Fabrication of α-Ga$_2$O$_3$:Sn/α-Cr$_2$O$_3$/\alpha-Al$_2$O$_3$ heterostructure by mist CVD and HVPE

P. N. Butenko1,*, R. B. Timashov1, A. I. Stepanov1, A. I. Pechnikov1,2, A. V. Chikiryaka1, L. I. Guzilova1, S. I. Stepanov2, V. I. Nikolaev1,2

1Ioffe Institute, 26 Polytechnicheskaya st., St. Petersburg 194021, Russian Federation
2Perfect Crystals LLC, 38 Torez ave., St. Petersburg 194223, Russian Federation

Abstract

Corundum-structured chromium oxide (α-Cr$_2$O$_3$), exhibiting p-type conductivity, is a highly attractive candidate for forming high-quality p-n heterojunctions with α-Ga$_2$O$_3$. Two CVD growth techniques were employed in the fabrication of the heterostructure. A \sim0.2-micron α-Cr$_2$O$_3$ layer was grown on a (0001) sapphire substrate using mist CVD at 800 °C. It possesses high morphological homogeneity and low roughness, which is acceptable for further epitaxial processes. Subsequently, Sn-doped α-Ga$_2$O$_3$ with a thickness of \sim1.5 μm was grown on the α-Cr$_2$O$_3$ layer using HVPE at 500 °C. The feasibility of fabricating this heterostructure with the specified layer thickness and acceptable surface morphology using CVD techniques has been demonstrated.

Keywords: Gallium Oxide, Sapphire substrate, Heteroepitaxy, CVD, Mist-CVD, HVPE

Funding: P.N. Butenko, A.I Pechnikov, and L.I. Guzilova gratefully appreciate the Russian Science Foundation for financial support (grant No. 23-29-10196).

© Pavel N. Butenko, e-mail: pavel.butenko@mail.ioffe.ru
© Butenko P. N., Timashov R. B., Stepanov A. I., Pechnikov A. I., Chikiryaka A. V., Guzilova L. I., Stepanov S. I., Nikolaev V. I., 2023

The content is available under Creative Commons Attribution 4.0 License.
1. Introduction

Gallium oxide is a new-generation semiconductor that opens up horizons in applications in power and high-frequency electronics [1–3]. This promising material outperforms all known commercial semiconductors in terms of electrical, optoelectrical, chemical, and mechanical properties [4]. Its α-polymorph has a corundum-type structure (R3c symmetry). Among the five Ga2O3 modifications, it has the largest bandgap ($E_g = 5.5$ eV), along with a high breakdown field ($E_0 = 8.5$ MV·cm$^{-1}$) and dielectric constant ($\varepsilon = 10$) [5–7]. By doping gallium oxide with Sn or Si, n-type conductivity can be achieved with an electron concentration of up to 10^{19} cm$^{-3}$ [8]. However, a method to provide p-type conductivity has not yet been found, which is perhaps the biggest drawback of this material, limiting its potential applications.

It is, however, feasible to create a heterojunction of α-Ga2O3 with another material owing the same crystal structure while demonstrating p-type conductivity [9]. Among the promising candidates, α-Cr2O3 stands out as one of the best options. Both share the same rhombohedral structure and have a very low a-plane lattice mismatch (0.4%). The latter parameter mismatch is slightly more attractive for α-Fe2O3 (0.3%) [10]. Nonetheless, the high cost associated with iridium renders it impractical for practical consideration. Another inexpensive candidate is α-Fe2O3, but it has a 1.2% lattice mismatch and a lower optical bandgap (2.3 eV vs. 3.0 eV for α-Cr2O3) [11]. To be fair it should be noted, that the lattice mismatch in α-Al2O3/α-Cr2O3 pair is high (5.74% [12]), but the double pairing choice is limited.

