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Abstract 
The literature review analyses and systematizes the results of corrosion studies of widely used anti-corrosion zinc coatings 
based on various binary systems Zn-Al, Zn-Mg, Zn-Fe, Zn-Ni, Zn-Co. The patterns of corrosion, the role of selective 
dissolution and corrosion products in increasing the corrosion resistance of coatings in neutral chloride-containing 
environments have been studied. The analysis shows that the corrosion rate depends on the chemical and phase composition 
of zinc coatings, which is due to differences in the corrosion behavior of the phase components of the alloys. Selective 
dissolution has an ambiguous effect on the corrosion resistance of coatings. On the one hand, the process of selective 
dissolution of zinc can be accompanied by the formation of corrosion cracks, which reduces the corrosion resistance of the 
coating. On the other hand, a rough surface enriched with an electropositive alloying component is formed. As a result, 
roughness stimulates the deposition of a denser and more compact layer of corrosion products, which reduces the access 
of oxygen and other electrolyte components to the coating’s surface. Under certain conditions, a film of corrosion products 
can provide additional resistance to the corrosion process due to low electrical conductivity. With the uniform dissolution 
of coatings, both the co-precipitation of complex compounds of zinc and alloying metals and the doping of the product 
layer with oxides or hydroxides of alloying metals occur. This also results in increased compactness and reduced electrical 
conductivity, which increases the corrosion resistance of the coatings. The purpose of the article: an overview of the results 
of studies of corrosion of zinc coatings, physical and chemical features of the formation and composition of the layer of 
corrosion products, the influence of corrosion products and selective dissolution on the corrosion resistance of coatings.
A review of the results of studies relating to the corrosion of zinc coatings was carried out, taking into account the formation 
of a protective layer of corrosion products and the selective dissolution of zinc. The corrosion of zinc coatings is influenced 
by the structure and phase composition of the coatings, the selective dissolution of zinc, as well as the nature of the layer 
of corrosion products. The corrosion resistance of zinc coatings increases if a compact layer of corrosion products with low 
electrical conductivity is formed. The selective dissolution of zinc can have a positive effect on its protective ability due to 
the formation of a rough surface, which promotes the deposition of a denser layer of corrosion products. In the case of the 
uniform dissolution of zinc alloy coatings, alloying metals are able to integrate into the structure of zinc corrosion products, 
which makes the layer more compact and leads to a decrease in its electrical conductivity, significantly increasing the 
corrosion resistance of the coatings.
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1. Introduction 
Zinc and its alloys are widely used to protect 

structural materials and products from corrosion 
in various industries. Protective zinc coatings are 
produced by cathodic deposition, immersion in 
molten zinc, thermal diffusion methods and gas 
dynamic spraying using zinc powders, as well 
as their introduction into paint compositions. 
Regardless of the production method, the 
corrosion behavior of zinc coatings strongly 
depends on the composition, morphology and 
structure of the layer of corrosion products (CP), 
the physicochemical properties of which often 
determine the high corrosion resistance of zinc 
coatings. In addition to zinc oxide (ZnO) and zinc 
hydroxide (Zn(OH)2), depending on the chemical 
composition of the corrosive environment, the CP 
layer may include various basic zinc salts [1–4]. 
In addition, corrosion of zinc alloys can proceed 
through the mechanism of selective dissolution 
(SD) [5]. In this case, the accumulation of an 
alloying component on the surface of the alloy 
is possible, which has an additional effect on the 
physicochemical properties of the protective 
layer and the corrosion resistance of coatings. 
The degradation processes of zinc coatings play 
a special role in microelectronics, where they can 
be used as an intermediate layer, for example, 
at nickel-plating of aluminum contact pads. 
Considering that the possibility of the formation 
of zinc alloys with nickel and aluminum cannot 
be excluded, along with the formation of zinc 
oxidation products, it is necessary to take into 
account the probability of its selective dissolution.

The study provides a review of the results of 
investigation of the patterns of formation of a 
protective layer of zinc corrosion products, which 
ensures the corrosion resistance of zinc-based 
coatings, taking into account the phenomenon 
of selective dissolution.

