

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 546.05, 546.161 https://doi.org/10.17308/kcmf.2024.26/11937

Рентгенолюминесценция нанопорошков Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}

Ю. А. Ермакова, П. П. Федоров, В. В. Воронов, С. Х. Батыгов, С. В. Кузнецов

ФГБУН Федеральный исследовательский центр «Институт общей физики им. А. М. Прохорова Российской академии наук», ул. Вавилова, 38, Москва 119991, Российская Федерация

Аннотация

Методом осаждения из нитратных водных растворов были синтезированы порошки однофазных твердых растворов Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075} (x = 0.00, 0.20, 0.25, 0.30, 0.35 и 0.40). Параметры решетки линейно увеличиваются при увеличении содержания бария. Зафиксировано существенное увеличение интенсивности рентгенолюминесценции европия при постоянной концентрации европия и увеличении содержания бария. Интенсивность полосы люминесценции с наибольшей интенсивностью ${}^5D_0 \rightarrow {}^7F_1$ при увеличении содержания бария увеличивается по экспонециальному закону. При увеличении содержания бария наблюдается синее и красное смещение положения полос люминесценции европия для ${}^5D_0 \rightarrow {}^7F_1$ и ${}^5D_0 \rightarrow {}^7F_4$ соответственно.

Ключевые слова: фторид стронция, фторид бария, европий, рентгенолюминесценция

Источник финансирования: Исследование выполнено за счет гранта Российского научного фонда № 22-13-00401, https://rscf.ru/en/project/22-13-00401/.

Для цитирования: Ермакова Ю. А., Федоров П. П., Воронов В. В., Батыгов С. Х., Кузнецов С. В. Рентгенолюминесценция нанопорошков Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}. *Конденсированные среды и межфазные границы*. 2024;26(2): 247–252. https:// doi.org/10.17308/kcmf.2024.26/11937

For citation: Ermakova Yu. A., Fedorov P. P., Voronov V. V., Batygov S. Kh., Kuznetsov S. V. X-ray luminescence of Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075} nanopowders. *Condensed Matter and Interphases*. 2024;26(2): 247–252. https://doi.org/10.17308/kcmf.2024.26/11937

🖂 Кузнецов Сергей Викторович, e-mail: kouznetzovsv@gmail.com

© Ермакова Ю. А., Федоров П. П., Воронов В. В., Батыгов С. Х., Кузнецов С. В., 2024

Ю. А. Ермакова и др.

1. Введение

Новым направлением алмазной фотоники является внедрение редкоземельных элементов в кристаллическую решетку алмаза таким образом, чтобы образовался люминесцентный центр с полосами люминесценции внедренного иона. К настоящему времени существуют два основных технологических подхода. Первый заключается в использовании прекурсоров (как неорганической, так и органической природы), полученных методами осаждения из паровой фазы (CVD) или методом «высокое давление-высокая температура» (HPHP) [1–5]. Вторым способом является внедрение наночастиц целевого состава и их физическая инкапсуляция внутрь алмаза, выполненная с использованием CVD метода [6]. Наибольшие интенсивности люминесценции достигнуты для второго подхода. Это обусловлено тем, что внедряются целевые вещества со строго подобранными функциональными составами. В качестве люминесцентного иона в большинстве работ используют европий, так как он является зондовым элементом, позволяющим как выявлять локальное окружение и контролировать его изменение, так и выявлять процессы восстановления за счет возможности перехода Еи³⁺→Еи²⁺. К настоящему времени успешно внедрены Eu₂O₃ [2], CeF₃ [7], HoF₃ [8], EuF₃ [9] и β-NaGdF₄:Eu [10]. Для надежной интерпретации аналитического люминесцентного отклика необходимо достижение наибольшей интенсивности люминесценции от разрабатываемого композиционного материала. Для этого необходимо подбирать состав люминофоров, не обладающий концентрационным тушением и полиморфными превращениями при высокой температуре процесса вращивания наночастиц. Эффективными термически стабильными люминесцентными матрицами с широким диапазоном легирования редкоземельными элементами являются фториды щелочноземельных элементов [11, 12], которые не обладают полиморфными превращениями вплоть до температуры плавления. Для приготовления порошков фторидов используют различные методы синтеза, такие как механохимия, горение, разложение фторацетатов, сольво- и гидротермальные методы, а также соосаждение из водных растворов, которое позволяет получать большие партии порошков [13–17]. В ряду дифторидов $CaF_2 \rightarrow SrF_2 \rightarrow BaF_2$, обладающих одним структурным типом, уменьшается энергия

