

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК.546.863.22 + 763.24 https://doi.org/10.17308/kcmf.2024.26/11934

Физико-химическое исследование фазообразования в системе Sb₂S₃-Cr₂Te₃

И. И. Алиев¹[∞], Э. И. Мамедов², Ф. В. Юсубов², Л. Ф. Масиева², Х. М. Гашимов³

¹Институт катализа и неорганической химии имени М. Ф. Нагиева, пр. Г. Джавида 113, Баку Аz 1143, Азербайджан

²Азербайджанский технический университет, пр. Г. Джавида 116, Баку Аz 1146, Азербайджан

³Азербайджанский государственный экономический университет, ул. Истиглалият, 6, Баку Аz 1001, Азербайджан

Аннотация

Халькогениды хрома и системы на их основе изучены недостаточно. Халькогенидные соединения хрома Cr_2X_3 (X = S, Se, Te), новые фазы и твердые растворы на их основе находят широкое применение в полупроводниковой технике, поскольку относятся к материалам с термоэлектрическими и магнитными свойствами. Целью данной работы является изучение химических взаимодействий в системе Sb_2S_3 - Cr_2Te_3 , построение фазовой диаграммы, поиск новых фаз и твердых растворов.

Методами физико-химического анализа (дифференциально-термического, рентгенофазового, микроструктурного анализа, а также измерением плотности и микротвердости) изучено химическое взаимодействие в системе Sb₂S₃-Cr₂Te₃ и построена ее фазовая диаграмма. Фазовая диаграмма системы квазибинарна и характеризуется образованием четверного соединения Cr₂Sb₂S₃-Te₃.

Соединение $Cr_2Sb_2S_3Te_3$ плавится инконгруэнтно при 610 °С. Микроструктурный анализ показывает, что в системе при комнатной температуре образуются твердые растворы на основе Sb_2S_3 , которые достигают до 5 мол. % Cr_2Te_3 , а на основе Cr_2Te_3 до – 8 мол. % Sb_2S_3 . Образующаяся в системе Sb_2S_3 - Cr_2Te_3 эвтектика содержит 20 мол. % Cr_2Te_3 и имеет температуру плавления 430 °С. Соединение $Cr_2Sb_2S_3Te_3$ кристаллизуется в тетрагональной сингонии с параметрами элементарной ячейки: a = 10.03; c = 16.67 Å, z = 7, $\rho_{\text{пикк.}} = 5.72$ г/см³, $\rho_{\text{рент.}} = 5.765$ г/см³.

Ключевые слова: система, фаза, твердый раствор, эвтектика, сингония

Для цитирования: Алиев И. И., Мамедов Э. И., Юсубов Ф. В., Масиева Л. Ф., Гашимов Х. М. Физико-химическое исследование фазообразование в системе Sb₂S₃-Cr₂Te₃. *Конденсированные среды и межфазные границы*. 2024;26(2): 197–203. https://doi.org/10.17308/kcmf.2024.26/11934

For citation: Aliev I. I., Mamedov E. I., Yusubov F. V., Masieva L. F., Gashimov Kh. M. Physicochemical study of phase formation in the Sb₂S₃–Cr₂Te₃ system. *Condensed Matter and Interphases*. 2024;26(2): 197–203. https://doi.org/10.17308/ kcmf.2024.26/11934

🖂 Алиев Имир Ильяс, e-mail: aliyevimir@rambler.ru

© Алиев И. И., Мамедов Э. И., Юсубов Ф. В., Масиева, Л. Ф., Гашимов Х. М., 2024

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

И.И.Алиев и др.

Физико-химическое исследование фазообразования в системе Sb₂S₂-Cr₂Te₂

1. Введение

Поиск функциональных материалов, способных удовлетворить постоянно растущие потребности электронной промышленности, всегда находится в центре внимания. К материалам, отвечающим этим требованиям, относятся халькогенидные соединения сурьмы и сплавы на их основе. Сульфиды и селениды сурьмы используются в оптических системах в качестве светочувствительных материалов [1–7]. Теллуриды сурьмы являются материалами с термоэлектрическими свойствами и применяются в качестве преобразователей энергии [8–15].

Известно, что сам элемент хром и халькогенидные соединения используются не только для изготовления магнитных материалов, но и для получения ферримагнетиков сложного состава с другими халькогенидами. Тройные и более сложные соединения на основе халькогенидов хрома обладают высокими ферромагнитными свойствами [16–19]. В связи с этим при химическом взаимодействии фоточувствительных халькогенидов сурьмы с магнитными халькогенидами хрома получение фоточувствительных и магнитооптических материалов, сохраняющих свойства исходных соединений, имеет как научное, так и практическое значение.