2. Corrosion of zinc
The process of the corrosive degradation of 

zinc includes its electrochemical oxidation at the 
anodic areas of the coating: 

Zn – 2e → Zn2+.
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At the cathode sites in a neutral and alkaline 
aqueous environment, the reduction of oxygen 
dissolved in water occurs: 

2e + 1/2O2 +H2O → 2OH–.

Accumulation of Zn2+ and OH– ions in the 
surface layer of the solution leads to the rapid 
formation of zinc hydroxide precipitate: 

Zn2+ +2OH– → Zn(OH)2(am).

Be ing  amorphous , i t  i s  capable  of 
transformation into various products, the nature 
of which depends on the pH of the environment 
[6]: 

Zn(OH)2(am) → ZnO, pH=7–9;
Zn(OH)2(am) → b1-Zn(OH)2 pH=7 – 9;
Zn(OH)2(am) → b2-Zn(OH)2 pH=11 – 12.

Subsequent transformations of Zn(OH)2 
mainly depend on the chemical composition of 
the medium, in particular, on the presence of Cl–, 
SO4

2– ions, and products of reactions of dissolved 
CO2 with water:

CO2(aq) +2OH– → CO3
2– +H2O,

CO2(aq) + CO3
2– +H2O → 2HCO3

–.

The latter, reacting with Zn(OH)2 hydroxide, 
quickly (within several hours) form hydrozincite 
(HZ) or zinc hydroxycarbonate Zn5(OH)6(CO3)2 
(3Zn(OH)2·2Zn(CO3)2) [7, 8]:

5Zn(OH)2(s)+2HCO3
– + 2H+ →  

→ Zn5(OH)6(CO3)2 + 4H2O,

as well as zinc hydroxycarbonate mono hydrate 
Zn4CO3(OH)6·H2O. In environ ments with a rela-
tively high content of chloride ions, HZ trans-
forms into simoncolleite (SC) or zinc hydroxy-
chloride Zn5Cl2(OH)8·H2O(4Zn(OH)2ZnCl2) within 
a few days. If the Cl– concentration in a solution 
is higher than 0.01 M and pH ≈ 7, and CO2 is absent 
or its concentration is insignificant, then SC is 
formed directly from ZnO or Zn(OH)2 [9–12]: 

4Zn(OH)2 + Zn2+ + 2Cl– → 4Zn(OH)2·ZnCl2.

The formation of SC is also described by other 
chemical reactions, for example [9–12]:
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5ZnO + 2Cl–
 + 6H2O → Zn5(OH)8Cl2·H2O + 2OH–,

Zn(OH)2 + 4Zn2+ +6OH– + 2Cl– → Zn5(OH)8Cl2,
5Zn(OH)2 + 2Cl– +H2O → Zn5(OH)8Cl2·H2O+2OH–.

In addition, the formation of simoncolleite is 
also considered as chemical precipitation from 
an ion-saturated solution near the surface of a 
corroding metal [8, 13]: 

5Zn2+
 +8OH– + 2Cl– → Zn5(OH)8Cl2,

4Zn2+
 +H2O+8OH–

 + 2Cl–
 → Zn5(OH)8Cl2·H2O.

The SC can transform into gordaite 
NaZn4Cl2(OH)6SO4·6H2O with prolonged exposure 
for several years under the influence of SO2 and 
SO4

2–. 
Simoncolleite serves as a cathodic corrosion 

inhibitor of Zn, in the form of a dense 
protective layer, impeding both volumetric and 
intercrystalline diffusion of O2. The corrosion of 
Zn is often local, which affects the homogeneity 
of the layer of products of the corrosion process. 
Thus, in chloride-containing media, the anodic 
areas are acidified, and the concentration of Cl– 
ions increases near them, which contributes to 
the formation of predominantly simoncolleite 
[14, 15]. The cathode areas have a higher pH due 
to the reduction of dissolved O2, as a result of 
which hydrozincite is formed on them [14, 15].

Simoncolleite is stable at relatively high Cl– 
concentration- in solution and in the absence of 
excess of OH– and CO3

2–. As the pH increases, it 
transforms into the less compact ZnO oxide. In 
the presence of HCO3

– ions SC transforms into 
sodium-zinc carbonate Na2Zn3(CO3)4 (at 0.5–1.0 M 
HCO3

–) or hydrozincite (at 0.05 M HCO3
–) [16]. 