фононов матрицы [18], что может приводить к увеличению световыхода люминесценции за счет предотвращения многофононной релаксации. Твердые растворы на основе фторида бария с редкоземельными элементами. По этой причине основное внимание сконцентрировано на матрице фторида стронция. В литературе имеется большое количество данных по фотолюминесцентным характеристикам европия [19–24]. Дробышева и др. [25] определили, что оптимальными концентрациями для твердого раствора SrF₂:Еи являются 7.5 и 15.0 мол. % Еи при возбуждении рентгеновскими трубками с вольфрамовым и серебряным анодами соответственно. Увеличения интенсивности люминесценции возможно добиться за счет уменьшения энергии фононов матрицы за счет замены катиона матрицы на более тяжелый. В случае матрицы фторида стронция им является фторид бария.

Целью работы была апробация подхода по увеличению интенсивности люминесценции европия при постоянном его количестве за счет утяжеления матрицы в концентрационном ряду SrF_{2-x}:Ba_x:Eu (7.5 мол.%) при переменном содержании бария.

2. Экспериментальная часть

Исходные реактивы. В качестве исходных веществ были использованы: $Sr(NO_3)_2$ (99.99%, «Ланхит»), Ba $(NO_3)_2$ (99.99%, «Вектон»), Eu $(NO_3)_3$ -6H₂O (99.99%, «Ланхит»), NH₄F (Х.Ч., «Ланхит») и бидистиллированная вода собственного производства. Реактивы были использованы без дополнительных стадий очистки.

Методика синтеза. Методом осаждения из водных растворов по уравнению (1) была синтезирована концентрационная серия порошков твердых растворов $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$ (x = 0.00, 0.20, 0.25, 0.30, 0.35 и 0.40).

$$\begin{array}{l} (0.925 - x)Sr(NO_3)_2 + xBa(NO_3)_2 + \\ 0.075Eu(NO_3)_3 \cdot 6H_2O + 2.075NH_4F \rightarrow \\ \rightarrow Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075} + 2.075NH_4NO_3 + 0.45H_2O. \end{array}$$
(1)

Синтез порошков проводили посредством покапельного добавления раствора нитратов (*C* = 0.08 M) в полипропиленовый реактор с раствором фторида аммония (0.16 M, 7 % избыток). Полученную суспензию перемешивали на магнитной мешалке в течение 2 часов. После отстаивания осадка маточный раствор декантировали, осадок промывали 0.5 % раствором фторида аммония с контролем чистоты отмывки от ни-

Ю.А. Ермакова и др.

Рентгенолюминесценция нанопорошков Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}

трат-ионов качественной реакцией с дифениламином. Отмытый осадок сушили на воздухе при температуре 45 °C. Высокотемпературную обработку проводили в платиновых тиглях при температуре 600 °C в течение 1 часа при скорости нагрева 10 °/мин.

Рентгенофазовый анализ (РФА) проводили на дифрактометре Bruker D8 Advance с Си $K\alpha$ -излучением (λ = 1.5406 Å). Параметры решётки (a) и области когерентного рассеяния (ОКР) были рассчитаны в программе TOPAS (Rwp<7).

Спектры рентгенолюминесценции однофазных порошков регистрировали при комнатной температуре на миниспектрометре FSD-10 (ООО "Optofiber") в диапазоне 200–1100 нм с разрешением 1 нм при возбуждении рентгеновской трубкой с хромовым анодом, работающим при напряжении 30 кВ и 30 мА.

3. Результаты синтеза твердых растворов Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}

Рентгенограммы образцов твердого раствора Sr_{0.925-x}Ba Eu_{0.075}F_{2.075} с содержанием бария 0.00, 0.20, 0.25, 0.30, 0.35 и 0.40 мол. д., высушенных при 45 °C на воздухе и термообработанных при 600 °C, представлены на рис. 1а. Отжиг при 600 °C необходим для дегидратации порошков и увеличения интенсивности люминесценции за

счет удаления иона гидроксила, тушащего люминесценцию.

