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1. Introduction
The study of the nanoscale effects of solid 

nanoparticles is extremely important due to 
the rapid development of nanotechnologies 
[1–3]. A number of monographs [1–9] (not 
limited to these papers) have been dedicated 
to problems associated with the description 
of surface effects. However, these issues are 
extremely complex and have not yet been 
completely solved even for the simplest of 
models. Therefore, it appears to be interesting 
to consider some of the problems if only for 
simple geometric surfaces, for example, for a 
cylindrical surface [11–16].

Elongated nanoparticles (this pare discusses 
solid nanoparticles), which can be nanowires or 
nanowhiskers (hereinafter NWs), are often used 
in micro- and nanoelectronics. Such materials 
often have unique electrical, magnetic, optical, 
and other properties, which makes it possible to 
use NWs in modern devices (see, for example, [1–
3] and the literature cited therein).

O b t a i n i n g  N Ws  i s  t e c h n o l o g i c a l l y 
challenging. However, this task can be facilitated 
by using appropriate theoretical models which 
enable the most basic mathematical modeling 
of technological processes. The scope of this 
article does not include a detailed discussion 
of the technological challenges associated with 
obtaining filamentary nanoobjects. However, it 
is worth mentioning that at present they can be 
produced using a wide range of materials. For 
example, the list of technologies that we provide 
below can be easily expanded. For instance, the 
following technologies are used to grow NWs: 
gas-phase epitaxy, chemical and electrochemical 
deposition, molecular beam epitaxy, magnetron 
deposition method, laser ablation, etc. Recently, 
nanowires have also been produced by the 
Taylor–Ulitovsky method (see, for example, [3]). 
Among the most suitable methods of theoretical 
modeling which allow understanding the 
kinetics and details of NWs growth are various 
types of dynamic modeling. Modeling does 
not only allow obtaining information about 
the kinetics of the process, but also allows 
calculating the morphology of the growth 
surface. It also allows taking into account the 
spatio-temporal fluctuations that are significant 

for the kinetics of the studied process. We are 
not going to discuss the results of these studies 
in detail; however, we would like to note that 
these results tend to be contradictory and 
differ depending on the group of researchers. 
In addition, they are not well-founded for 
large systems and the real calculations are 
always limited by the upper limit to the 
number of particles in the system associated 
with a reasonable counting time. This is the 
main source of contradictions in the modeling 
results. To be more precise, for example, some 
authors get negative values for the limit value 
of the Tolman parameter, while others predict 
positive values for the same parameter within 
similar systems. Therefore, it is undoubtedly of 
interest to somehow systematize the previously 
obtained (more verified) results substantiated 
within the framework of the general approaches 
of thermodynamics and the simplest models of 
statistical physics (see, for example, [1, 2]). The 
content of these results, as will be shown below, 
allows establishing some general regularities, 
which can become the starting point for any 
model calculations.

Therefore, the purpose of this work is to 
combine the most general results describing 
nanonucleation and its main thermodynamic 
parameters, for example, surface energy and 
its corresponding surface tension, etc., with 
general thermodynamic results if only for the 
simplest case of NW. To achieve this goal, we 
conducted a detailed analysis of the results which 
we had obtained earlier, defined the main tasks 
to be performed as a result of this analysis, and 
presented a number of new results.

2. Thermodynamic approach  
to a cylindrical particle

We considered an isolated system consisting 
of two three-dimensional phases with different 
densities and interfaces between them. In this 
section, we use the results of the monograph [9].

The initial equation is the Gibbs adsorption 
equation.

d ds m= -G ,		  (1)

where G  is adsorption and m  is chemical poten-
tial. To build a thermodynamic model, equation 
(1) is extended as follows:
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where Dr  is the difference in the densities of the 
coexisting phases, d  is the thickness of the tran-
sition layer (Tolman length), and DV  is the vol-
ume of the interfacial transition layer with a 
thickness of d .