With increasing CO3
2– concentration zinc CP can 

transform into soluble carbonate complexes [16]:

Zn5(OH)8Cl2 + 2CO3
2– →  

→ Zn(CO3)2
2– + 2Cl– + 4H2O + 4ZnO,

ZnO + 2CO3
2– +H2O → Zn(CO3)2

2– +2OH-.

All these factors contribute to a decrease in 
the degree of protection of zinc.

3. Corrosion of alloy coatings  
based on Zn-Al and Zn-Mg

Coatings with zinc alloys of the Zn-Al system 
of the “Galvalume” (GL) type (55 wt. % Al) and 
“Galfan” (GF) (5 wt. % Al + mischmetal additive) 
allow to provide corrosion resistance 2–4 times 

higher compared to zinc [17]. The microstructure 
of coatings obtained from Galfan and Galvalume 
alloys is different. In GF, the basis is the matrix of 
the h-phase is a solid solution of iron in zinc with 
a Fe concentration of 0.03 wt. %, and Al is present 
in the form of point inclusions (b-Al). In GL, the 
core consists of dendrites with a high Al content, 
and the interdendritic spaces are enriched with 
zinc [7, 18–22].

Differences in the microstructure of 
heterophase alloys of the Zn-Al system have a 
significant impact on their corrosion behavior. 
Thus, the process in the case of Galvalume alloys 
in a chloride environment starts on zinc-rich 
surface areas. Predominant dissolution of Zn from 
interdendritic regions occurs, while the phase 
enriched in Al has a more positive potential and 
accelerates corrosion of the coating, acting as a 
cathode [18]. At the same time, an increase in Al 
concentration in the alloy leads to the appearance 
of compounds such as Al2O3, AlOOH, and Al(OH)3 
in the form of a thin film among CP. Local islands of 
mixed corrosion products of complex composition 
Zn2Al(OH)6Cl·H2O and Zn6Al2CO3(OH)16·4H2O are 
formed predominantly on zinc-rich interdendritic 
regions [7, 22]. With a high Cl– content, aluminum 
hydroxy compounds transform into aluminum 
oxychloride Al2(OH)5Cl·2H2O [21]. Corrosion 
of Galfan-type alloys, characterized by a low 
aluminum content, is similar to the process 
involving metallic Zn. Indeed, the dissolution 
of the h-phase leads to the formation of CP 
characteristic of zinc, including ZnO, Zn(OH)2 
and Zn5(OH)8Cl2·H2O. When areas containing 
Al are dissolved, Zn6Al2CO3(OH)16·4H2O or 
Zn2Al(OH)6Cl·H2O appear among the corrosion 
products, similarly with the GL type coatings 
[7, 22]. 

The inclusion of aluminum compounds in the 
composition of corrosion products contributes to 
the formation of a denser protective layer, which 
ultimately leads to an increase in the protective 
effect and an increase in the corrosion resistance 
of coatings based on alloys of the Zn-Al system. 
An additional effect is exerted by the selective 
dissolution of zinc from the heterophase surface, 
which leads to an increase in roughness and 
creates topologically favorable conditions for 
the deposition of CP, forming a protective layer 
[19, 20, 22].
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The microstructure of Zn,Al coatings changes 
with the introduction of magnesium and silicon. 
At a relatively low magnesium concentration, 
dendrites of an aluminum-based solid solution 
are formed, and in the interdendritic region, 
relatively rich in Zn, the formation of a dense 
intermetallic MgZn2 phase is observed. High Mg 
content and Si additive (0.4 wt. %) provide the 
formation of the Mg2Si phase in the coating and 
also contribute to an increase in the thickness 
of the coating. During the corrosion of alloys, 
MgZn2 intermetallic compound acts as an anode 
and dissolves with the formation of Zn2+ and Mg2+ 
ions, and on the surface of the dendritic phase 
enriched in Al, О2 is reduced with release of OH- 
ions. Magnesium ions can appear in the near-
electrode layer as a result of selective dissolution, 
further increasing the corrosion resistance of 
the alloy [23]. Diffusion of Mg2+ ions into the 
near-cathode zone of the solution leads to the 
formation of a compact and dense precipitate of 
magnesium hydroxide [7]: 

