

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 544.22

https://doi.org/10.17308/kcmf.2024.26/11818

Состав и структура вольфрамсурьмяной кислоты

П. В. Тимушков $^{1\bowtie}$, В. А. Бурмистров 1 , М. Н. Ульянов 1 , В. Н. Семенов 2

¹ФГБОУ ВО Челябинский государственный университет, ул. Молодогвардейцев 70б, Челябинск 454021, Российская Федерация

²ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

Аннотация

Синтезированы вольфрамсурьмяные кислоты (ВСК) состава $H_{(2-x)}Sb_{(2-x)}W_xO_6\cdot nH_2O$ (0 < x < 1.45; 0 < n < 2.0) путем гидролиза предварительно окисленной азотной кислотой треххлористой сурьмы в присутствии различного количества Na_2WO_4 . Для получения водородных форм ВСК образцы выдерживали в 96%-ном растворе серной кислоты, осадок отмывали до нейтральной реакции и высушивали на воздухе. Количество ионов вольфрама, сурьмы и серебра в ВСК определяли при помощи энергодисперсионого анализа. Изменение структурных параметров при допировании СК ионами вольфрама исследовали с использованием рентгеновского дифрактометра Bruker D8 ADVANCE (CuK_{a1} -излучение). Количество ионов оксония в ВСК определяли по их замещению в эквивалентных количествах на ионы серебра (Ag^+ -формы ВСК).

Все полученные образцы ВСК и Аg⁺-формы ВСК имели структуру типа пирохлора, пронстранственная группа симметрии Fd3m. Уточнение расположения атомов в структуре методом Ритвельда показало, что ионы вольфрама замещают ионы сурьмы и статистически располагаются в 16с, анионы кислорода − в 48f, а ионы оксония и молекулы воды − в 16d и 8b позициях соответственно.

При введении в образцы ионов вольфрама изменяются структурные параметры полученных фаз. Происходит уменьшение параметра элементарной ячейки и расстояния между ионами сурьмы и анионами кислорода, при этом наблюдается увеличение расстояния между ионами оксония и анионами кислорода, находящимися в 48f позициях. Это делает возможным отрыв протона от молекул оксония и его транспорт по системе водородных связей, образованных молекулами воды.

Ключевые слова: твердые электролиты оксиды сурьмы, оксиды вольфрама, сурьмяная кислота, структура типа пирохлора

Для цитирования: Тимушков П. В., Бурмистров В. А., Ульянов М. Н., Семенов В. Н. Состав и структура вольфрамсурьмяной кислоты. Конденсированные среды и межфазные границы. 2024;26(1): 146–152. https://doi.org/10.17308/kcmf.2024.26/11818

For citation: Timushkov P. V., Burmistrov V. A., Ulyanov M. N., Semenov V. N. Composition and structure of tungsten antimony acid. *Condensed Matter and Interphases*. 2024;26(1): 146–152. https://doi.org/10.17308/kcmf.2024.26/11818

[⊠] Тимушков Пётр Викторович, e-mail: p.timushkov@mail.ru

[©] Тимушков П. В., Бурмистров В. А., Ульянов М. Н., В. Н. Семенов, 2024

Состав и структура вольфрамсурьмяной кислоты

1. Введение

Материалы, обладающие высокой протонной проводимостью, представляют интерес в связи с созданием электрохимических источников тока [1–2]. Одним из таких соединений является сурьмяная кислота (СК), имеющая структуру типа пирохлора (пр. гр. симм. Fd3m) [3]. Особенность СК состоит в том, что ее структура образована из сочлененных сурьмяно-кислородных октаэдров, имеющих отрицательный заряд. Для его компенсации необходимо наличие положительно заряженных частиц, таких как ионы оксония, серебра, калия, натрия и др. [4]. При этом молекулы воды располагаются в части позиций, расположенных в гексагональных полостях, и могут образовывать с протонами ионы оксония или диакваводородные ионы [4]. От количества молекул воды и оксония зависит величина протонной проводимости СК [5].