The combination of the formulas produces the 
following differential equation:
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Equation (3) is analogous to the well-known 
Gibbs–Tolman–Koenig–Buff equation (see [3–9]) 
for a cylindrical surface.

To solve equation (3), the dimensionless 
variable R / d  is introduced. As a result,
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The integral in (4) is found by integrating 
rational functions (i.e. by expanding the integral 
function into partial fractions [9]). The final result 
can be represented as [9] (see Fig. 1):
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When R � d , (5) is transformed into a well-
known analogue of the Tolman formula:

s s
d

=
+

•( )

1
R

,		  (6)

where Tolman parameter d must have the same 
sign with the radius of curvature R  of the surface 
(i.e. d > 0 ).

The monograph [9] (assuming that Eulerian 
curvature is small) offers a more general formula for 
the surface tension of an arbitrarily curved surface 
as a function of the two main radii of curvature.

When R � d :

s s d/ ~ / ). (( )• 0 645 R  

from (5) follows Rusanov’s formula [6, 9] for a 
cylindrical particle.

3. Linear Theory 
First, we will consider the linear theory 

proposed in [9], which will help us when choosing 
the van der Waals equation. As the resulting 
function, we accept the value proportional to 
the volume density of the fragments of the n(x) 
particles which the cylindrical particle consists of. 
This allows obtaining in the linear approximation 
a simple equation, which, importantly, can be 
solved analytically [9]:

¢¢ + ¢ - - =n
n
r

n
1

1 02d
( ) ,		   (7)

where r is the coordinate of the radius of the 
nanocylinder. In our equation, the value of the 
volume density of the particles n(0) in the center 
per unit was pre-normalized, which is not import-
ant but will be very convenient for our purposes 
later on.

The function n(x) (the dimensionless variable: 
x = r/d is introduced) is proportional to the volume 
density function, which we designate as N(x) (see 
below).

A particular physical solution (7) is used, 
which has the form of [9]:

n x cK x( ) ( )= 0 ,		  (8)

where K0(x) is a modified Bessel function.
Now, we find the real physical quantity called 

the normalized function of the volume density of 
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Fig. 1. Functions graphs of solution (5) (see [9])
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particles N(r/d). For it, the boundary conditions 
can be described as:
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which is shown schematically in Fig. 2.
Using (10) in [9], we derive the equation:

d
d x x K x K x

ln
ln { ( ) / ( )}

s
=

+
1

10 1 0

.	  (11)

If х >> 1:
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where follows the Tolman formula (6).
When x << 1:
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As follows from the graph (Fig. 2), it can be 
assumed that the emerging nanocylinder reaches 
thermodynamically equilibrium dimensions R ~ d 
(with a relative volume density of its constituent 
fragments equal to one). This equilibrium 
dimension ~ d in the Cahn–Hilliard–Hillert theory 
was defined in [7, 10–15]. Around the equilibrium 
dimension R ~ d, there is an “atmosphere” of the 
volume density of the nanoparticle components 
(or discharged nanoparticle fragments), N(r/d), 
which asymptotically approaches zero only 
within the r/d → ∞ limit, since in this case the 
forces are not short-range.

This modeling result physically meant that 
the equilibrium nanocylinder (solid phase) 
was surrounded by an infinite “atmosphere” of 
its fragments. Therefore, the thermodynamic 
growth of cylindrical nanoparticles beyond 
their equilibrium dimensions in the presented 
approximation is not limited. This result is 
in line with the classical theory of nucleation 
(CTN).

The section above showed that to describe 
the dependence of surface tension on the 
Tolman parameter d, a differential equation 
was used, which was the Gibbs-Tolman-Koenig-
Buff equation (GTKB). It is obvious that the 
linear theory presented here based on the linear 
dependence of the density on the coordinate 
(equation (7)), is in line with the GTKB theory 
[9] and, accordingly, with the classical theory of 
nucleation.

4. Nonlinear theory
Let us move on to the nonlinear analogue of 

the differential equation (7). Let us introduce an 
interaction space D relevant for nanonucleation 
(correlation radius).