Mg2+ +2OH– → Mg(OH)2,

which contributes to the creation of a barrier for 
the diffusion of oxygen to the surface of the alloy 
[9, 23], suppressing the reaction of its reduction 
and slowing down the corrosion process. In 
addition to the formation of a protective deposit, 
the role of Mg2+ in increasing corrosion resistance 
is associated with neutralization of OH- and CO3

2– 
[9, 23]. The binding of OH- into Mg(OH)2  hydroxide 
leads to buffering of the pH of the near-electrode 
layer, which creates favorable conditions for the 
precipitation of simoncolleite, since OH- ions lead 
to alkaline destruction of SC. In turn, CO3

2– 
binding  into insoluble MgCO3 prevents the 
transition of SC into hydrozincite [24]. According 
to an alternative approach [25–27], the presence 
of Mg2+ does not affect the formation of SC, and 
the positive contribution of magnesium to the 
protective effect of CP is the formation of mixed 
oxides such as Zn(1–x)MgxO. As a result, the amount 
of ОН– groups and a negative charge on the 
surface of the barrier layer increase [25, 26], 
therefore, the electron work function increases, 
the electrical resistivity of the layer increases, 
and the rate of charge transfer and corrosion in 
general, on the contrary, decreases. Regardless of 
the mechanism of action, magnesium compounds 

increase the protective ability of the barrier layer 
of corrosion products, as a result the corrosion 
resistance of the coating increases. 

During the corrosion of zinc coatings with Al 
and Mg additives, the co-precipitation of double 
layered hydroxides, which additionally prevent the 
diffusion of O2 to the metal surface is also possible. 
The mechanism of their formation involves the 
dissolution of aluminum from dendrites without 
the formation of a protective layer: 

Al+4OH– → Al(OH)4
– + 3e,

Al2O3 + 3H2O+2OH– → 2Al(OH)4
-.

The presence of Zn2+ and Mg2+ ions in 
the medium  determines the possibility of 
coprecipitation of hydroxide compounds of zinc, 
magnesium, and aluminum. According to [29, 
30], the ZnAlMg coating corroded in salt spray, 
transforms into a stable, durable, aluminum-
rich protective layer, identified as zinc aluminum 
carbonate hydroxide, Zn6Al2(OH)16CO3: 

2Al(OH)4
– + 6Zn2+ + 8OH– + CO3

2– →  
→ Zn6Al2(OH)16CO3,

which protects the steel base from corrosion and 
is the main reason for the increased corrosion 
resistance of the ZnMgAl coating. The participa-
tion of magnesium in the coprecipitation of 
double layered hydroxides is possible [31]: 

2Al(OH)4
– + 6Mg2+ + 8OH– + CO3

2– →  
→ Mg6Al2(OH)16CO3.

as well as the formation of even more complex 
compounds: 

2Al(OH)4
– + 6(Mg2+, Zn2+) + 8OH– + CO3

2– →  
→ (Zn,Mg)6Al2(OH)16CO3.

It was shown in [32] that the formation of 
double layered hydroxides has a positive effect on 
increasing the corrosion resistance of coatings. The 
authors of [31] noted that the formation of these 
compounds reduces the alkalization of the CP 
layer, which prevents the decomposition of already 
formed products. At the same time, the corrosion 
process only slows down, since with increasing 
exposure time in a corrosive environment, zinc CP 
were revealed in the protective layer. 

The undissolved residual aluminum “skeleton” 
can further enhance the protective function of the 
CP barrier layer [33, 34].
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In studies [35–38], the influence of small (0.05–
0.1 mass.) %) rare earth metal (REM) additives on 
the corrosion resistance of “hot” zinc coatings, 
based on Zn–Al alloys (5 wt.  %) was studied. 
It has been shown [15, 35] that the modified 
coating of the composition Zn-4.9Al-0.1REM 
was characterized by a 2.5 times lower rate of 
chloride corrosion compared to zinc. The main 
reasons for the increase in corrosion resistance 
are believed to be the formation of a dense fine-
grained structure of the coating [35], as well as 
inhibition of the transformation of simoncolleite 
Zn5(OH)8Cl2·H2O into hydrozincite Zn5(OH)6(CO3)2 
[39] and a decrease in the electrical conductivity 
and ion-exchange properties of the protective layer 
of zinc CP in the presence of rare-earth metals [40].

