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Abstract 
At the moment, InGaN ternary compounds are of a great interest for the development of devices for sunlight driven water 
splitting. However, the synthesis of such materials is hindered by the fact that InxGa1–xN layers are susceptible to phase 
decomposition at x from 20 to 80%. Nanowires can be a promising solution to this problem. The purpose of our study was 
to analyze the structural and optical properties of InxGa1–xN nanowires with a gradient x content being inside the miscibility 
gap.
InxGa1–xN nanowires were grown on silicon substrates using plasma-assisted molecular beam epitaxy. The structural 
properties of nanowires were studied using scanning and transmission electron microscopy. The chemical composition 
and optical properties of nanowires were analyzed using energy-dispersive microanalysis and photoluminescence 
spectroscopy.
It was shown for the first time that the composition-graded InxGa1–xN nanowires with x from 40 to 60% can be grown using 
plasma-assisted molecular beam epitaxy. The grown samples exhibit photoluminescence at room temperature with a 
maximum at about 890 nm, which corresponds to an In content of about 62% according to the modified Vegard’s rule and 
the transmission electron microscopy data. The obtained results can be of practical interest for the development of devices 
for water splitting induced by sunlight or sources of near IR radiation.
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1. Introduction 
One of the main trends in the modern 

semiconductor industry is the development 
of devices which can be sources of renewable 
energy. In particular, devices for sunlight driven 
water splitting. There are a large number of 
materials that can be used to make water-
splitting photoelectrochemical cells, including 
In xGa1–xN ternary compounds, which are 
currently of great interest (1–6). Such an interest 
is explained by the fact that the band gap of 
InxGa1–xN can be varied practically within the 
whole solar spectrum (from 0.7 eV for InN to 3.4 
eV for GaN) and adjusted to the redox potential 
of water [1,7]. Moreover, InxGa1–xN ternary 
compounds have a high chemical stability and 
a high catalytic activity [1, 2, 8]. However, the 
synthesis of such materials is hindered by the 
fact that InxGa1–xN compounds are susceptible 
to phase decomposition, when x is from 20 to 
80%, which results in low crystalline and optical 
quality of the grown structures [9, 10]. Nanowires 
can be a promising solution to this problem, since 
nanowires based on ternary compounds are less 
susceptible to phase decomposition and can be 
grown with a set chemical composition [11–13]. 
Besides, nanowires of a high crystalline quality 
can be grown epitaxially on substrates which 
differ significantly from the grown material in 
terms of the parameters of the crystal lattice 
and temperature coefficient, including on silicon 
[14, 15]. However, there are very few studies 
focusing on the growth of InxGa1–xN nanowires 
with In within the phase decomposition region 
on silicon by means of molecular beam epitaxy 
[16–21]. 

The purpose of our study was to analyze the 
structural and optical properties of InxGa1–xN 
nanowires with a gradient of x content being 
inside the miscibility gap. 

2. Experimental 
Samples were grown on a Riber Compact 

12 molecular beam epitaxy setup with a 

nitrogen plasma source. The experiments 
were conducted on 2/4 2≤ silicon substrates 
with crystallographic orientation (111). The 
substrates were put in the growth chamber 
and annealed at the temperature of 950 °С 
for 20 minutes for thermal cleaning. Then the 
growth temperature was reduced to 560 °С (the 
thermocouple temperature) and the nitrogen 
plasma source was ignited. The nitrogen plasma 
power was 400 W. The nitrogen flow rate was 0.4 
cm3/min, which corresponded to the pressure 
in the growth chamber of 7.4·10–6  Torr. After 
the pressure in the chamber was stabilized, 
Ga,  In, and Si control valves were opened 
simultaneously. The beam equivalent pressures 
of Ga and In flows were 1·10–7  Torr. The 
temperature of the silicon source was 1350 °С. 
The samples were doped with silicon so that 
they could be further used as an anode of the 
photoelectrochemical cell. The growth time of 
the samples was 20 hours and 25 minutes. 

The morphology and the structural properties 
of the samples were studied by means of electron 
microscopy using a Supra 25 scanning electron 
microscope (Carl Zeiss) and a JEM-2100FTEM 
transmission electron microscope (Jeol) with an 
XFlash 6TI30 energy-dispersive microanalysis 
system (Bruker). The optical properties of 
the samples were analyzed on a unique setup 
“Complex optoelectronic unit of the National 
Research University Higher School of Economics – 
St. Petersburg” by means of photoluminescence 
(PL) spectroscopy at room temperature using a 
He-Cd laser (325 nm) with a power of 6.5 mW. The 
PL signal from the samples was registered using 
an Ms5204i monochromator (Sol instruments) 
and a silicon photodetector.