Since we do not know the differential equation, 
we have the right to propose a simplest model that 
within the boundaries coincides with the model 
used for the linear theory (a correspondence 
between the linear theory and CTN).

Then, based on the previous equation (7), the 
nonlinear equation could be modeled as follows:

¢¢+ ¢ + - =n
r
n n1 1

1
2 1

1 1
0

d
exp{ } ,	  (12)

where n1 (r) is a function similar to the 
function n(r) but for a nonlinear equation.Fig. 2. Volume density function, N(r/d) (10)
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Choosing the function in the form of 
1

1
2 1d
exp{ }-n  is undoubtedly an arbitrary decision 

when modeling an unknown functional. However, 

if we expand the exponent
1

1
2 1d
exp{ }-n , we can 

obtain equation (7). 
On the other hand, in our opinion, the function 

1

1
2 1d
exp{ }-n  models the short-range force of the 

interaction between fragments which occurs in 
the model of N-dimensional fractal cluster [12].

The physical solution (taking into account the 
normalization) is presented as: 

n1 1
22 1= -ln[ ]X ,		  (13)

where (see below):

X1 12= r (2 d ) .	 (14)

It should be noted that we chose a solution 
that satisfied the following conditions:

n n1 10 0 0( ) ( )= ¢ =  

A correspondence between the radius D and 
the Tolman parameter d1 is introduced through 
the normalization integral:
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from which it was derived that

D = 2 2 1d .	 (16)

This means that the radius D and the Tolman 
length are related by the relation (16) presented 
here. The coupling coefficient for these values is 
of a model character, however, we can state that 
by an order of magnitude D ~ d1.

As a result, the function of the volume density 
of particles can be represented as: 

N X= + -1 2 1 1
2ln[ ] .		  (17)

It should be noted that there is no analytical 
correspondence between solutions (10) and (17). 
As evidence, we provide a graph for solution (17), 
which is shown in Fig. 3.

The difference between solutions of the 
linear and nonlinear equations (Fig. 2 and 3) 
is fundamental. In the first case, as we have 

already noted, the thermodynamic growth of 
cylindrical nanoparticles beyond their equilibrium 
dimensions (R ~ d) is not limited. This result is in 
line with the classical theory of nucleation (CTN). 
In the case of the nonlinear equation (equation 
(12)), the growth of the nucleus is ultimately 
limited, which will be discussed below.

5. Surface energy for nanowires
If the droplet sizes are comparable with the 

Tolman length, there is a problem associated 
with an additive calculation of surface energy 
from the volume part of the energy. It is possible 
that in some cases negative Tolman lengths are 
due to inappropriate approaches used to solve 
this problem.

An alternative method is to use the model 
density profile in the van der Waals theory (see, 
for example, [16]). This theory was also proposed 
in a generalized form by L. D. Landau to describe 
phase transitions. It should be noted that all these 
theories became the theoretical foundation for a 
series of works by Cahn and Hilliard. Below we 
use a version of the theory similar to the theory of 
V. L. Ginzburg, L. D. Landau, and A. A. Abrikosov.

We consider a particular case of applying these 
theories, when the nucleus of the condensed 
phase is shaped as a long cylinder. We used a 
cylindrical coordinate system, for which the 
characteristic spin function [16] is represented 
by the angle function q(r) relative to the cylinder 
axis z. The physical interpretation of the spin 

Fig. 3. Plot of function (17) obtained from solution of 
Eq. (13). Only the solution for N, when this function 
is greater or equal to zero, has a physical sense

0,2 0,4 0,6 0,8 1,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

N

X1

Condensed Matter and Interphases / Конденсированные среды и межфазные границы  	 2023;25(4): 484–493

S. A. Baranov	 Surface energy in microwires. Review



489

function differs from the interpretation of the 
concentration density, but in the style of the 
Landau’s theory it can be assumed that these 
quantities are both order parameters. In our 
case, this order parameter characterizes the 
energy state (of the atom) in the nanoparticle 
as a function of the radius of the base of the 
cylinder. The free energy in this model can have 
the following form [16]:

H
A

rg c,

sin
,= ¢ +

È

Î
Í

˘

˚
˙2

2
2

2q q
		  (18)

where q(r) is the angle between the cylinder axis 
and the magnetization vector and r is the radial 
coordinate. Thus, unlike the previous three-di-
mensional problem, this time we considered a 
two-dimensional problem. The solution of the 
three-dimensional problem is reduced to numer-
ical methods and this problem will be dealt with 
in another paper.