4. Corrosion of alloy coatings  
based on Zn-Fe

Coatings from alloys of the Zn-Fe system 
are produced by electrodeposition, immersion 
in molten zinc, the additional heat treatment of 
“hot” coatings, and thermal diffusion saturation 
from zinc powders. Phase composition of Zn,Fe 
coatings may include the following phases: 
h-phase (0.03 wt.  % Fe), z-phase (FeZn13 5.0–
6.0 wt. % Fe); d-phase (FeZn10 7.0 – 11.5 wt. % Fe); 
Г1-phase (Fe5Zn21 17.0–19.5 wt.  % Fe); Г-phase 
(Fe3Zn10 23.5–28.0 wt.  % Fe) [41]. Moreover, in 
the case of “hot” coatings, the surface layers 
predominantly consist of zinc-rich h- and 
z-phases, while annealed and thermal diffusion 
coatings are represented mainly by the d-phase 
FeZn10. 

The corrosion rate of Zn,Fe coatings depends 
nonlinearly on the Fe concentration. Galvanic 
materials Zn-Fe coatings with iron concentration 
from 10 to 25 wt. % are characterized by significant 
corrosion resistance. [42–45]. An increase in the 
Fe content above 20 wt. % leads to an acceleration 
of corrosion, and according to data [45 – 59], the 
lower rate of the process was observed at an iron 
concentration of 10  wt.  %. It should be noted 
that this optimal iron concentration in most 
cases corresponds to Zn,Fe coatings that have 
undergone additional annealing. The observed 
effect can be associated with the features of the 
crystal structure and the corrosion behavior of 
the d-phase. In addition, it was assumed [47] 
that at a concentration of 10 wt. % Fe inhibits 

the reduction reactions of O2 in a neutral NaCl 
solution due to the formation of a barrier layer 
based on Zn(OH)2, uniformly distributed over the 
surface of the coating and, unlike semiconductor 
ZnO [48], characterized by extremely low 
electronic conductivity [47, 51]. 

Corrosion of Zn,Fe coatings is accompanied 
by selective dissolution of Zn and leads to the 
enrichment of the surface with iron and its 
morphological development, which has a positive 
effect on the growth and morphology of corrosion 
products [47, 54], forming a fairly dense layer with 
low values of porosity [57], ionic conductivity, 
and, consequently, the corrosion rate [55, 60]. 
Moreover, according to various authors, the 
composition of CP of Zn,Fe coatings and pure 
zinc is similar and includes ZnO, Zn(OH)2, SC 
and HZ [55, 61–63]. With prolonged exposure in 
the CP layer, the appearance of iron compounds 
is observed, for example, FeOOH of various 
modifications [59, 63–66], Fe2O3 [66, 67] or Fe3O4 
[68] depending on the conditions of the corrosion 
process. Some assumptions about the influence of 
iron on the composition or properties of the CP 
film were proposed by the authors [69–71] based on 
data obtained using the chemical coprecipitation 
of synthetic CP from two electrolyte systems: 
ZnCl2-FeCl2 and ZnCl2-FeCl3. Thus, in a solution 
with the addition of Fe2+ as its concentration 
increases, the morphology of the precipitate 
changes: first, small scattered agglomerates 
are formed, then sheets, which become thinner 
and again transform into small aggregates. 
According to X-ray diffraction data, the sheets 
are SC, and the thin sheets are complex zinc-iron 
hydroxychloride: [Zn(1–x)Fe(III)x(OH)2]

x+[Cl–]x·nH2O 
[72]. At a molar ratio of Fe/(Zn+Fe) = 0.6 – 0.8, 
the precipitate is X-ray amorphous. With a 
further increase in iron concentration, ferrite 
ZnFe2O4 and then magnetite Fe3O4 appear in the 
precipitate. 