В работах [6-9] показано, что замещение ионов сурьмы Sb(V) на W(VI) в сложных оксидах сурьмы создает дефектность в кислородной подрешетке и способствует росту ионной проводимости. По-видимому, создание дополнительных вакансий, которые могут заполняться молекулами воды, должно приводить к перестройке протонгидратной подрешетки СК и, как следствие этого, к увеличению протонной проводимости. Образование вакантных позиций возможно введением в структуру СК ионов W(VI) с близким значением ионного радиуса [5], но имеющих отличную от ионов Sb(V) валентность. Однако данные по синтезу и исследованию структуры сложных оксидов сурьмы, допированных ионами вольфрама, натрия, калия, немногочисленны и относятся к образцам, синтезированным твердофазным способом [5-10]. Водородные формы, полученные замещением одновалентных ионов в этих соединениях на ионы оксония [11], не являются полностью гидратированными соединениями.

В связи с этим цель работы состояла в разработке способа синтеза вольфрамсурьмяной кислоты (ВСК) с различным содержанием ионов W(VI), определение концентрационного интервала устойчивости образующихся фаз и их структурных параметров.

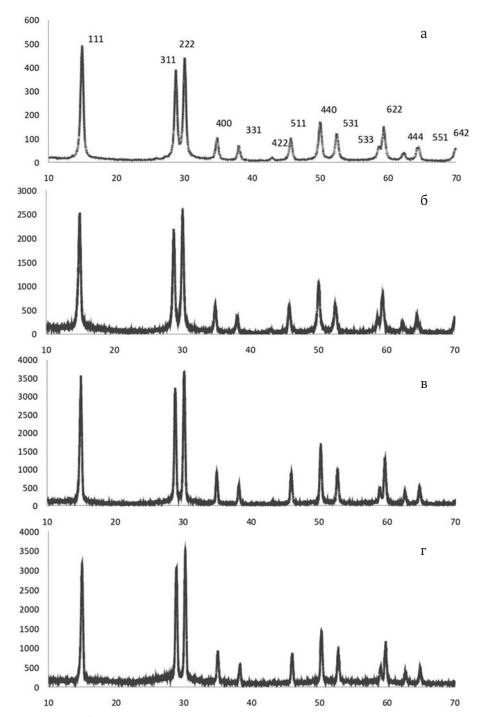
2. Экспериментальная часть

Синтез образцов ВСК проводили путем гидролиза предварительно окисленного азотной кислотой ${\rm SbCl_3}$ в присутствии ${\rm Na_2WO_4}$. Полученный осадок кипятили в течение 6 часов, выдер-

живали в маточном растворе в течение семи суток, отмывали дистиллированной водой и высушивали. Варьирование соотношения W/Sb в полученных фазах проводили за счет изменения количества Na₂WO₄ в исходных растворах.

Для получения водородной формы образцы выдерживали в 96%-ном растворе серной кислоты при комнатной температуре в течение длительного времени, осадок отмывали до нейтральной реакции и высушивали на воздухе.

Полученные образцы ВСК представляли собой порошок белого цвета и имели состав, который можно описать химической формулой:


$$H_{(2-x)}Sb_{(2-x)}W_xO_6\cdot nH_2O$$
 (0 < x \le 1.45; 0 < n \le 2.0). (1)

Количество протонов (оксония) в структуре полученных фаз ВСК определяли, используя ионный обмен. Для этого образец помещали в концентрированный раствор AgNO₃ и выдерживали в течение суток, после чего отмывали от избытка серебра и азотной кислоты до отсутствия реакции на ионы Ag⁺. Количество в структуре ионов серебра, сурьмы и вольфрама определяли методом энергодисперсионной рентгенофлуоресцентной спектроскопии с использованием EDXRF-спектрометра (AR QUANT'X компании Thermo Fisher Scientific) по стандартной методике.

Фазовый состав контролировали на дифрактометре Bruker D8 ADVANCE (Си $K_{\alpha 1}$ -излучение) в диапазоне углов дифракции 20 от 10 до 70° с шагом 0.01°. Структура полученных соединений была уточнена методом Ритвельда с помощью программного обеспечения Powdercell. Для генерации линейной формы дифракционных максимумов была выбрана функция псевдо-Фойгта. Для расчета расстояния между 16d, 16с и 48f позициями использовали формулы приведенные в работе[12].