The model kinetic energy in (18) is a classical 
analogue of the exchange energy in the Heisenberg 
model for the two-dimensional space in a 
continuous approximation, which corresponds in 
our case to the infinite cylinder model. It can be 
assumed that the kinetic energy in (18) coincides 
in form with the kinetic energy of a quasiparticle 
(in cylindrical coordinates). This fact is not 
accidental and is due to the fact that the studied 
model allows accurate analytical solutions in the 
form of quasiparticles, nonlinear waves known as 
instantons (or skyrmions [16]). It should also be 
noted that in our case these quasiparticles are 
topological compositions rather than dynamic 
particles. Therefore, in our case the virtual kinetic 
energy of the topological instanton is meant by 
the kinetic energy.

The theory considered below is scale 
invariant, which allows us to introduce a relative 
coordinate:

r = r
Rc

, 		  (19)

where Rc is the equilibrium radius of the droplet. 
Now, let us consider the topological space as the 
initial droplet. Then, there is a condition of 0 ≤ r 
≤ 1. The proposed continuum model of energy 
(18) appears to be a Heisenberg model in which 
the interacting spins act as energy states of the 
particles associated with the constant exchange 

interaction A (with the dimension for the ex-
change energy [J/m]).

Using (18), it is simple to derive the Euler-
Lagrange equation:

¢¢ + ¢ - =q r q r
r

q q
r

( )
( ) sin cos

.2 0 	 (20)

For simplicity, it is sufficient to only use a 
particular solution of this equation describing 
the nucleation process under simple boundary 
conditions:
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The solutions of equations (20) and (21) look 
simple:

tan ,
q

r2
1Ê
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ˆ
¯̃

= 		  (22)

which is convenient for further analysis.
Let us introduce the model surface energy to 

obtain the Euler-Lagrange equations for the scale 
invariant theory:

¢¢ +
¢

- =q r
q r

r
q q
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a a aa
( )

( ) sin cos
,

2

2 0 	 (23)

where a2 is the ratio of anisotropy energy to ex-
change interaction constant A. Parameter a2 was 
determined in [16]:

a
B
A

2 1= + , 		  (24)

The definition of the anisotropy function was 
also given there:

B asin
,

2

22
q

r
		  (25)

where B is a positive energy quantity, the dimen-
sion of which coincides with A. 

For agreement with the previous solution, we 
assume that there is no anisotropy in (23) when 
B = 0, and when B > 0, it is present. The solution 
of equation (8) is as follows:

tan .
q

r
a

a2
1Ê
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ˆ
¯̃

= 		  (26)

It should be noted that solutions (22) and (26) 
join analytically, therefore, the indices are further 
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omitted. Let us consider one general solution (26). 
This solution is shown schematically in Fig. 4.

It is easy to show that the function q(r) when 
a = 1 and 0 < r ≤ 1 has no inflection point. This 
point only appears when a > 1. This means that 
the surface layer in our model can only exist at 
a > 1. In this case, a certain volume whose energy 
is the surface energy of the cylindrical particle can 
be chosen as the surface layer. For definiteness, 
let us suppose, for example, that the surface layer 
begins to clearly manifest itself when a > 4. Thus, 
we assume that at a = 1, there is no anisotropy 
in the system, and the Tolman length actually 
coincides with the droplet size. If a >> 1, within 
the proposed model, the specific anisotropy 
exceeds the exchange interaction, and in relation 
to the droplet there appears a parameter (Tolman 
length) that characterizes the dimension of the 
interfacial region. The case of a < 1 corresponds 
to the negative surface energy (in Fig. 4 this case 
is shown for a = 0.5) and is not considered in 
detail in this article since it is associated with the 
instability of the condensed phase.