In solution with the addition of Fe3+ only 
small agglomerates of ZnO particles are formed, 
and SC precipitation does not occur. In this 
case, due to the proximity of ionic radii and the 
electronegativity of iron and zinc, a fairly stable 
compact layer based on trioctahedral hydroxides 
can be formed [69 – 72]. 

The addition of simoncolleite to solutions 
from which iron hydroxide b-FeOOH was 
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precipitated inhibits the crystallization and 
growth of hydroxide particles [73]. At the same 
time, no incorporation of Zn into the structure 
of b-FeOOН was detected, but the compact 
amorphous precipitate of b-FeOOH particles was 
characterized by low adsorption capacity with 
respect to H2O and CO2. The effect is explained 
by the fact that zinc CP, when dissolved, increase 
the pH of solutions, enhancing the hydrolysis of 
Fe3+ with the formation of hydroxo complexes 
Fe(OH)x

(3–x)+, which condense into amorphous iron 
oxides/hydroxides. The adsorption of Zn2+ ions 
on them inhibits the crystallization of b-FeOOH 
particles, as a result, the precipitate becomes 
amorphous and more compact [73], and the rate 
of the corrosion of Zn,Fe coating decreases.

5. Corrosion of Zn-Ni, Zn-Co coatings
Coatings based on alloys of the Zn-Ni and Zn-

Co systems are obtained by electrodeposition from 
solutions of zinc salts with the addition of nickel or 
cobalt salts [74–76]. At a Ni concentration of less 
than 5 at. % Zn,Ni coatings consist predominantly 
h-phase, with increasing Ni concentration from 
10 to 15 at. %, the presence of d-phase (Ni3Zn22) 
and g-phase (Ni5Zn21) is possible and at Ni 
concentrations above 15 at. % the appearance of 
the a-phase is possible [77]. In Zn,Co coatings, 
the presence of both solid solutions of cobalt in 
zinc and the g-phase (Co5Zn21) is possible. 

Similar to alloys of the Zn-Fe system, the 
corrosion rate of Zn,Ni and Zn,Co coatings 
nonlinearly depends on the concentration of the 
alloying metal. Among Zn,Ni coatings, systems 
with a nickel concentration of 10–15 wt. % have 
the highest corrosion resistance [77–84]. In this 
case, the corrosion current of the alloy with a 
concentration of 15 wt.  % is two times lower 
compared to the alloy with 22 wt.  % [80, 85]. 
The effect is associated with the presence of a 
cubic g-phase (Ni5Zn21) [80, 85, 86], and with the 
fact that in this concentration range the alloy 
is homogeneous [83]. The highest corrosion 
resistance of Zn,Co coatings is observed in 
the cobalt concentration range of 10–20 wt. % 
ZnNi [87, 88], also corresponding to one g-phase 
(Co5Zn21) [87], characterized by high corrosion 
resistance [89]. 

Zn-Ni coatings are noticeably susceptible to 
the selective dissolution of zinc. As a result, the 

surface is enriched with nickel, and the formation 
of a b- or a-phase cannot be excluded [83, 90]. 
According to [91, 92] the initial corrosion rate 
of Zn,Ni coatings is higher than that of pure 
Zn coatings since Ni accumulation stimulates 
the cathodic reaction. The development of the 
corrosion process causes the formation of cracks 
that can reach the steel substrate [90–92], and 
also leads to a further increase in the relative 
content of Ni in the corrosion products and/or 
in the alloying coating layers. As the area of the 
substrate in contact with the electrolyte and the 
surface fraction of nickel increase due to the 
increase of cracks, the resistance of the coating 
to galvanic corrosion decreases. According to 
[93], Zn-Ni alloys containing 14 wt.  % Ni and 
lower, show longer galvanic protection of the 
steel substrate compared to coatings where the 
Ni concentration is higher than 18 wt. %.

Selective dissolution can also have a positive 
effect on the corrosion resistance of Zn,Ni and 
Zn,Co coatings due to the formation of the 
composite [94–96], consisting of corrosion 
products and a metal phase enriched in Ni or Co 
[95] on the surface. As in the case of other zinc 
alloys, an increase in roughness during SD has a 
positive effect on the formation of a compact dense 
CP layer characterized by high resistance [97–99]. 