In our previous work [13], we demonstrated a α-Ga2O3/α-Cr2O3/sapphire structure. Our aim was to create a buffer layer of α-Cr2O3 to enhance the crystal quality of gallium oxide. The deposition of a 150 nm chromium oxide layer using magnetron deposition, followed by annealing at 500–800 °C, contributed to the growth of corundum α-Ga2O3 in a single phase, resulting in a fourfold reduction in threading dislocation density. This experimental evidence confirms the isostructural nature of these oxides and their potential for further research.

Recently, mist-CVD and HVPE have emerged as two CVD techniques of particular interest for Ga2O3 growth [14–17]. Among all vapor-phase methods, only these two methods allow the production of thick layers of gallium oxide [18, 19]. Both techniques offer high growth rates (microns per hour) and simple doping schemes. When employed, they enable the achievement of high crystal perfection along with high-quality surface morphology. Moreover, these methods are cost-effective as long as vacuum setups are not required.

In this paper, we employ mist-CVD and HVPE techniques to fabricate a α-Ga2O3/α-Cr2O3/sapphire heterostructure. The primary goal of this work is to determine the fundamental feasibility of growing such a heterostructure using CVD, while achieving the specified layer thickness and maintaining acceptable surface morphology.

2. Experimental

Cr/Ga oxide heterostructures were grown on epi-ready sapphire c-plane (0001) substrates. In the first step, a Cr2O3 layer was deposited using the mist-CVD technique. We employed a homemade mist-CVD reactor equipped with a 2.4 MHz ultrasonic transducer, which produces droplets with a diameter in the range of 10-100 nm. The growth run lasted for 180 minutes, and the substrate temperature was maintained within a range of 700-850 °C. Detailed descriptions of the precursors and process parameters can be found in [20].

In the second step, a layer of Ga2O3 was deposited over the Cr2O3 layer using the HVPE method. We also utilized a homemade setup for this process. This reactor is built according to a hot-wall horizontal design and uses gallium chloride (GaCl) and oxygen (O2) as precursors. The growth rate was approximately 2.4 μm/h, and the process temperature was set at 500 °C. Detailed information regarding the process parameters can be found in [7].

The phase composition of the fabricated heterostructures was characterized by X-ray diffraction (XRD) technique. The Bourevestnik DRON 7 diffractometer with CuKα = 1.5406 Å radiation was used. The surface roughness of the Cr2O3 layer was measured by Mahr MarSurf PS10 profilometer. The surface morphology of the Ga2O3 layer was analyzed using a Phenom ProX scanning electron microscope (SEM) operating in...
secondary electron mode. To visualize the cross-section of the heterostructure and ascertain the thickness of the layers, samples were sectioned and examined by SEM.

3. Results and Discussion

The surface morphology of the first layer, which underwent the subsequent epitaxy process, should ideally be as smooth as possible. The visualization of the \(\alpha{-}\text{Cr}_2\text{O}_3 \) layer’s morphology is presented in Fig. 1. It is evident that the surface exhibits a homogeneous relief with no distinct features, except for some spots related to layer defects.

The roughness \((r_a) \) of the \(\alpha{-}\text{Cr}_2\text{O}_3 \) layer was measured by the profilometer in both directions threefold. The \(r_a \) values appeared to be close and the average value \((\bar{r}_a = 24 \text{ nm}) \) and is happened to be low enough for a consequent epitaxy process. The selected profiles of chromium oxide layer surface are shown in Fig. 2.

In the next step, the \(\alpha{-}\text{Ga}_2\text{O}_3 \) layer was grown using the HVPE method. The surface morphology of this layer is depicted in Fig. 3, where distinct surface features can be observed.

The cross-sectional SEM image of the \(\alpha{-}\text{Ga}_2\text{O}_3/\alpha{-}\text{Cr}_2\text{O}_3/\text{sapphire} \) heterostructure is shown in Fig. 4. The thickness of the \(\alpha{-}\text{Ga}_2\text{O}_3 \) layer is almost uniform along its lateral direction, measuring approximately 1.5 \(\mu \text{m} \). Similarly, the \(\alpha{-}\text{Cr}_2\text{O}_3 \) layer exhibits consistent thickness, albeit at a lower value of about 0.2 \(\mu \text{m} \).