Соединение Sb₂S₃ плавится конгруэнтно при 559.5 °С и кристаллизуется в ромбической сингонии с параметрами решетки: a = 11.229; b = 11.310; c = 3.83 Å, пр. гр. $Pbnm - D^{16}_{2h}$, плотность 4.63 г/см³, микротвердость 1400 МПа [20]. Соединение Cr₂Te₃ конгруэнтно плавится при 1280 °С и кристаллизуется в гексагональной сингонии с параметрами решетки: a = 6.811; c = 12.062 Å, пр. гр. hP20 - P31c [21]. Фазовый переход α -Cr₂Te₃ имеет температуру 480 °С.

2. Экспериментальная часть

Сплавы системы $Sb_2S_3 - Cr_2Te_3$ синтезировали из компонентов Sb_2S_3 и Cr_2Te_3 в вакуумированной кварцевой ампуле при давлении 0.133 Па в интервале температур 600–1100 °C. Образцы подвергали термообработке при 500 °C в течение 240 ч для обеспечения равновесия.

Равновесные сплавы исследовали методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализа, а также путем измерения микротвердости и плотности.

ДТА-анализ образцов проводили на низкочастотном пирометре HTP-73, погрешность составляла ±5 °C. Запись кривых нагревания и охлаждения проводили на пирометре Н.С.Курнакова марки НТР-73. Исследуемое вещество помещали в кварцевую ампулу длиной 0.10-0.11 м, диаметром 8–10·10⁻³ м, которую откачали до 0.1333 Па и запаивали. Термопару, пропущенную через отверстие соответствующего диаметра керамического блока, подводили к пробе снизу. Для нагрева использовали трубчатую печь, внутри которой помещали стальной блок. В качестве эталонов использовали NaCl, KCl, Na₂SO₄, K₂SO₄, кривые нагревания и охлаждения которых записывали в аналогичных условиях со скоростью нагрева 10 °С/мин. На основе данных, полученных для эталонных веществ, построили градировочную кривую, которую проверили через 15 дней. В работе в основном анализировали термические эффекты, обнаруженные на кривых нагревания. В качестве термопары использовался хромель-алюмель.

РФА проводили на рентгеновском приборе модели D2 PHASER в CuK_{α}- излучении с Ni-фильтром.

Анализ микроструктуры (МСА) выполняли под микроскопом МИМ-8. Раствор 1 н. HNO_3 : $H_2O_2 = 1:1$ использовали в качестве осветлителя для определения фазовых границ. Микротвердость измеряли на металлографическом микроскопе ПМТ-3. Плотность образцов определяли пикнометрическим методом, в качестве наполнителя был взят толуол.

3. Результаты и их обсуждение

Образцы, богатые Sb₂S₃, легко плавятся, образуя компактную массу. После синтеза соединение $\mathrm{Cr}_2\mathrm{Te}_3$ образуется в виде неоднородных слитков. Поэтому неоднородный слиток измельчали в порошок и прессовали под давлением 200 атм, получая его в виде таблеток. В форме таблетки образец помещали в кварцевую ампулу и запечатывали, отсасывая воздух и плавя его в газовой лампе. Затем проводился твердофазный синтез путем термообработки образца при температуре 800 °C в течение 100 часов. Убедившись в образовании соединения $\mathrm{Cr}_2\mathrm{Te}_3$, были синтезированы сплавы системы $\mathrm{Sb}_2\mathrm{S}_3-\mathrm{Cr}_2\mathrm{Te}_3$.

Сплавы системы Šb₂S₃–Čr₂Te₃ исследованы методами физико-химического анализа. По данным ДТА установлено, что на термограммах сплавов получены два и три эндотермических эффекта.

После фазового анализа сплавов системы было установлено, что сплавы вблизи исходных компонентов и содержащие 50 мол. %

И.И.Алиев и др.