The relatively high corrosion resistance of 
Zn,Ni and Zn,Co coatings is also associated with 
the peculiarities of the formation of corrosion 
products. Thus, it is assumed [100, 101] that 
in the presence of Co, the dissolution of Zn is 
accelerated, and, consequently, the formation 
of simoncolleite, due to which the corrosion 
resistance increases. The nickel component, 
according to [102], slows down the crystallization 
of the layered structure of SC during the corrosion 
of Zn,Ni alloys. The substitution of zinc by nickel 
occurs in the SC structure, the size and thickness 
of crystallites decreases, and the layered structure 
is disrupted. As a result, complex precipitates that 
have a low adsorption capacity with respect to 
corrosive gases are formed [102]. Similarly, during 
the corrosion of Zn-Co coatings, among CP double 
hydroxide of zinc and cobalt Zn2Co3(OH)10·2H2O 
was found along with simoncolleite [103]. Over 
time, the proportion of SC in corrosion products 
decreases, and a-Co(OH)2, CoCl2·H2O, and ZnO 
appears. The formation of complex compounds 
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with zinc atoms substituted by Ni and Co, 
according to the authors, leads to increased 
compactness and improved barrier properties 
of corrosion products. Wherein the authors of 
[104] note that even at a concentration in the 
coating of less than 1 wt. %, Co prevents the 
conversion of Zn(OH)2 into ZnO. For this reason, 
the CP of the Zn-Co system alloy includes a very 
small amount of ZnO compared to the corrosion 
products of pure Zn. A similar effect was observed 
when studying the corrosion products of Zn-Ni 
coatings [105]. Considering the fact that unlike 
loose semiconductor ZnO, zinc hydroxide is 
compact and has low electrical conductivity, 
this composition of the corrosion products of 
Zn,Co coatings contributes to effective corrosion 
inhibition [104]. 

6. Conclusions
The corrosion of coatings based on zinc 

alloys occurs via a complex mechanism, which 
includes a number of both electrochemical 
and chemical processes. The key factors that 
influence the corrosion resistance of coatings 
are the microstructure and phase composition 
of the coatings; selective dissolution of zinc; and 
the chemical nature and properties of corrosion 
products. 

Coatings with surface layers heterogeneous 
in phase composition have lower corrosion 
resistance compared to homogeneous materials. 
The role of selective dissolution of zinc from 
alloys is not so clear. Selective dissolution of zinc 
from alloys can have both a positive effect on the 
durability of the coating and stimulate its further 
oxidation. The latter occurs due to the appearance 
of corrosion cracks, through which the electrolyte 
reaches the surface of the protected product. In 
this case, the galvanic protection of the product 
may decrease due to the accumulation of positive 
metal and the improvement of the electrode 
potential of the coating. At the same time, as a 
result of selective dissolution, the surface of the 
coating becomes rough, which provides a high 
density of active nucleation centers on which 
corrosion products crystallize, which have a 
protective effect on the coating. 

The corrosion products of zinc coatings are 
predominantly zinc oxide ZnO and zinc hydroxide 
Zn(OH)2, as well as basic salts with a complex 

layered structure. The protective effect of the 
barrier layer of corrosion products is determined 
by increased compactness, the formation of a 
denser film, and low electrical conductivity. In the 
first case, the film creates a mechanical barrier 
to the diffusion of aggressive components of 
the electrolyte and oxygen, in the second case it 
creates additional resistance, slowing down the 
transfer of electrons and reducing the rate of the 
corrosion process as a whole. 

With prolonged corrosion of coatings, 
selective dissolution of zinc is replaced by joint 
oxidation of the alloy metals. The alloying metal 
oxidizes and accumulates in the layer of corrosion 
products in the form of various compounds. Its 
effect on the physicochemical characteristics 
of zinc corrosion products and the increase in 
corrosion resistance can be different. Metal ions 
are able to integrate into the structure of basic 
zinc salts, forming complex layered compounds. In 
addition, the doping of the film of zinc corrosion 
products with oxides and hydroxides of alloying 
metals may occur. An increase in the compactness 
of the film of zinc corrosion products and a 
decrease in its electrical conductivity occur, which 
leads to an increase in the corrosion resistance 
of the coating.
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