3. Результаты и обсуждение

Рентгенограммы образцов СК и ВСК имеют одинаковый набор дифракционных максимумов, совокупность которых удовлетворительно описывается законами погасания для кристаллов кубической сингонии структуры типа пирохлора пространственной группы симметрии *Fd3m* [13]. По мере увеличения количества ионов вольфрама в ВСК не наблюдается существенного перераспределения относительных интенсивностей рефлексов с четными и нечетными индексами. При этом происходит смещение рефлексов в сторону больших углов (рис. 1) Это может сви-

Рис. 1. Рентгенограммы образцов СК и ВСК, полученных путем соосаждения в растворах, содержащих ионы сурьмы и вольфрама в разных соотношениях: CK(a), W/Sb = 1/15(6), W/Sb = 3/5(B), $W/Sb = 5/3(\Gamma)$

детельствовать о замещении части ионов сурьмы на ионы вольфрама и изменении структурных параметров.

Элементный анализ ВСК показал, что при увеличении концентрации ионов вольфрама в исходных растворах происходит их возрастание с одновременным уменьшением количест-

ва ионов сурьмы в твердой фазе. При этом наблюдается совпадение зависимости изменения соотношений W/Sb по данным рентгеноспектрального анализа с рассчитанными по формуле (1) (рис. 2). С учетом рентгеновского анализа это позволяет утверждать о замещении ионов Sb(V) на W(VI) в тех же кристаллографичеП.В.Тимушков и др.

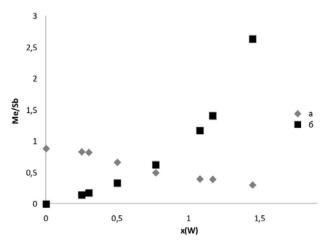


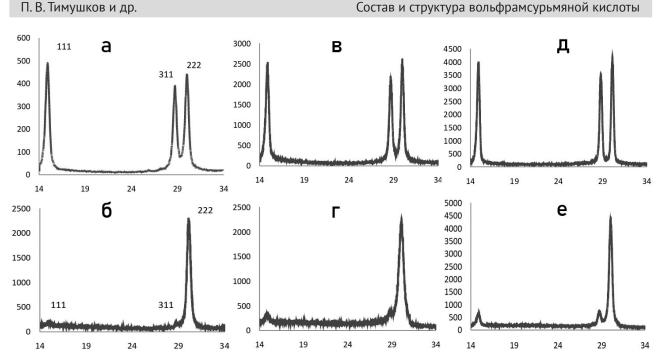
Рис. 2. Изменение соотношения ионов Ag/ (Sb + W) (a) и W/Sb (б) при допировании СК ионами вольфрама по данным рентгенофлуоресцентной спектроскопии и рассчитанных (сплошные линии) согласно формуле (1) для ВСК и Ag-форм ВСК при средней степени замещения протонов на ионы серебра, равной 0.93

ских позициях и считать полученные образцы ВСК твердыми растворами замещения. В предположении, что количество анионов кислорода в октаэдрах не изменяется, а число протонов должно соответствовать электронейтральности соединений, предложены химические формулы, описывающие составы полученных фаз ВСК (табл. 1).

Для экспериментального уточнения количества протонов в ВСК были проведены дополнительные исследования образцов, в которых ионы водорода в растворах азотнокислого серебра были замещены на ионы серебра (Адформы ВСК).

Как следует из данных рентгеновского анализа, при ионном обмене совокупность дифрак-

ционных максимумов не изменяется, а наблюдается уменьшение относительных интенсивностей рефлексов с четными и нечетными индексами (рис. 3). Это указывает на замещение протонов (оксония) на ионы серебра ВСК [11] без изменения симметрии кристаллической решетки. Количество ионов серебра в образцах ВСК уменьшается с ростом числа замещенных ионов сурьмы на ионы вольфрам (рис. 2), что свидетельствует об уменьшении числа протонов в образцах ВСК при введении ионов вольфрама.