Физико-химическое исследование фазообразования в системе Sb₂S₂-Cr₂Te₂

 ${\rm Cr_2Te_3}$ являются однофазными. При содержании выше 5 мол. % ${\rm Cr_2Te_3}$ образуется вторая фаза, т. е. начинаются двухфазные области (рис. 16). На рис. 1 представлены микроструктуры сплавов, содержащие 5, 10 и 50 мол. % ${\rm Cr_2Te_3}$ системы ${\rm Sb_2S_3-Cr_2Te_3}$. Как показано, 2 мол. % ${\rm Cr_2Te_3}$ и образец с 50 мол. % ${\rm Cr_2Te_3}$ представляют собой однофазные твердые растворы (рис. 1а, в). Образец, содержащий 10 мол. % ${\rm Cr_2Te_3} -$ двухфазный (рис. 16).

Для подтверждения результатов ДТА и МСА был проведен рентгенофазовый анализ сплавов 30, 50 и 92 мол. % Cr_2Te_3 системы $Sb_2S_3-Cr_2Te_3$ (рис. 2). Как видно из рис. 2, дифракционные линии образца 92 мол. % Cr_2Te_3 не отличаются от рентгенограммы соединения Cr_2Te_3 , и наблюдается небольшой сдвиг. Этот образец представляет собой твердый раствор на основе Cr_2Te_3 . На дифрактограммах образцов с 30 и 70 мол. % Cr_2Te_3 присутствуют диф-

Рис. 1. Микроструктуры сплавов системы Sb_2S_3 - Cr_2Te_3 (×340): а) – 5 мол. %, б) – 10 мол. %, в) – 50 ($Cr_2Sb_2S_3Te_3$) мол. % Cr_2Te_3

Рис. 2. Дифрактограммы сплавов системы Sb₂S₃–Cr₂Te₃: $1 - Sb_2S_3$; 2 - 30; 3 - 50 (Cr₂Sb₂S₃Te₃); 4 - 70; 5 - 92; 6 - 100 мол. % Cr₂Te₃

И.И.Алиев и др.

Физико-химическое исследование фазообразования в системе Sb₂S₂-Cr₂Te₂

ракционные линии исходных компонентов, т.е. образцы двухфазные.

Дифракционные пики на дифрактограмме образца, содержащего 50 мол. % Cr_2Te_3 , отличаются от дифракционных линий на дифрактограммах исходных компонентов межплоскостными расстояниями и интенсивностью. В результате было получено новое четверное соединение, содержащее $Cr_2Sb_2S_3Te_3$ (рис. 2). Соединение $Cr_2Sb_2S_3Te_3$ можно рассматривать как производное $CrSbTe_3$, полученное анионным замещением $Cr_2Sb_2S_3Te_3$ (сокращенно $CrSbS_{1.5}Te_{1.5}$).

В результате физико-химического анализа построена квазибинарная фазовая диаграмма системы Sb_2S_3 - Cr_2Te_3 (рис. 3). Соединение $Cr_2Sb_2S_3Te_3$ образуется в результате перитектической реакции: Ж + $Cr_2Te_3 \leftrightarrow Cr_2Sb_2S_3Te_3$ при 610 °C.

Ликвидус системы Sb_2S_3 - Cr_2Te_3 состоит из моновариантных равновесных кривых для α -твердого раствора на основе соединения Sb_2S_3 , нового соединения $Cr_2Sb_2S_3$ Те и β -твердого раствора на основе соединения Cr_2Te_3 . Образовавшаяся в системе бинарная эвтектика имеет содержание Cr_2Te_3 20 мол. % и температуру плавления 430 °C.

Кристаллизация α-твердого раствора завершается в системе в интервале концентраций 0–20 мол. % Сг₂Те₃. В диапазоне 0-20 мол. % ${\rm Cr}_{2}{\rm Te}_{3}$ ниже кривой ликвидуса находятся двухфазные сплавы (Ж+б) (рис. 3). Двухфазные сплавы, состоящие из (б + ${\rm Cr}_{2}{\rm Sb}_{2}{\rm S}_{3}{\rm Te}_{3}$), ниже линии солидуса кристаллизуются в области 5–50 мол. % ${\rm Cr}_{2}{\rm Te}_{3}$. В интервале концентраций 50–92 мол. % ${\rm Cr}_{2}{\rm Te}_{3}$ ниже линии солидуса кристаллизуются двухфазные сплавы (${\rm Cr}_{2}{\rm Sb}_{2}{\rm S}_{3}{\rm Te}$ + α) Некоторые физико-химические свойства сплавов приведены в табл. 1.

