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Abstract 
An elastic interaction of the intersecting dilatation and disclination defects located in an infinite linear isotropic media is 
investigated. The eigenstrain approach is employed to obtain the analytical expressions describing the pair interaction 
between intersecting dilatational lines and intersecting wedge disclinations. It is demonstrated that the interaction energy 
strongly depends on the intersection angle between the defects. The energy reaches the maximum value if the defect lines 
are coincided while the energy reaches the minimum value if the defect lines are orthogonal. Besides, it is shown that 
interaction energy of intersecting wedge disclinations strongly depends on the elastic properties of the media: the less the 
Poisson ratio, the less the energy. The obtained analytical results seem to be applicable for the theoretical analysis of the 
residual stress relaxation mechanisms in heterostructures with pentagonal symmetry such as icosahedral particles.
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1. Introduction
Due to the unique functional properties, 

inhomogeneous nanostructures are widely used 
in the design of modern electronic devices [1], 
photonics [2] and plasmonics [3]. The stability of 
the properties of such nanostructures is mainly 
determined by crystal defects that arise during 
the relaxation of mechanical stresses [4–7]. The 
main mechanisms of stress relaxation include 
the formation of point defects complexes [8, 9], 
generation of dislocation [10–17] and disclination 
[18–20] configurations, nucleation of cracks 
and various V-shaped defects [21–23], diffusion 
perturbation of the surface [21, 24].

The processes of stress relaxation in 
inhomogeneous particles with fifth-order 
symmetry axes (pentagonal prism, decahedron 
and icosahedron) are of particular interest 
[25, 26]. The residual strains and stresses 
attributed to these particles are caused by 
five-fold twinning around the fifth-order 
symmetry axes and can be described within 
the framework of the disclination concept 
[27, 28]. According to this concept, pentagonal 
whiskers and decahedral particles contain 
one positive wedge disclination with strength 
0.128 rad, (the disclination axis coincides with 
the symmetry axis of the fifth order), while 
icosahedral particles contain six positive wedge 
disclinations with strength 0.128 rad, passing 
through the opposite apexes of the icosahedron 
and intersecting at its centre. The elastic field 
of wedge disclination as a strong sink have a 
significant influence on point defect migration. 
Therefore, on the initial stages of residual stress 
relaxation, the formation of atmospheres of 
impurity atoms and vacancies along the cores 
of wedge disclinations can be expected. On 
the following stages of relaxation process the 
concentration of vacancies (impurity atoms) 
can reach essential enough supersaturation 
to condense to pores (second phase nuclei), 
that was observed experimentally [29, 30] and 
theoretically described in [32–34].

Thus, an analysis of the initial stages of 
residual stress relaxation due to the segregation 
of point defects on the disclination cores in 
icosahedral particles can be performed through the 
determination of the interaction energies of the 
defects under consideration. This study presents 

analytical expressions for the pair interaction 
energies of the following defect configurations: 
intersecting dilatation lines and intersecting 
wedge disclinations placed in the infinite medium. 
Despite the fact that the obtained results are valid 
for the infinite medium assumption, they can be 
used as a starting point for calculating the energy 
of the pair interactions of intersecting defects in 
finite bodies with a free surface in future.

2. Theoretical part
In this section an elastic isotropic medium 

containing intersecting direct defects, such 
as dilatation lines and wedge disclinations is 
considered. The energy of the pair interactions of 
these defects can be defined as the work spending 
on the generation of one of the defects in the 
stress field of another defect [35]:
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terial volume V. 