Полученные данные о составе образцов позволяют предложить модель расположения ионов по правильной системе точек структуры типа пирохлора. Основной каркас структуры образуют сурьмяно-кислородные и вольфрам-кислородные октаэдры, сочлененные вершинами. При этом ионы сурьмы и вольфрама располагаются в центре октаэдров (16с-позиции), а анионы кислорода – в их вершинах (48f-позиции). Ионы оксония и молекулы воды при этом статистически располагаются в 16d и 8b позициях.

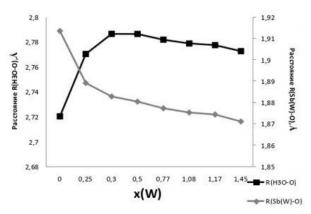
Полнопрофильный анализ ВСК показал хорошее совпадение предложенной модели распределения ионов по позициям структуры типа пирохлора с экспериментальными данными (табл. 2). Вместе с тем при увеличении количества ионов вольфрама в образцах ВСК происходит уменьшение параметра элементарной ячейки от 10.337 СК до 10.254 для ВСК состава $H_{0.55}Sb_{0.55}W_{1.45}O_6\cdot nH_2O$ (табл. 2). Одновременно с этим наблюдается уменьшение расстояния между 16c(Sb,W)-48f(O) позициями, а также рост расстояния между $16d(H_3O^+)-48f(O)$ позициями (рис. 4). Фиксируется увеличение параметра x кислородных атомов (табл. 2).

Таблица 1. Количество ионов Sb(V) и W(VI) в образцах ВСК и ионов серебра в Ag-формах ВСК, полученных по результатам рентгенофлуоресцентной спектроскопии

№ п/п	Н-фома ВСК			Ag-форма BCK	Епитто формила ВСИ		
	Sb атм.%	W атм.%	W/Sb	Ag/Sb	Брутто-формула ВСК		
1	100	0	0	0.886	$H_2Sb_2O_6\cdot nH_2O$		
2	87.5	12.5	0.142	0.954	$H_{1.75}Sb_{1.75}W_{0.25}O_6\cdot nH_2O$		
3	85.0	15.0	0.176	0.970	$H_{1.70}Sb_{1.70}W_{0.30}O_{6}\cdot nH_{2}O$		
4	75.0	25.0	0.333	0.887	$H_{1.50}Sb_{1.50}W_{0.50}O_6\cdot nH_2O$		
5	61.5	38.5	0.626	0.813	$H_{1.23}Sb_{1.23}W_{0.77}O_6\cdot nH_2O$		
6	46.0	54.0	1.173	0.869	$H_{0.92}Sb_{0.92}W_{1.08}O_6\cdot nH_2O$		
7	41.5	58.5	1.409	0.951	$H_{0.83}Sb_{0.83}W_{1.17}O_6\cdot nH_2O$		
8	27.5	72.5	2.636	1.092	$H_{0.55}Sb_{0.55}W_{1.45}O_6 \cdot nH_2O$		

Рис. 3. Рентгенограммы СК, ВСК и Ag-формы образцов СК и ВСК составов $H_2Sb_2O_6 \cdot nH_2O$ (a); $Ag_2Sb_2O_6 \cdot nH_2O$ (б); $H_{1.70}Sb_{1.70}W_{0.30}O_6 \cdot nH_2O$ (в); $Ag_{1.70}Sb_{1.70}W_{0.30}O_6 \cdot nH_2O$ (г); $Ag_{0.83}Sb_{0.83}W_{1.17}O_6 \cdot nH_2O$ (д); $Ag_{0.83}Sb_{0.83}W_{1.17}O_6 \cdot nH_2O$ (е)

Таблица 2. Расположение атомов по кристаллографическим позициям структуры воздушносухих образцов СК и ВСК состава $H_{(2-x)}Sb_{(2-x)}W_xO_6\cdot nH_2O$ (где $0< x \le 1.45$; $0< n \le 2.0$) по данным полнопрофильного рентгеновского анализа. Значения параметра a элементарной ячейки и фактора корреляции Rwp