Рентгенографические исследования показали, что синтез твердых растворов приводит к образованию однофазных порошков флюоритовой структуры (JCPDS# 06-0262, a = 5.800 Å для SrF₂), но со смещенным положением рентгенографических рефлексов, что свидетельствует об увеличении параметра решетки соразмерно количеству добавляемого фторида бария. Введение европия сопровождается внедрением дополнительных фтор-ионов для электростатической компенсации и образовании кластеров типа REE₆F₃₆ (REE – редкоземельные элементы). Результаты расчета параметров решетки сведены в табл. 1 и представлены на рис. 2. Рентгенографические рефлексы сильно уширены, что свидетельствует о синтезе наноразмерных веществ (табл. 1). Размер областей когерентного рассеяния D составил около 16-18 нм. Синтезированные порошки были подвергнуты высокотемпературной термообработке при температуре 600 °С с целью дегидратации. Температура процесса была выбрана на основе литературного обзора. Рентгенограммы термообработанных образцов представлены на рис. 1б. Сравнение рентгенограмм образцов выявило сужение рентгенографических рефлексов, что свидетельствует об уве-

Рис. 1. Рентгенограммы синтезированных образцов твердых растворов Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}: а – после сушки на воздухе при температуре 45 °C, б – после термообработки при температуре 600 °C

Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2024;26(2): 247–252

Ю. А. Ермакова и др.

Рентгенолюминесценция нанопорошков Sr_{0925-x}Ba_xEu₀₀₇₅F₂₀₇₅

личении области когерентного рассеяния в несколько раз и увеличении размеров частиц, что подтверждается расчетом (табл. 1). Рассчитанные параметры решетки описываются линейным уравнением *a* = 5.794 + 0.003*x* (R² = 0.999) (*x*= мол.% Ва) (рис. 2) и немного уменьшены, что подтверждает процесс дегидратации при термообработке (табл. 1).

Спектры рентгенолюминесценции однофазных образцов твердых растворов $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$ после термообработки при 600 °С представлены на рис. 3. В спектрах люминесценции присутствуют полосы люминесценции трехвалентного европия с максимумами на 590, 617 и 698 нм, соответствующие переходам ⁵D₀ \rightarrow ⁷F_i (i = 1, 2, 4). Для состава, не содержащего барий, наблюдается полоса двухвалентного европия.

Анализ спектров рентгенолюминесценции выявил, что при увеличении содержания бария интенсивности полос люминесценции европия увеличиваются (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ с максимумом около 590 нм и ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ с максимумом около 698 нм). Увеличение интенсивности полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ менее существенное. Данная полоса является сложной и состоит из нескольких компонент, интенсивности которых изменяются при увеличении содержания бария. При увеличении содержания бария полоса люминесценции ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ претерпевает синий сдвиг, а ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ красный сдвиг максимума. Интенсивность полосы люминесценции ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ при увеличении содержания бария увеличивается (рис. 4) по экспоненциальному закону $I = 24445 + 230e^{10x}$ с критерием достоверности аппроксимации $R^{2} = 0.99227$.

4. Выводы

Методом осаждения из нитратных водных растворов при использовании фторида аммония в качестве фторирующего агента были синтезированы порошки однофазных твердых растворов $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$ (x = 0.00, 0.20, 0.25, 0.30,

Таблица	1.	Результаты	расчета	параметров	решетки	твердых	растворов	Sr _{0.925-x}	Ba _x Eu _{0.}	$F_{2.075}$
---------	----	------------	---------	------------	---------	---------	-----------	-----------------------	----------------------------------	-------------

	Термообработка						
Состав образца	45	5 °C	600 °C				
	a, Å	ОКР, нм	a, Å	ОКР, нм			
$Sr_{0.925}Eu_{0.075}F_{2.075}$	5.800(1)	14(1)	5.793(1)	77(1)			
$Sr_{0.725}Ba_{0.200}Eu_{0.075}F_{2.075}$	5.869(1)	18(1)	5.859(1)	103(4)			
$Sr_{0.675}Ba_{0.250}Eu_{0.075}F_{2.075}$	5.885(3)	15(1)	5.875(1)	65(5)			
$Sr_{0.625}Ba_{0.300}Eu_{0.075}F_{2.075}$	5.901(1)	17(1)	5.889(1)	89(5)			
$Sr_{0.575}Ba_{0.350}Eu_{0.075}F_{2.075}$	5.915(1)	16(1)	5.905(1)	70(8)			
$Sr_{0.525}Ba_{0.400}Eu_{0.075}F_{2.075}$	5.930(1)	16(1)	5.921(1)	100(6)			

Рис. 2. Зависимость параметров решётки твердого раствора $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$ от содержания Ва

Рис. 3. Спектры рентгенолюминесценции твердого раствора $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$