2.1. Energy of the pair interactions 
of  intersecting dilatation lines

Consider the straight dilation lines LI and LII, 
intersecting at a point О under the angle a (Fig. 
1a). We introduce the Cartesian coordinate systems 
Oxyz and Oxy¢z¢, associated with lines of defects 
LI and LII respectively (axis x is perpendicular 
to the intersection plane of defects, axes z and 
z¢ coinciding with the lines of defects LI and LII, 
direction of axes y and y¢ prescribed by the right-
hand rule). The stress field of these defects in an 
infinite elastic medium is known (see, for example, 
[36]). The non-zero components of the stress tensor 
of the dilatation line LI in the Cartesian coordinate 
system can be presented in the following way:
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where C0 = Ge*
 (1 + n) / (1 – n), G is a shear modulus; 

n is a Poisson ratio; e* is a dilatation eigenstrain 
of the defect; H(...) is a Heaviside function; x is a 
small parameter defining the radius of the core 
of the dilatation defect line. Expression (2c) for 
the axial component of the dilatation line stress 
tensor is a generalized function: the stress equals 
zero at all points of the medium, except for the 
points corresponding to the line of the dilatation 
defect.

The eigenstrain distortion of the dilatation 
line is characterized by triaxial deformation e*, 
distributed along the lines of defects. According 
to [36], non-zero components of the eigenstrain 
distortion of the dilatation line (II) can be 
expressed as:

b e d dii
LII s x y= ¢* ( ) ( ) ,   (3)

where s = px2, d(...) is a one-dimensional Dirac 
delta function.

To determine the pair interaction specific 
energy of intersecting dilatation lines LI and LII 
we substitute (2) and (3) in the expression (1) for 
energy:
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The first integral in (4) is taken by the 
definition of the Dirac delta function, the second 
is taken by using a change in variable y = y¢ cos a. 
Finally, we obtain:
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int cos- = *4 0e a .  (5)

Let us consider the specific case when the defect 
lines LI and LII are orthogonal (a = p/2). In this 
case, the total interaction energy of defects can 
be determined using the expression (1), with y¢ = z 
we have:

W

sC H x H y x z dxdydz

LI II
int /|

( ) ( ) ( ) ( )

-
=

*

-•

+•
=

= - - =

=

ÚÚÚ
a p

e x x d d

2

04

44 0e d d
x

x

x

x
*

- - -•

+•

Ú Ú ÚsC x dx dy z dz( ) ( ) .

 (6)

                                       а                                                                                                       b
Fig. 1. An elastic model of the defects with an intersection angle a: a) dilatation lines LI and LII subjected to 
3D eigenstrain e*; b) wedge disclinations DI and DII with strength w. Points Р1 and Р2 belong to areas S1 = {R ≥ 0, 
j = p/2, a ≤ q ≤ p} and S2 = {R ≥ 0, j = 3p/2, p – a  ≤ q¢ ≤ p} respectively
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Finally, we obtain the energy of the pair 
interaction of dilatational lines intersecting 
under right angles:

W s CLI II
int /
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a p

e x
2 08 .  (7)

2.2. Energy of the pair interactions 
of  intersecting wedge disclinations

The wedge disclinations DI and DII with 
equal moduli of Frank vectors is considered. The 
disclination axes intersect at the point О under 
the angle a. The axes of Cartesian coordinate 
systems Oxyz and Oxy¢z¢ are similar to the 
previous section (see Fig. 1b).

Elastic stress fields of wedge disclinations in 
an infinite medium are known (see, for example, 
[28] and [37]). The non-zero components of the 
wedge disclination stress tensor in a spherical 
coordinate system are given below:
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where C1 = Gw / [2p(1 – n)], w is a disclination 
strength; polar radius r = (x2 + y

2)1/2. As can be seen 
from expressions (8), the stress field components 
of a wedge disclination located in an infinite 
elastic medium are characterized by logarithmic 
singularity. This singularity can be eliminated by 
incorporating self-screening systems, for in-
stance, the disclination dipoles and quadrupoles 
[38] and the disclinations in finite bodies bound-
ed by cylindrical [38] or spherical [39] surfaces. 

The plastic distortion of the wedge disclination 
DII is defined on the half-plane as SII = {x = 0, y¢ > 0, 
z¢}. The non-zero component of the disclination 
plastic distortion tensor DII is:
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where H(SII) is the two-dimensional Heaviside 
function equal to 1 at x, y Œ SII and equal to 0 at 
x, y œ SII.