Νº π/π	C DOW	16d	16c		48f	8b	Ŷ	Ъ	(0)
	Состав ВСК	H ⁺ /H ₃ O ⁺	Sb ⁵⁺	W ⁶⁺	O ²⁻	H ₂ O	a, Å	Rwp	<i>x</i> (O)
1	$H_2Sb_2O_6\cdot nH_2O$	16	16	0	48	8	10.34	11	0.32
2	$H_{1.75}Sb_{1.75}W_{0.25}O_6 \cdot nH_2O$	14	14	2	48	8	10.32	11.03	0.327
3	$H_{1.70}Sb_{1.70}W_{0.30}O_6 \cdot nH_2O$	13.6	13.6	2.4	48	8	10.31	9.84	0.329
4	$H_{1.50}Sb_{1.50}W_{0.50}O_6 \cdot nH_2O$	12	12	4	48	8	10.31	9.28	0.330
5	$H_{1.23}Sb_{1.23}W_{0.77}O_6 \cdot nH_2O$	9.84	9.84	6.16	48	8	10.29	8.44	0.330
6	$H_{0.92}Sb_{0.92}W_{1.08}O_6 \cdot nH_2O$	7.36	7.36	8.64	48	8	10.28	9.74	0.330
7	$H_{0.83}Sb_{0.83}W_{1.17}O_6 \cdot nH_2O$	6.64	6.64	9.36	48	8	10.27	9.72	0.330
8	$H_{0.55}Sb_{0.55}W_{1.45}O_6 \cdot nH_2O$	4.4	4.4	11.6	48	8	10.25	10.45	0.330

Это может быть связано с тем, что ионы вольфрама имеют большую электроотрицательность, чем ионы сурьмы, и изменяют электронную плотность вблизи анионов кислорода, что приводит к искажению сурьмяно-кислородных октаэдров, уменьшению межионных расстояний и параметра элементарной ячейки. Увеличение расстояний между оксонием и анионами кислорода делает более вероятным отрыв протона от молекул оксония и его транспорт по системе водородных связей, образованных молекулами воды.

4. Заключение

Установлены условия синтеза образцов ВСК состава $H_{(2-x)}Sb_{(2-x)}W_xO_6\cdot nH_2O$ (0< x < 1.45; 0< n < 2.0) для широкого интервала концентраций и показано, что фазы ВСК имеют структуру типа пирохлора, при этом ионы сурьмы и вольфрама статистически располагаются в 16с, анионы кислорода в 48f, а ионы оксония и молекулы воды в 16d и 8b позициях, соответственно.

Замещение части ионов сурьмы на ионы вольфрама в СК приводит к уменьшению параметра элементарной ячейки и изменению ме-

Рис. 4. Расстояние между позициями 16d-,16c-и 48f-позициями от доли замещения вольфрамом рассчитанных по формуле 2. $R(H_3O^+-O)$ – расстояние между 16d- и 48f-позициями, R(Sb(W)-O) – расстояние между 16c- и 48f-позициями

жионных расстояний, что обусловлено изменением энергии взаимодействия в вольфрам-кислородных октаэдрах и уменьшением количества протонов в структуре.

Заявленный вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

- 1. Курзина Е. А., Стенина И. А., Dalvi А., Ярославцев А. Б. Синтез и ионная проводимость твердых электролитов на основе фосфата лития-титана. *Неорганические материал.* 2021;57(10): 1094–1101. https://doi.org/10.31857/S0002337X21100079
- 2. Bedin V. Y., Kazachiner O. V., Asabina E. A., ... Yaroslavtsev A. B. Phase formation and ionic conductivity of $\mathrm{Na_{1+2x}Zn_{x}Zr_{2-x}(PO_{4})_{3}}$ phosphates. *Inorganic Materials*. 2022;58(1): 64–70 https://doi.org/10.1134/S0020168522010046
- 3. Полынова Т. Н., Порай-Кошиц М. А. Стереохимия соединений пятивалентной сурьмы. *Журнал структурной химии*. 1966;7(4): 642–655. Режим доступа: https://jsc.niic.nsc.ru/article/59076/
- 4. Строганов Е. В, Смирнов Ю. Н., Салтыкова В. А., Маркин В. Н. Структура пирохлора в свете рассмотрения элементарных структурных мотивов. Вестник Ленинградского государственного университета. 1979;4(1): 46-48.