В результате измерения микротвердости были получены три различных значения. Величина микротвердости (1400–1470) МПа соответствует микротвердости (1400–1470) МПа соответствует микротвердости α -твердого раствора на основе Sb₂S₃. Величина микротвердости (1750– 1880) МПа соответствует микротвердости соединения Cr₂Sb₂S₃Te₃, а величина (2070–2150) МПа – микротвердости β -твердого раствора на основе Cr₂Te₃. Зависимость плотности сплавов системы от состава показывает, что резкого изменения не наблюдается.

По результатам рентгенофазового анализа установлено, что соединение $Cr_2Sb_2S_3Te_3$ кристаллизуется в тетрагональной сингонии с параметрами решетки: *a* = 10.03; *c* = 16.67 Å, *z* = 7, $\rho_{\text{пикн.}} = 5.72 \text{ г/см}^3$, $\rho_{\text{рент.}} = 5.75 \text{ г/см}^3$. Кристаллографические данные соединения $Cr_2Sb_2S_3Te_3$ приведены в табл. 2.

Рис. 3. Фазовая диаграмма системы Sb₂S₃-Cr₂Te₃

И.И.Алиев и др. Физико-химическое исследование фазообразования в системе Sb₂S₂-Cr₂Te₂

Таблица 1. Состав сплавов системы Sb₂S₃-Cr₂Te₃, результаты ДТА, определения микротвердости и плотности

Состав, мол. %				Микротвердость, МПа		
Sb ₂ S ₃	Cr ₂ Te ₃	Термические эффекты, °С	11лотность, 10 ³ кг/м ³	α	Sb ₂ Cr ₂ S ₃ Te ₃	β
				<i>P</i> = 0.1 H		<i>P</i> = 0.2 H
100	0.0	560	4.63	1400	_	_
97	3.0	500, 555	4.70	1450	_	_
95	5.0	470, 530	4.78	1470	_	_
90	10	440, 515	4.86	1470	_	_
85	15	430, 480	4.97	_	-	_
80	20	430	5.06	Эвтек.	Эвтек.	—
70	30	430, 610, 700	5.29	_	_	_
60	40	430, 610, 920	5.51	_	1750	_
50	50	610, 1090	5.72	_	1750	3280
40	60	540, 610, 1150	5.94	_	1800	3280
30	70	540, 610, 1195	6.16	_	1850	3280
20	80	540, 610, 1230	6.39	_	1880	3280
10	90	540, 610, 1260	6.65	_	_	3280
5.0	95	850, 1270	6.83	_	_	3280
0.0	100	480, 1280	6.82	_	_	3250

Таблица. 2. Межплокостные расстояния (*d*), интенсивность (*I*) линий и идексы решетки (hkl) на дифрактограмме соединение $Cr_2Sb_2S_3Te_3$

N⁰	<i>I</i> , %	<i>d</i> _{экс.,} Å	d _{выч.,} Å	$1/d^2_{_{\mathfrak{SKC.},}}$ Å	$1/d^2_{\text{выч.,}}$ Å	hkl
1	5.9	10.0289	10.0289	0.0099	0.0099	100
2	15.8	5.5561	5.5561	0.0324	0.0324	003
3	17.4	5.0252	5.0125	0.0396	0.0398	200
4	4.1	3.8528	3.8490	0.0674	0.0675	104
5	6.1	3.3509	3.3445	0.0891	0.0894	300
6	22.5	3.2277	3.2042	0.0960	0.0974	204
7	100	3.1236	3.1159	0.1025	0.1030	311
8	4.4	2.7857	2.7810	0.1288	0.1293	320
9	26	2.6254	2.6380	0.1451	0.1437	322
10	30.	2.3265	2.3344	0.1848	0.1835	331
11	19	2.1097	2.1035	0.2247	0.2260	217
12	23	2.0357	2.0404	0.2413	0.2402	108
13	8.3	1.9602	1.9672	0.2602	0.2584	510
14	8.6	1.7506	1.7453	0.3265	0.3283	426
15	7.2	1.6772	1.6718	0.3555	0.3578	600
16	4.9	1.5776	1.5788	0.4018	0.4012	601
17	6.2	1.5639	1.5665	0.4089	0.4075	540
18	7.1	1.4570	1.4580	0.4711	0.4704	339
19	6.0	1.3475	1.3492	0.5507	0.5493	722
20	6.8	1.3142	1.3170	0.5790	0.5765	730

4. Выводы

Таким образом, методами физико-химического анализа изучена система $Sb_2S_3-Cr_2Te_3$ и построена ее фазовая диаграмма. Установлено, что разрез $Sb_2S_3-Cr_2Te_3$ является квазибинарным эв-

тектического типа. Образуется четверное соединение $Cr_2Sb_2S_3Te_3$ в системе при анионном обмене компонентов в соотношении 1:1. Соединение $Cr_2Sb_2S_3Te_3$ образуется по перитектической реакции M + Cr, Te₃ \leftrightarrow Cr, Sb₂S₃Te₃ при 610 °C. В системе И.И.Алиев и др.