3. Results and discussion 
Fig. 1a-c demonstrate typical SEM images of 

the grown InGaN nanowires. According to the SEM 
data, the nanowires were formed in several stages. 
During the first stage, nanotubes with the length 
of 560 nm and diameters of ~  50  nm (Fig.  1c) 
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were formed near the surface of the substrate. 
Then, nanowires with diameters from 100 to 200 
nm were formed. The fact that the diameter of 
the nanowires was larger than the diameter of 
the nanotubes indicates a local increase in the 
III/V ratio. Since in our experiments the growth 
temperature was close to the temperature of 
thermal disassociation of InN in a vacuum [22–
24], we assume that the formation of nanotubes 
can be explained by the ascending diffusion 
of In inside nanostructures, which in turn can 
result in a local increase in the III/V ratio above 
the nanotubes [21, 25, 26]. The height of the 
nanowires was 2–2.5 μm. The average density of 
the nanowires was 1.1·109 cm–2 (Fig. 1b). 

An analysis of the inner structure and 
the chemical composition of the samples 
demonstrated that the concentration of In as 
compared to Ga in the nanotubes was about 20%. 
The nanotubes had a Wurtzite crystal structure. 
At the same time, the concentration of In in the 

nanowires formed above the nanotubes varied 
from 40 to 60% (Fig. 2a-d). Besides, at the base 
and in the middle of the nanowires (Fig. 2a-c) 
a spontaneously formed core-shell structure 
was observed with x of 40–50% in the cores of 
the nanowires and 0–5% in the shells of the 
nanowires. At the same time, the ratio of In 
with regard to Ga was 60% at the top of the 
nanowires. The diameter of the cores increased 
from 60 to 120 nm along the nanowires, while 
the diameter of the shells decreased accordingly, 
which, apparently, is explained by an increased 
concentration of In in the nanowires. 

The samples demonstrated photolumine-
scence at room temperature in the range from 
450 to 1000 nm (Fig. 3). The maximum PL was 
registered close to 890 nm. As it was previously 
demonstrated, the concentration of In in InGaN 
in the range from 0 to 50% can be evaluated with 
good accuracy using photoluminescence spectra 
[13, 16, 27, 28] according to the modified Vegard’s 

Fig. 1. Typical ISO (a) and plan-view (b) SEM images of the grown nanowires. Typical ISO SEM image of nano-
tubes (c)

Fig. 2. A typical TEM image of InGaN nanowires (a); the distribution of Ga and In inside the nanowires (b,c); 
the distribution of In relative to Ga along the nanowires obtained using energy-dispersive microanalysis (d)
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law with the bowing parameter b of 1.43  eV: 
E xE x E bx xg g g= + - - -InN GaN( ) ( )1 1 , where Eg

InN  
and Eg

GaN  are band gaps of InN and GaN (0.7 
and 3.4 eV respectively), x is the concentration 
of In in InGaN, and b is the bowing parameter 
equal 1.43  eV. If we apply this law to the PL 
spectrum of the grown nanowires (Fig. 3), the 
maximum PL should correspond to InGaN with 
the concentration of In of 62%, which agrees well 
with the chemical composition at the top of the 
nanowires determined by means of transmission 
electron microscopy. Therefore, the observed 
maximum PL is connected with the radiation from 
the top of the nanowires. At the same time, the PL 
spectrum demonstrated regions of relatively low 
intensity in the range from 500 to 700 nm, which 
apparently can be explained by the radiation from 
the low-component regions of the nanowires. 

4. Conclusions
In our study, we analyzed the structural 

and optical properties of composition gradient 
InGaN nanowires. The study demonstrated 
that at relatively high growth temperatures 
(the thermocouple temperature of 580 °С) the 
formation of nanowires can proceed in several 
stages, including the formation of nanotubes 
and the growth of nanowires above them. 
According to the TEM data, the concentration 
of In increases along the nanowires from 40 to 
60%. The obtained nanowires demonstrated 
maximum photoluminescence close to 890 nm, 
which corresponds to the concentration of In of 
about 62% according to the modified Vegard’s 
law with the bowing parameter b of 1.43 eV. The 
obtained results can be of practical interest for the 
development of devices for water splitting induced 
by sunlight or sources of near IR radiation.
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