Рентгенолюминесценция нанопорошков Sr₀₉₂₅₋Ba_xEu₀₀₇₅F₂₀₇₅

Рис. 4. Зависимость интенсивности люминесценции полосы ${}^5D_0 \rightarrow {}^7F_1$ от содержания бария в твердом растворе $Sr_{0.925-x}Ba_xEu_{0.075}F_{2.075}$

0.35 и 0.40). Параметры решетки образцов после термообработки при 45 и 600 °С линейно увеличиваются при увеличении содержания бария. Область когерентного рассеяния увеличивается с 16-18 нм до 70-103 нм после термообработки при 600 °C. Зафиксировано существенное увеличение интенсивности рентгенолюминесценции европия для ${}^5\mathrm{D}_0 \to {}^7\mathrm{F}_1$ с максимумом около 590 нм и ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ с максимумом около 698 нм при постоянной концентрации европия и увеличении содержания бария. Интенсивность полосы люминесценции ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ при увеличении содержания бария увеличивается по экспоненциальному закону *I* = 24445 + 230е¹⁰. При увеличении содержания бария наблюдается синее и красное смещение положения полос люминесценции европия для ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ и ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ соответственно.

Заявленный вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Lebedev V. T., Shakhov F. M., Vul A. Y., ... Fomin E. V. X-ray excited optical luminescence of Eu in diamond crystals synthesized at high pressure high temperature. *Materials*. 2023;16: 830. https://doi. org/10.3390/ma16020830

2 Magyar A., Hu W., Shanley T., Flatté M. E., Hu E., Aharonovich I. I. Synthesis of luminescent europium defects in diamond. *Nature Communications*. 2014;5(1): 3523. https://doi.org/10.1038/ncomms4523

3. Yudina E. B., Aleksenskii A. E., Bogdanov S. A., ... Vul' A. Y. CVD nanocrystalline diamond film doped with Eu. *Materials*. 2022;15: 5788. https://doi. org/10.3390/ma15165788

4. Borzdov Y. M., Khokhryakov A. F., Kupriyanov I. N., Nechaev D. V., Palyanov Y. N. Crystallization of diamond from melts of europium salts. *Crystals*. 2020;10: 376. https://doi.org/10.3390/cryst10050376

5. Palyanov Y. N., Borzdov Y. M., Khokhryakov A. F., Kupriyanov I. N. High-pressure synthesis and characterization of diamond from europium containing systems. *Carbon*. 2021;182: 815–824. https://doi. org/10.1016/j.carbon.2021.06.081

6. Sedov V., Kuznetsov S., Martyanov A., Ralchenko V. Luminescent diamond composites. *Functional Diamond*. 2022;2: 53–63. https://doi.org/10.1080/269 41112.2022.2071112

7. Chen H.-J., Wang X.-P., Wang L.-J., ... Liu L.-H. Bright blue electroluminescence of diamond/CeF₃ composite films. *Carbon*. 2016;109: 192–195. https://doi.org/10.1016/j.carbon.2016.07.061

8. Chen J.-X., Wang X.-P., Wang L.-J., Yang X.-W., Yang Y. White electroluminescence of diamond/HoF₃/ diamond composite film. *Journal of Luminescence*. 2020;224: 117310. https://doi.org/10.1016/j.jlumin.2020.117310

9. Sedov V. S., Kuznetsov S. V., Ralchenko V. G., ... Konov V. I. Diamond-Eu F_3 nanocomposites with bright orange photoluminescence. *Diamond and Related Materials*. 2017;72: 47–52. https://doi.org/10.1016/j. diamond.2016.12.022

10. Sedov V., Kouznetsov S., Martyanov A., ... Fedorov P. Diamond–rare earth composites with embedded NaGdF₄:Eu nanoparticles as robust photo- and X-ray-luminescent materials for radiation monitoring screens. *ACS Applied Nano Materials*. 2020;3: 1324– 1331. https://doi.org/10.1021/acsanm.9b02175

11. Sobolev B. P. The rare earth trifluorides: the high temperature chemistry of the rare earth trifluorides. P. 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d'Estudis Catalans; 2000. 540 p

12. Sobolev B. P. *The rare earth trifluorides*. *P. 2. Introduction to materials science of multicomponent metal fluoride crystals*. Institut d'Estudis Catalans, Barcelona, 2001. 520 p.