между α -фазой и Cr₂Sb₂S₃Te₃образуется эвтектика состава 20 мол. % Cr₂Te₃, температура 430 °C. В системе на основе Sb₂S₃ твердые растворы достигают до 5 мол. % Cr₂Te₃, а на основе Cr₂Te₃ – до 8 мол. % Sb₂S₃. По результатам рентгенофазового анализа установлено, что соединение Cr₂Sb₂S₃Te₃ кристаллизуется в тетрагональной сингонии с параметрами решетки: a = 10.03; c = 16.67 Å, z = 7, плотность $\rho_{пикн.} = 5.72$ г/см³, $\rho_{рент.} = 5.5$ г/см³.

Заявленный вклад авторов

Алиев И. И. – написание статьи и руководство научным исследованием; Мамедов Э. И. – идея научной работы и написание статьи; Юсубов Ф. В. – научное редактирование текста, итоговые выводы; Масиева Л. Ф. – исполнитель научного исследования; Гашимов Х. М – исполнитель научного исследования.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Zhou Y., Wang L., Chen S., ... Tang J. Thin-film Sb_2Se_3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. *Nature Photonics*. 2015;9: 409–415. https://doi.org/10.1038/nphoton. 2015.78

2. Fernandez A., Merino M. Preparation and characterization of Sb_2Se_3 thin films prepared by electrodeposition for photovoltaic applications. *Thin Solid Films*. 2000;366: 202–206. https://doi.org/10.1016/ s0040-6090(00)00716-1

3. Chen, C., Bobela D. C., Yang Y., ... Tang J. Characterization of basic physical properties of Sb₂Se₃ and its relevance for photovoltaics. *Frontiers of Optoelectronics*. 2017;10: 18–30. https://doi.org/10.1007/s12200-017-0702-z

4. Магомедов А. З., Алиев А. О., Асланов М. А., Мусаева С. М., Джавадова С. Д. Особенность температурной зависимости спектрального распределения фоточувствительности сегнетоэлектриковполупроводников Sb₂S₃–Sb₂Se₃. Вестник Бакинского университета. Серия физико-математических наук. 2004;4: 163–169.

5. Ju T., Koo B., Jo J. W., Ko M. J. Enhanced photovoltaic performance of solution-processed Sb_2Se_3 thin film solar cells by optimizing device structure. *Current Applied Physics*. 2020;20(2): 282–287. https://doi. org/10.1016/j.cap.2019.11.018

6. Kumar P., Sathiaraj T. S., Thangaraj R. Optical properties of amorphous Sb₂Se₄:Sn films. *Philosophical*

Magazine Letters. 2010;90(3): 183–192 https://doi. org/10.1080/09500830903520704

7. Rajpure K. Y., Bhosale C. H. Effect of Se source on properties of spray deposited Sb_2Se_3 thin films. *Materials Chemistry and Physics*. 2000;62: 169–174. https://doi.org/10.1016/s0254-0584(99)00173-x

8. Vieira E. M. F., Figueira J., Pires A. L., ... Goncalves L. M. Enhanced thermoelectric properties of Sb_2Te_3 and Bi_2Te_3 films for flexible thermal sensors. *Journal of Alloys and Compounds*. 2019;774(5): 1102– 1116. https://doi.org/10.1016/j.jallcom.2018.09.324

9. Zhang H., Liu C.-X., Qi X.-L., Dai X., Fang Z., Zhang, S.-C. Topological insulators in Bi_2Se_3 , Bi_2Te_3 and Sb_2Te_3 with a single Dirac cone on the surface. *Nature Physics*. 2009;5(6): 438–442. https://doi. org/10.1038/nphys1270

10. Wang G., Cagin T. Electronic structure of the thermoelectric materials Bi_2Te_3 and Sb_2Te_3 from first-principles calculations. *Physical Review B*. 2007;76: 075201-8. https://doi.org/10.1103/ physrevb.76.075201