Taking into account (8) and (9), the energy 
of the pair interaction of intersecting wedge 
disclinations DI and DII can be expressed: 
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Spherical coordinates (R, j, q) and (R, j¢, q¢) 
with the origin at the point O are introduced. Polar 
(colatitude) angles q and q¢ are measured from the 
axes by disclination DI and DII accordingly (0 ≤ q, 
q¢ ≤ p). Azimuthal angles j and j¢ are measured 
from the axis x (0  ≤  j,  j¢  ≤  2p). Taking into 
account the relationship between spherical and 
Cartesian coordinates: y¢ = R sin q¢ , z¢ = R cos q¢ , 
dy¢dz¢ = –RdRdq¢, we present (10) in the following 
form:
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where A – parameter, in the case of an infinite 
medium A → +∞.

It is worth noting that in the coordinate 
system associated with the disclination DI, 
the half-plane SII is determined by the sum of 
regions S1 = {R ≥ 0, j = p/2, a ≤ q ≤ p} and S2 = {R ≥ 0, 
j = 3p/2, p – a ≤ q ≤ π}. With respect to the change 
of variable q¢ = 2p – a – q, dq¢ = –dq at p – a ≤ q ≤ p. 
And q¢ = q – a , dq¢ = dq at a ≤ q ≤ π, we present 
integral (11) as a sum of integrals over regions 
S1 and S2:
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Integrals in (12) with regard to (8a) and x = 0, 
y = R sin q can be calculated analytically, for ex-
ample, using tables of integrals [40]. Here we 
present the final expression for the interaction 
energy stored by wedge disclinations DI and DII 
in a subregion bounded by the surface of a sphere 
of radius A:
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To determine the energy density of the 
interaction of disclinations DI and DII, stored in 
a sphere of radius A, we divide expression (13) 
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by the volume of the sphere and present it in the 
following form:

w w wD
A

I II
int

- = + a ,  (14)

where the first term contains a logarithmic sin-
gularity of disclination-type defects determining 
the contribution of the scale factor to the discli-
nation interaction energy:

w
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the second term contains the dependence of the 
interaction energy density of the disclination DI 
and DII on the angle between them:
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Thus, analytical expressions (14), (15), and 
(16) were obtained for the interaction energy 
density of intersecting disclinations in an infinite 
medium. Equation (15) expresses the dependence 
of the interaction of energy density on the size 
of the considered region: the interaction energy 
density increases according to the logarithmic 
law if the size of the considered region increases 
(wA ~ log A at A → +∞). For the case of finite 
bodies (particles, whiskers, etc.), the expression 
(15) is modified due to screening effect of the 
surfaces, and the energy density wA has a finite 
value (see, for example, similar calculations for 
the disclination energy in an elastic sphere [41]). 
The equation (16) shows the influence of the 
angle between disclinations a on the energy of 
pair interactions and it is the main interest of 
this study. 

3. Results and discussion
Let us proceed to the analysis of the obtained 

expressions (5) and (7) for the energies of the 
pair interaction of intersecting dilatation lines LI 
and LII. The specific interaction energy of defects 
depending on the angle between them is shown 
in Fig. 2. Energy of interaction �Wz

LI II-  takes the 
highest value for angles a = 0, π and equals to 
the linear elastic energy of one dilatational line 
with its eigenstrain deformation 2e*. The specific 
energy takes the zero value when the lines of 
defects intersect under right angles (a = p/2). 
In this specific case, the interaction of defects 

is determined by the total energy of the system 
presented in (7). Thus, it can be inferred that 
the interaction of dilatation lines intersecting 
under right angles is completely determined by 
their total eigenstrain deformation at the point 
of their intersection; the remaining sections do 
not contribute to the total interaction energy. 
It is worth noting that the energy of the pair 
interaction in (7) is equal to doubled elastic energy 
of a point defect with its triaxial eigenstrain e*.