Analysis of the XRD \(\theta{-}2\theta \) curve of \(\alpha{-}\text{Ga}_2\text{O}_3/\alpha{-}\text{Cr}_2\text{O}_3/\text{sapphire} \) heterostructure revealed (000) plane reflections for all three phases, plotted in logarithmical scale (see Fig. 5). Namely: for \(\alpha{-}\text{Al}_2\text{O}_3 \) (0 0 0 6) is at 41.69 deg, (0 0 0 12) is at 90.69 deg; for \(\alpha{-}\text{Cr}_2\text{O}_3 \) (0 0 0 6) is at 39.8 deg, (0 0 0 12) is at 85.9 deg; for \(\alpha{-}\text{Ga}_2\text{O}_3 \) (0 0 0 6) is at 40.25 deg, (0 0 0 12) is at 86.96 deg. The angle values for sapphire and gallium oxide both coincide the tabulated ones very well. However, in the case of chromium oxide the experimental values differ significantly from the tabulated values ((0 0 0 6) is at 38.96 deg, (0 0 0 12) is at 83.66 deg). Since both values are shifted towards larger angles, this indicates decrease in lattice parameter of this phase relative tabulated one. One can conclude that the \(\text{Cr}_2\text{O}_3 \) layer, being a buffer one is stressed due to lattice mismatch of the neighbors.

Finally, employing the chromium oxide buffer layer, it was possible to grow homogeneous
1.5 μm-thick gallium oxide layer with a constant thickness and relatively smooth surface. It is characterized by single-phase structure of relatively high perfection.

4. Conclusions

Thus, we have demonstrated the feasibility of fabricating α-Ga₂O₃/α-Cr₂O₃/sapphire heterostructures with the specified thicknesses and excellent morphology using CVD techniques. Both mist CVD and HVPE exhibit high growth rates. XRD patterns reveal the absence of any phases other than corundum-like.

Further studies are planned to focus on measuring the electrical parameters of the heterostructure and thinning the sapphire layer. This will allow the creation of a substrate with high thermal conductivity. It is also planned to investigate the possibility of separating the Ga₂O₃ layer from the sapphire substrate to obtain freestanding layers. This will allow the growth of high-quality gallium oxide layers on Cr₂O₃ buffer layer for device applications.

Contribution of the authors

The authors contributed equally to this article.
Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

Information about the authors

https://orcid.org/0000-0003-1364-3016
pavel.butenko@mail.ioffe.ru

Roman B. Timashov, Researcher, Ioffe Institute of the Russian Academy of Sciences (St. Petersburg, Russian Federation).
https://orcid.org/0000-0001-9103-545X
timashov@inbox.ru

Andrey I. Stepanov, Dr. Sci. (Phys.–Math.), Researcher, Ioffe Institute of the Russian Academy of Sciences (St. Petersburg, Russian Federation).
https://orcid.org/0000-0003-2908-0385
stepanoffai@yandex.ru

Alexey I. Pechnikov, Researcher, Ioffe Institute of the Russian Academy of Sciences (St. Petersburg, Russian Federation).
https://orcid.org/0000-0003-4604-1935
alpechn@yahoo.com

Andrey V. Chikiryaka, Researcher, Ioffe Institute of the Russian Academy of Sciences (St. Petersburg, Russian Federation).
https://orcid.org/0000-0002-2087-8086
chikiryaka@mail.ru

Liubov I. Guzilova, Researcher, Ioffe Institute of the Russian Academy of Sciences (St. Petersburg, Russian Federation).
https://orcid.org/0000-0003-4205-3226

s.i.stepanov@gmail.com

https://orcid.org/0000-0002-5630-0833
nikolaev.v@mail.ioffe.ru

Received 20.09.2023; approved after reviewing 25.09.2023; accepted for publication 16.10.2023; published online 25.12.2023.

Translated by the author of the article