11. Xu B., Zhang J., Yu G., Ma S., Wang Y., Wang Y. Thermoelectric properties of monolayer Sb₂Te₃. *Journal of Applied Physics*. 2018;124(16): 165104. https://doi.org/10.1063/1.5051470

12. Kulbachinskii V. A., Kytin V. G., Zinoviev D. A., ... Banerjee A. Thermoelectric properties of Sb₂Te₃based nanocomposites with graphite. *Semiconductors*. 2019;53: 638–640 https://doi.org/10.1134/ s1063782619050129

13. Liu X., Chen J., Luo M., ... Tang J. Thermal evaporation and characterization of Sb_2Se_3 thin film for substrate Sb_2Se_3/CdS solar cells. *ACS Applied Materials & Interfaces*. 2014;6: 10687–10695. https://doi.org/10.1021/am502427s

14. Kutasov V. A. Shifting the maximum figure-of-merit of $(Bi, Sb)_2(Te,Se)_3$ thermoelectrics to lower temperatures. In: *Thermoelectrics Handbook*. Boca Raton, FL, USA: CRC Press; 2005. 37-18–37-31. https://doi.org/10.1201/9781420038903.ch37

15. Заргарова М. И., Мамедов А. Н., Аждарова Д. С., Ахмедова (Велиев) Дж. А., Абилов Ч. И. *Неорганические вещества, синтезированные и исследованные в Азербайджане*. Справочник. Баку: Элм.; 2004. 462 с.

16. Yamashita O., Yamauchi H., Yamaguchi Y. et.al. Magnetic properties of the system CuCr_2Se_4 .xYx (Y=C1, Br). *Journal of the Physical Society of Japan*. 1979;47(2): 450–454. https://doi.org/10.1143/jpsj.47.450

17. Koroleva L. I., Lukina L. N., Busheva E. V., Shabunina G. G., Aminov T. G. $CuCr_2Se_{4-x}Sb_x$: a new magnetic semiconductor. *Inorganic Materials*. 1999;35(12): 1217–1220. Available at: https://elibrary. ru/item.asp?id=13328594

18. Aminov T. G., Arbuzova T. I., Busheva E. V., Shabunina G. G. CuCr_{2-x}SSb_xSe₄ and Cu_{1-y}Sb_yCr₂Se₄

И.И.Алиев и др.

Физико-химическое исследование фазообразования в системе Sb₂S₃-Cr₂Te₃

solid solution. *Inorganic Materials*. 2000;36(2): 114–118. https://doi.org/10.1007/BF02758008

19. Nakatani I., Nose H., Masumoto K. Magnetic properties of $CuCr_2Se_4$ single crystals. *Journal of Physics and Chemistry of Solids*. 1978;39(7): 743–749. https://doi.org/10.1016/0022-3697(78)90008-2

20. Физико-химические свойства полупроводниковых веществ. Справочник. М.: Изд. Наука. 1979. 339 с.

21. Диаграммы состояния двойных металлических систем. Справочник. В 3-х т. / Под. ред. Н.П.Лякишева. М.: Машиностроение. 1997. 1023 с.

Информация об авторах

Алиев Имир Ильяс оглы, д. х. н., профессор, руководитель лаборатории, Институт катализа и неорганической химии им. акад. М. Ф. Нагиева Национальной академии наук Азербайджана (Баку, Азербайджан).

https://orcid.org/0000-0002-7694-1400 aliyevimir@rambler.ru *Мамедов Эльман Идрис оглы,* д. х. н., профессор, Азербайджанский технический университет (Баку, Азербайджан).

https://orcid.org/0009-0000-8948-7019 kimya@aztu.edu.az

Юсубов Фехраддин Вели оглы, д. х. н. профессор, заведующий кафедрой Азербайджанский технический университет (Баку, Азербайджан).

https://orcid.org/0000-0002-3496-8947 yusubov@asoiu.edu.az

Масиева Ламан Фахири кызы, аспирантка, Азербайджанский технический университет (Баку, Азербайджан).

https://orcid.org/0000-0002-9908-7294 leman_mesiyeva@mail.ru

Гашимов Халиг Мамед оглы, к. х. н., доцент, Азербайджанский государственный экономический университет (Баку, Азербайджан).

https://orcid.org/0000-0002-2208-2655 xaliq1949@mail.ru

Поступила в редакцию 28.09.2023; одобрена после рецензирования 10.11.2023; принята к публикации 15.11.2023; опубликована онлайн 25.06.2024.