Now turn to the dependences of the 
interaction energy density of intersecting wedge 
disclinations. In Fig. 3a the dependences of the 
normalized energy density wa on the value of 
the angle between them a, plotted for different 
values of the Poisson ratio of the medium n = 0.1 
and 0.3 are shown. According to Fig. 3a it can be 
seen that the energy densities take the smallest 
value (~0.6Gw2/(4p2) for n = 0.3) in the case 
when the disclination axes intersect under right 
angles. On the contrary, the energy densities 
take the greatest value (~1.6Gw2/(4p2) for n = 0.3) 
in the case when the disclination axes coincide 
(a  =  0, p). Here we present analytical formulas 
for determining the interaction energy density 
of disclinations intersecting under angles a = p/2 
and 0, π, obtained from expression (16):

Fig. 2. Specific interaction energy of intersecting 
dilatational lines in dependence on the angle a. The 
energy is given in units e*sC0
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Expression (18) can also be used to determine the 
part of the elastic energy density of a disclination 
with strength of 2w independent of R.

In addition, we note that according to Fig. 
3a, disclinations located in elastic space with 
a relatively large Poisson ratio n has a higher 
energy density: with increasing n, the interaction 
energy density wa increases. Let us turn to 
the dependences of the energy density of the 
interaction of disclinations wa from the Poisson 
ratio of the medium n (0.0 < n < 0.5), presented 
in Fig. 3b. In the case when the disclination axes 
coincide (a = 0 or p), the interaction energy 
density is positive. On the contrary, in the case 
when the disclination axes intersect under right 
angles (a = π/2), the interaction energy density 
can take negative values. The value of Poisson 
ratio, at which the energy density changes sign, 
is determined from expression (17) and equal to 
0.2. This means that in media with a relatively 
low Poisson ratio, a disclination can decay into 
two intersecting disclinations, subsequently 
reducing the total energy of the system. Similar 

phenomenon were observed experimentally for 
the case of translational decay of a disclination, 
for example, in decahedral particles containing 
one wedge positive disclination with a strength 
of 0.128 rad the decay of the disclination in two 
ones with parallel axes, was recorded during the 
growth of particles [42].

4. Conclusions
Thus, the study presents a calculation of the 

pair interaction energies of two intersecting 
defects. In the first part of the study, the 
specific energy of intersecting dilatation lines 
was determined in dependence on the angle 
between the lines of defects. It was shown 
that the energy of the pair interactions of 
intersecting dilatation lines takes a finite value, 
completely determined by the fields of defects 
in the vicinity of the intersection point. In the 
second part of the study, the interaction energy 
of intersecting wedge disclinations is found as 
the sum of two components: the first component 
contains the logarithmic singularity of the 
radial coordinate attributed to elastic fields 
and energies of disclination-type defects, the 
second term demonstrates the influence of the 
angle between the disclination axes on their 
interaction energy. The latter term is discussed 
in detail in the study. For instance, it was 

                                       а                                                                                                       b
Fig. 3. Dependences of the interaction energy density of intersecting wedge disclinations wa: a) on the inter-
section angle a for n = 0.1 and 0.3; b) on the Poisson ratio n of the elastic medium for a = 0 and π/2. The ener-
gy density is given in units Gw2/(4p2)
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demonstrated that disclinations intersecting 
under right angles have less interaction energy 
then disclinations with coincided axes. In 
addition, it was shown that the interaction 
energy of intersecting disclinations strongly 
depends on the properties of the elastic 
medium viz the Poisson ratio. For example, the 
higher Poisson ratio of the media the higher 
pair interaction energy of disclinations. The 
interaction energy of intersecting disclinations 
can take negative values in media with a 
relatively small Poisson ratio (n < 0.2). Probably, 
in the media with relatively small Poisson ratio 
the disclination could decay in two intersecting 
disclinations decreasing the total energy. In 
conclusion, it is worth noting that the obtained 
analytical relations for the pair interaction 
energy of intersecting dilatation lines and 
disclinations are of practical interest for further 
research, in particular, to employ construction 
of in theoretical modelling of residual stresses 
relaxation in icosahedral particles containing 6 
intersecting wedge disclinations with a strength 
of 0.128 rad due to the impurity segregation at 
the cores of the disclinations.
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