвиг потенциала нулевого заряда при переходе от $\theta=1$ к $\theta=0$; $A = RTT_m$; $a' = da/d\phi$; $a'' = d^2a/d\phi^2$; $q_{\theta=0}$. — заряд электрода в растворе фона при потенциале ϕ . В физический смысл θ вкладывали представление о степени заполнения поверхности адсорбционным комплексом [MeOHR]⁰ при анодной поляризации металла в спиртовом растворе. Под $\theta=1$ понимали формирование адсорбционного монослоя на поверхности электрода площадью 1 см².

Совпадение расчетных и экспериментальных C, E-кривых, отвечающих данной модели, рассмотрено в работе [12].

Уравнения модельных $\theta(E)$, $C(\theta, E)$, a(E)зависимостей для изученных металлов в нейтральных спиртовых растворах приведены в табл. 2. Зависимость a(E) представляет собой квадратич-

Таблица 1. Значения параметров адсорбционных изотерм Парсонса для Ti, Zr, V, Nb в 0,1М перхлоратны
растворах насыщенных спиртов при анодной поляризации

Ме- талл	ROH	$C_{ heta=0}$, мк $\Phi/{ m M}^2$	$C_{\theta=1}$, мк $\Phi/{ m M}^2$	Г _т ·10 ⁻¹⁶ , моль/л	А ·10 ⁻⁸ , Дж/см²	E _N ,B
	MetOH	20,70	8,97	2,55	621	-1,00
Ti	EtOH	24,19	10,66	1,01	246	-0,90
11	PrOH	24,19	10,66	1,01	246	-0.95
	ButOH	18,88	7,68	2,63	64	-0,70
	MetOH	7,32	2,88	3,45	84	0,38
7.	EtOH	19,52	7,68	1,05	256	0,32
	PrOH	19,52	7,68	1,05	256	0,32
	ButOH	25,65	10,08	2,67	651	0,56
	MetOH	85,25	34,68	5,22	1272	-0,98
V	EtOH	79,06	32,16	4,29	1045	-0,80
v	PrOH	61,36	24,96	2,98	728	-0,84
	ButOH	70,80	28,80	4,92	1200	-0,62
	MetOH	67,80	29,38	3,94	960	-1,0
Nh	EtOH	67,85	27,60	0,94	230	-0,62
	PrOH	68,44	27,84	0,95	232	-0,55
	ButOH	77,29	31,44	1,18	288	-0,43

Me	ROH	heta(E)	$C(\theta, E)$	$a\left(E ight)$
-	2	3	4	5
	MetOH	$0.90 \exp\left(-(E-0.30)^2\right)$	$\frac{20,70(1-\theta)+2\cdot 8,97\theta}{1+\theta} + \frac{4(8,97(E+1,0)-20,70E)^2}{621\cdot 10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,42E^2+0,11E)}{(1+\theta)^3}\right)$	$1,42E^2+0,11E$
	EtOH	$0.90 \exp(-(E-0.33)^2)$	$\frac{24,19(1-\theta)+2\cdot10,66\theta}{1+\theta} + \frac{4(10,66(E+0,90)-24,19E)^2}{246\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,34E^2+0,12E)}{(1+\theta)^3}\right)$	$1,34E^2+0,12E$
Ϊ	PrOH	$0,908 \exp{(-(E-0,23)^2)}$	$\frac{24,19(1-\theta)+2\cdot10,66\theta}{1+\theta} + \frac{4(10,66(E+0,95)-24,19E)^2}{246\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,34E^2+0,12E)}{(1+\theta)^3}\right)$	$1,36E^2+0,12E$
	ButOH	$0.90 \exp(-(E-0.24)^2)$	$\frac{18,88(1-\theta)+2\cdot7,68\theta}{1+\theta} + \frac{4(7,68(E+0,70)-18,88E)^2}{64\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,38E^2+0,11E)}{(1+\theta)^3}\right)$	$1,38E^2+0,11E$
	MetOH	$0.90 \exp\left(-(E-0.30)^2\right)$	$\frac{7,32(1-\theta)+2\cdot2,88\theta}{1+\theta} + \frac{4(2,88(E-0,38)-7,32E)^2}{84\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,56E^2+0,25E)}{(1+\theta)^3}\right)$	$1,56E^2+0,25E$
Ľ	EtOH	$0.90 \exp(-(E-0.33)^2)$	$\frac{19,52(1-\theta)+2\cdot7,68\theta}{1+\theta} + \frac{4(7,68(E-0,32)-19,52E)^2}{256\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,5E^2+0,25E)}{(1+\theta)^3}\right)$	$1,5E^2+0,25E$
77	PrOH	$0,908 \exp(-(E-0,23)^2)$	$\frac{19,52(1-\theta)+2\cdot7,68\theta}{1+\theta} + \frac{4(7,68(E-0,32)-19,52E)^2}{256\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,5E^2+0,25E)}{(1+\theta)^3}\right)$	$1,5E^2+0,25E$
	ButOH		$\frac{25,65(1-\theta)+2\cdot10,08\theta}{1+\theta} + \frac{4(10,08(E-0,56)-25,65E)^2}{651\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,58E^2+0,25E)}{(1+\theta)^3}\right)$	$1,58E^2+0,25E$