The change in the free energy from the center 
of the particle to its surface can be estimated. 
This estimation allows the physical interpretation 
of the introduced model parameters and their 
comparison with the conventional energy 
characteristics that are used to describe the 
nucleation process.

Let us first consider the layer-by-layer change 
in the free energy of a cylindrical droplet. We will 
use again the formula for the energy that we used 
to derive the equation of motion. It is as follows: 
E(r) = T + U. Considering solution (26), we find 
that the kinetic energy is equal to the potential 
energy: T = U. This important result for the closed 
dynamic system is associated with the virial 
theorem for the finite motion, and in our case 
can be used to check if our approach to problem 
solution was correct. For total energy, we have:

E T U A
a a

a( )
( )

.r
r

r
r

= + =
Ê
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ˆ
¯̃ +

4
1

2 2

2 2 	 (27)

It follows from (27) that for a = 1 and r → 1, 
the equality E(r) = A is satisfied. When B > 0, the 
cylinder surface energy tends to Aa2 ~ B and the 
higher the B value, the higher the limit. Therefore, 
just this parameter B can be associated with the 
parameter of specific thermodynamic surface 

energy used in thermodynamic theories provided 
that these energies have different dimensions.

A sharp increase in free energy (see Fig. 5) 
depending on parameter a is associated with 
the phase transition that occurs in the system in 
the event of an infinitesimal anisotropy. To find 
the total energy of the particle assigned to the 
cylinder length unit, it is necessary to take the 
integral of E(r) over the cylinder volume. Let us 
start with a qualitative analysis of the model. It 
should be noted that for the particular case of 
a = 1 and B = 0, this integral must be equal to A 
(up to factor). Then, there is no other energy in 
the system; A is the only internal model energy 

Fig. 4. Diagrams of solution (26) at different values of 
parameter a

Fig. 5. Three-dimensional dependence of energy on 
parameters а and r
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of the system. In another limiting case, a high 
value of a is sufficient for the total energy to tend 
to anisotropy energy B. In the general case, the 
total specific energy (for the cylinder length unit) 
will be as follows:

W E d a A
d

aA
a

a= =
+

=Ú Ú
-

2 8
1

2
0

1
2

2 1

2 2
0

1

p r r r p r r
r

p( )
( )

. 	(28)

According to the Cahn–Hilliard theory, the 
energy of the activation barrier is proportional to 
the geometric average of two energy parameters: 
E ABc ~ . Unlike the proposed theory, the Cahn–
Hilliard theory is not scale invariant, and the 
quantity of B has a dimension of J/m3. In our 
case, the integral formula derived from (28) for 
the activation energy has the same form, which 
indicates that these theories coincide when 
calculating the average activation energy (in the 
volume unit). Therefore, it can be concluded that 
the proposed theory qualitatively coincides with 
the Cahn–Hilliard theory.

6. Conclusions
A decrease in the size of the condensed phase 

leads to an increase in the relative proportion 
of surface atoms. As a result, the influence of 
the interfaces increases. What is more, the size 
dependence of the surface tension is due to the 
Tolman length, i.e. the thickness of the interfacial 
(transition) layer. This is especially evident in 
nanoparticles, the radius of which is ones to tens 
of nanometers.

The final section of the article provided the 
results related to the van der Waals gradient theory, 
which can be summarized as follows. If only one 
form of energy is present during the formation of a 
nanoparticle, which acts as exchange interaction A, 
it is not correct to separate additive energies of the 
system into the surface energy and the energy of 
the nanoparticle volume within the framework of 
the proposed model. However, in this case, it would 
be possible to introduce the average energy of the 
entire nanoparticle and to derive Rusanov’s linear 
formula for surface energy based on geometric 
considerations. Typically, Rusanov’s formula is 
assumed to be universally applicable. This fact is 
not confirmed when our model is complicated by 
anisotropy energy.