- 5. Коваленко Л. Ю., Бурмистров В. А., Захарьевич Д. А., Калганов Д. А. О механизме протонной проводимости полисурьмяной кислоты. *Челябинский физико-математический журнал.* 2021;6(1): 95–110. https://doi.org/10.47475/2500-0101-2021-16108
- 6. Бурмистров В. А., Захарьевич Д. А. Образование ионпроводящих фаз со структурой дефектного пирохлора в системе $\rm K_2O-Sb_2O_3-WO_3$. *Неорганические материалы*, 2003;39(1): 77–77 https://doi.org/10.1023/A:1021895304326
- 7. Лупицкая Ю. А., Бурмистров В. А. Фазы со структурой типа пирохлора, образующиеся в системе (ух) K_2CO_3 -х Na_2CO_3 -у Sb_2O_3 -2(2-у) WO_3 (0 \leq x \leq y, 1.0 \leq y \leq 1.375) при нагревании. Вестник Челябинского государственного университета. 2009;(25): 50–54. Режим доступа: https://elibrary.ru/item. asp?id=12786139
- 8. Лупицкая Ю. А., Бурмистров В. А., Калганов Д. А. Структура и ионная проводимость твердых растворов в системе $\rm K_2CO_3$ AgNO $_3$ Sb $_2O_3$ MeO $_3$ (Me = W, Mo). Поверхность. Рентгеновские, синхротронные и нейтронные исследования.2015;(6): 83–83. https://doi.org/10.7868/S0207352815060141
- 9. Knyazev A. V., Tananaev I. G., Kuznetsova N. Y., Smirnova N. N., Letyanina I. A., Ladenkov I. V. Crystal structure and thermodynamic properties of potassium antimony tungsten oxide. *Thermochimica acta*. 2010;499(1-2): 155–159. https://doi.org/10.1016/j.tca.2009.12.002
- 10. Меженина О. А., Бурмистров В. А., Бирюкова А. А. Структура и ионообменные свойства кристаллической вольфрамосурьмяной кислоты. *Неорганические материалы*. 2015;51(2): 208–208. https://doi.org/10.7868/S0002337X15010133
- 11. Riviere M., Fourquet J. L., Grins J., Nygren M. The cubic pyrochlores $H_{2x}Sb_{2x}W_{2-2x}O_6$ · nH_2O ; structural, thermal and electrical properties. *Materials Research Bulletin*. 1988;23(7): 965-975. https://doi.org/10.1016/0025-5408(88)90051-7
- 12. Михайлова Л. И., Семёнов Н. Е, Фёдоров Н. Ф. Вычисление параметров элементарных ячеек кубических пирохлоров. Ленингр. технол. ин-т.; 1979. 25 с.
- 13. Groult D., Michel C., Raveau B. Sur de nouveaux pyrochlores $ASbWO_6~(A=H_3O,NH_4)$ et $AgSbWO_6~H_2O.$ Journal of Inorganic and Nuclear Chemistry. 197;35(9): 3095-3101.~https://doi.org/10.1016/0022-1902(73)80007-7

Информация об авторах

Тимушков Пётр Викторович, ассистент кафедры химии твердого тела и нанопроцессов, Челябинский государственный университет (Челябинск, Российская Федерация).

https://orcid.org/0009-0005-2226-3076 p.timushkov@mail.ru

П.В.Тимушков и др.

Состав и структура вольфрамсурьмяной кислоты

Бурмистров Владимир Александрович, д. ф.-м. н., профессор, профессор кафедры химии твердого тела и нанопроцессов, Челябинский государственный университет (Челябинск, Российская Федерация).

https://orcid.org/0000-0002-7862-6017 burmistrov@csu.ru

Ульянов Максим Николаевич, к. ф.-м. н., доцент кафедры общей и теоретической физики Челябинский государственный университет (Челябинск, Российская Федерация).

https://orcid.org/0000-0003-0066-9559 max-39@yandex.ru Семенов Виктор Николаевич, д. х. н., профессор, заведующий кафедрой общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0000-0002-4247-5667 office@chem.vsu.ru

Поступила в редакцию 28.04.2023; одобрена после рецензирования 19.05.2023; принята к публикации 15.06.2023; опубликована онлайн 25.03.2024.