Таблица 2. Функции $\theta(E)$, $C(\theta, E)$, a(E) для систем Me, Ox/ROH+0,1M LiClO₄

КОНДЕНСИРОВАННЫЕ СРЕДЫ И МЕЖФАЗНЫЕ ГРАНИЦЫ, Том 12, № 4, 2010

А. А. ПОПОВА, Л. Ж. ПАЛАНДЖЯНЦ

	MetOH	0,918 exp (-(<i>E</i> -0,338) ²)	$\frac{85,25(1-\theta)+2\cdot34,68\theta}{1+\theta} + \frac{4(34,68E+0,98)-85,25E)^2}{1272\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,24E^2+0,12E)}{(1+\theta)^3}\right)$	$1,24E^2+0,12E$
>	EtOH	$0,935 \exp\left(-(E-0,25)^2\right)$	$\frac{79,06(1-\theta)+2\cdot32,16\theta}{1+\theta} + \frac{4(32,16(E+0,80)-79,06E)^2}{246\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,30E^2+0,12E)}{(1+\theta)^3}\right)$	$1,30E^2+0,12E$
	PrOH	$0.93 \exp(-(E-0,20)^2)$	$\frac{61,36(1-\theta)+2\cdot24,96\theta}{1+\theta} + \frac{4(24,96(E+0,84)-24,96E)^2}{728\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,24E^2+0,11E)}{(1+\theta)^3}\right)$	$1,24E^2+0,11E$
	ButOH	$0.94 \exp(-(x-0.04)^2)$	$\frac{70,80(1-\theta)+2\cdot28,80\theta}{1+\theta} + \frac{4(28,80(E+0,62)-70,80E)^2}{1200\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(0,01E^2+1,34E)}{(1+\theta)^3}\right)$	$0,01E^2 + 1,34E$
	MetOH	$0,9045 \exp\left(-(E-0,305)^2\right)$	$\frac{67,80(1-\theta)+2\cdot29,38\theta}{1+\theta} + \frac{4(29,38(E+1,0)-67,80E)^2}{960\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,46E^2+0,7E)}{(1+\theta)^3}\right)$	$1,46E^2+0,7E$
Ŋ	EtOH	$0,952 \exp\left(-(E-0,23)^2\right)$	$\frac{67,85(1-\theta)+2\cdot27,60\theta}{1+\theta} + \frac{4(27,60(E+0,62)-67,85E)^2}{230\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,38E^2+0,11E)}{(1+\theta)^3}\right)$	$1,38E^2+0,11E$
	PrOH	$0,948 \exp\left(-(E-0,21)^2\right)$	$\frac{68,44(1-\theta)+2\cdot27,84\theta}{1+\theta} + \frac{4(27,84(E+0,55)-68,44E)^2}{232\cdot10^{-8}(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(1,38E^2+0,11E)}{(1+\theta)^3}\right)$	$1,38E^2+0,11E$
	ButOH	$0,98 \exp(-(x-0,205)^2)$	$\frac{77,29(1-\theta)+2\cdot31,44\theta}{1+\theta} + \frac{4(31,44(E+0,43)-77,29E)^2}{288\cdot10^8(1+\theta)^4} \left(\frac{1}{\theta(1-\theta)} - \frac{2(0,80E^2+0,11E)}{(1+\theta)^3}\right)$	$0,80E^2+0,11E$

Продолжение таблицы 2

391

РАСЧЕТ КРИВЫХ ДИФФЕРЕНЦИАЛЬНОЙ ЕМКОСТИ ПРИ АДСОРБЦИИ НАСЫЩЕННЫХ...

Рис. 3. Кривые дифференциальной емкости для *d*-металлов IV, V групп Периодической системы в 0,1 M перхлоратных растворах насыщенных спиртов: 1 - 3 жспериментальная кривая; 2 - 3 расчетная кривая по модели 1; 3 - 3 расчетная кривая по модели 2 в системах: a - Ti / 0,1 M LiClO₄ + MetOH; 6 - Ti / 0,1 M LiClO₄ + ButOH; e - V/0,1 M LiClO₄ + EtOH; e - Nb / 0,1 M LiClO₄ + EtOH

ную функцию с положительным коэффициентом при квадрате потенциала. Вид зависимости a(E)определяет количество и форму пиков на кривых дифференциальной емкости. При сравнении графика дифференциальной емкости с экспериментальной C, E-кривой необходимо учитывать числовой интервал, на котором меняется параметр a, и, соответственно, меняются коэффициенты квадратичной функции. В этом смысле существует некоторая неоднозначность выбора параметров $C_{\theta=0}, C_{\theta=1}, A$, при которых модельная кривая дифференциальной емкости сохраняет свои экстремумы.

Так, например, для системы Ti, Ox/MetOH+0,1M LiClO₄ параметр a задается формулой 1,42 E^2 +0,11E,

хотя вид кривой сохраняется в интервале 0....1,46 для старшего коэффициента при Е и в интервале –6,4......0,15 для второго коэффициента. Свободный член квадратичной функции равен нулю для всех рассматриваемых случаев.