The concept of anisotropy energy, which is 
introduced into the theory in the form of the 

proposed model as a modified Rapini potential, 
leads to the emergence of surface energy. It 
should be noted that the conventional Rapini 
potential has no multiplier of the form of 1/r2 [16]. 
The anisotropy energy can become the energy 
of a double electric layer (in electrochemistry). 
However, in the case of the formation of extremely 
small equilibrium particles with differentiated 
surface energy, the electric capacity of the 
nanosystem where this nanoparticle is formed 
should be increased. Thus, it can be assumed that 
the nanonucleation process can be efficiently 
controlled.

The main result of all parts of the work can 
be considered obtaining a profile of surface 
energy from the thermodynamic parameters of 
the system, which allows expanding to a certain 
extent the understanding of capillary phenomena 
in nanosystems.

The question of the Tolman length, which 
determines the dimensional effect of the 
surface tension and the scope of the theory, 
requires separate consideration. According to the 
thermodynamic definition, the Tolmen length is 
numerically equal to the distance between the 
equimolecular surface and the tension surface 
[4, 5]:
d = -z ze s , 		  (29)

where ze and zs are the positions of the equimo-
lecular surface and the tension surface on the 
same half-axis. The equimolecular surface corre-
sponds to the condition G = 0. The dividing sur-
face, for which the Laplace equation is valid, is 
the tension surface. The tension surface is gen-
erally taken as a true dividing surface.

The equimolecular surface and the tension 
surface are always located inside the interfacial 
transition layer, so the thickness of this layer can 
be taken as the maximum value of the Tolman 
length d. For larger droplets, the Tolman length 
can be considered to be a constant value related 
to a flat surface. By definition, the Tolman length 
for a flat dividing surface is:

d = = -G
D

D
n

n n n, ,1 2 		  (30)

where n1,2 are volume densities of coexisting 
phases in equilibrium. There is contradictory 
information about numerical values and even the 
sign of the Tolman length. It follows from (30) 
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that the sign of d depends on the sign of Gibbs 
adsorption on the tension surface. You can deter-
mine the sign of the Tolman length if you use the 
well-known formula for the density distribution 
profile in the flat interfacial region:

n z
n n n z

z
( ) th ,=

+
-

Ê
ËÁ

ˆ
¯̃

1 2

02 2
D Dn > 0, 	 (31)

where z is the coordinate; z0 is the parameter 
characterizing the slope of the density distribu-
tion profile. Formula (31) specifies a density 
distribution profile symmetrical relative to the 
point z = 0. The denser and less dense phases are 
located on the positive and negative semi-axes. 
For adsorption, we have:

G = - + -
•

-•
Ú Ú[ ( ) ] [ ( ) ] ,n z n dz n z n dz
z

z

i

i

1 2 	 (32)

where zi specifies the position of the arbitrary 
dividing surface. The integration of (32) with (31) 
gives:

G D= z ni . 		  (33)

For equimolecular surface and tension 
surface:

zi = 0 and zi = zs,

therefore, from (30) and (32) for the Tolman 
length, we find:

d = zs,		  (34)

where zs is counted from the origin, i.e. from the 
middle of the profile. Formula (34) allows us to 
conclude that the sign of the Tolman length de-
pends on the location of the tension surface. If 
the tension surface is near the dense phase 
(which, in our opinion, is the most natural), the 
Tolman length will be positive. Shifting the ten-
sion surface to a less dense phase relative to the 
equimolecular surface changes the sign of d to 
negative.

It  should be noted that  for  certain 
thermodynamic systems the Tolman parameter 
can be considered negative, however, this case is 
not considered in this study.

For a small droplet with radius r, the stability 
condition has the form ( / ) ,∂ ∂ >s r T p 0 . It follows 
that the function s(r) must be increasing and the 
droplet must meet the condition d > 0.
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