Сравнительный анализ соответствия экспериментальным C, E-кривым теоретических кривых, построенных по моделям 1 и 2, показывает, что максимальное совпадение теоретических и экспериментальных кривых наблюдается при потенциалах $E \langle E_{q=0}$. С приближением к экстремальным точкам C, E-зависимостей в области $E_{q=1}$ и десорбционных пиков модельные кривые отклоняются от экспериментальных значений. При этом отклонение значительнее для модели Парсонса (1) (рис. 3).

Подобное поведение кривых можно объяснить более полным учетом специфического взаимодействия молекул спирта с поверхностью металла в случае описания адсорбции органического вещества изотермой Фрумкина на основе модельного подхода Алексеева — Попова — Колотыркина.

Вместе с тем, использование модельного подхода на основе изотермы Парсонса возможно для описания кривых дифференциальной емкости в значительном интервале анодных потенциалов $E \langle E_{q=0}$.

выводы

1. Использование приближения Грэма — Парсонса для расчета кривых дифференциальной емкости переходных металлов IV, V групп Периодической системы в неводных перхлоратных растворах насыщенных спиртов целесообразно для предварительной модельной оценки механизмов анодного поведения металлов при потенциалах $E \langle E_{q=0}$, не достигающих области пиков десорбции, в силу более простого определения независимых переменных.

2. Более корректное описание экспериментальных кривых дифференциальной емкости в исследованных системах достигается с помощью модельного подхода АПК на основе изотермы Фрумкина, учитывающего специфические взаимодействия адсорбирующихся веществ с поверхностью электрода.

3. В общем случае, вид кривых дифференциальной емкости, количество и форму пиков определяет функция a(E) и ее зависимость от параметров $C_{\theta=0}, C_{\theta=1}, A$.

СПИСОК ЛИТЕРАТУРЫ

1. *Graham D. C.* // Z. Elecctrochem. 1955. V. 59. № 4. S. 740.

2. *Garnish J., Parsons R.* // Trans. Faradey Soc. 1967. V. 63. № 7. P. 1754.

3. *Baygh L. M., Parsons R.* Simultaneous specific adsorption of two ionic species quanidium chloride at the mercury-water interface // J. Electroanalyt. Chem. 1975. V. 58. № 1. P. 229.

4. Графов Б. М., Дамаскин Б. Б. // Электрохимия. 1994. Т.30. № 12. С. 1413.

5. *Дамаскин Б. Б.* // Электрохимия. 2002. Т. 38. № 4. С. 387.

6. *Nikitas P.* // Electrochim. Acta. 1996. V. 41. № 14. P. 2159.

7. Введенский А. В., Бобринская Е. В. // Электрохимия. 2002. Т. 38. № 11. С. 1305.

8. Введенский А. В., Бобринская Е. В., Карташова Т. В. // Конденсированные среды и межфазные границы. 2006. Т. 8. № 4. С. 264.

9. Дамаскин Б. Б., Батурина О. А. // Электрохимия. 1995. Т. 31. № 2. С.110.

10. Дамаскин Б. Б., Батурина О. А. // Электрохимия. 2000. Т. 36. № 11. С. 1319.

11. Вачева В. Ц., Дамаскин Б. Б., Каишева М. К. // Электрохимия. 1995. Т. 31. № 8. С. 848.

12. Попова А. А., Паланджянц Л. Ж. // Коррозия: материалы, защита. 2009. № 2. С. 41.

13. Попова А. А., Паланджянц Л. Ж. // Известия вузов. Северо-Кавказский регион. Естественные науки. 2008. № 2. С. 67.

14. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. 541 с.

15. *Фрумкин А. Н*. Потенциалы нулевого заряда. М.: Наука, 1979. 260 с.

16. Алексеев Ю. В., Попов Ю. А., Колотыркин Я. М. // Электрохимия. 1976. Т. 12. № 6. С. 907.

17. Дамаскин Б. Б., Петрий О. А., Батраков В. В. Адсорбция органических соединений на электродах. М.: Наука, 1968. 336 с.

18. *Сафонов В. В., Дамаскин Б. Б.* // Электрохимия. 2000. Т. 36. № 1. С. 12.

Попова Ангелина Алексеевна — к.х.н., доцент, заведующая кафедрой физической и коллоидной химии Майкопского государственного технологического университета; тел.: (8772) 523217, e-mail: ang.popova@ gmail.com

Паланджянц Левон Жирайрович — к. ф.-мат. н., доцент кафедры математики Майкопского государственного технологического университета; тел.: (8772) 52321 *Popova Angelina A.* — PhD (chemistry), senior lecturer, chief of physical and colloid chemistry department, Maykop State Technological University; tel.: (8772) 523217, e-mail: ang.popova@gmail.com

Palanjanz Levon J. — PhD (physical and mathematical sciences), a senior lecturer, faculty of mathematics, Maykop State Technological University; tel.: (8772) 523217