13. Heise M., Scholz G., Krahl T., Kemnitz E. Luminescent properties of Eu^{3+} doped CaF_2 , SrF_2 , BaF_2 and PbF_2 powders prepared by high-energy ball milling. *Solid State Sciences*. 2019;91: 113–118. https://doi. org/10.1016/j.solidstatesciences.2019.03.014

14. Peng J., Hou S., Liu X., ... Su Z. Hydrothermal synthesis and luminescence properties of hierarchical SrF_2 and SrF_2 :Ln³⁺ (Ln=Er, Nd, Yb, Eu, Tb) micro/nano-composite architectures. *Materials Research Bulletin*.

Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2024;26(2): 247–252

Ю.А.	Ермакова	ИД	ιp.
------	----------	----	-----

Рентгенолюминесценция нанопорошков Sr_{0925-x}Ba_xEu₀₀₇₅F₂₀₇₅

2012;47: 328-332. https://doi.org/10.1016/j.materresbull.2011.11.030

15. Krahl T., Beer F., Relling A., Gawlitza K., Rurack K., Kemnitz E. Toward luminescent composites by phase transfer of $SrF_2:Eu^{3+}$ nanoparticles capped with hydrophobic antenna ligands. *ChemNanoMat*. 2020;6: 1086–1095. https://doi.org/10.1002/ cnma.202000058

16. Ermakova Y. A., Pominova D. V., Voronov V. V., ... Kuznetsov S. V. Synthesis of SrF_2 :Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH₄F. *Dalton Transactions*. 2022;51: 5448–5456. https://doi.org/10.1039/D2DT00304J

17. Kuznetsov S., Ermakova Y., Voronov V., ... Turshatov A. Up-conversion quantum yields of SrF_2 :Yb³⁺, Er³⁺ sub-micron particles prepared by precipitation from aqueous solution. *Journal of Materials Chemistry C*. 2018;6: 598–604. https://doi.org/10.1039/ C7TC04913G

18. Ermakova Yu. A., Alexandrov A. A., Fedorov P. P., ... Kuznetsov S. V. Synthesis of single-phase $Sr_{1-x}Ba_xF_2$ solid solutions by co-precipitation from aqueous solutions. *Solid State Sciences*. 2022;130: 106932. https://doi.org/10.1016/j.solidstatesciences.2022.106932

19. Cortelletti P., Pedroni M., Boschi F., ... Speghini A. Luminescence of Eu^{3+} activated CaF_2 and SrF_2 nanoparticles: effect of the particle size and codoping with alkaline ions. *Crystal Growth & Design*. 2018;18: 686–694. https://doi.org/10.1021/acs.cgd.7b01050

20. Yagoub M. Y. A., Swart H. C., Noto L. L., O'Connel J. H., Lee M. E., Coetsee E. The effects of Eu-concentrations on the luminescent properties of SrF₂:Eu nanophosphor. *Journal of Luminescence*. 2014;156: 150–156. https://doi.org/10.1016/j.jlumin.2014.08.014

21. Yusenko K. V., Kabelitz A., Schökel A., Guilherme Buzanich A. Local structure of europium-doped luminescent strontium fluoride nanoparticles: Comparative X-ray absorption spectroscopy and diffraction study. *ChemNanoMat*. 2021;7: 1221–1229. https://doi. org/10.1002/cnma.202100281

22. Pan Y., Wang W., Zhou L.,... Li L. F⁻-Eu³⁺ charge transfer energy and local crystal environment in Eu³⁺ doped calcium fluoride. *Ceramics International*. 2017;43: 13089–13093. https://doi.org/10.1016/j.ceramint.2017.06.197

23. Trojan-Piegza J., Wang Z., Kinzhybalo V., Zhou G., Wang S., Zych E. Spectroscopic reflects of structural disorder in Eu³⁺/Pr³⁺-doped La_{0.4}Gd_{1.6}Zr₂O₇ transparent ceramics. *Journal of Alloys and Compounds*. 2018;769: 18–26. https://doi.org/10.1016/j.jallcom.2018.07.233

24. Binnemans K. Interpretation of europium(III) spectra. *Coordination Chemistry Reviews*. 2015;295: 1–45. https://doi.org/10.1016/j.ccr.2015.02.015

25. Drobysheva A. R., Ermakova Yu. A., Alexandrov A. A.... Kuznetsov S. V. X-ray luminescence of SrF₂: Eu nanopowders. *Optics and Spectroscopy*. 2023;131: 633. https://doi.org/10.61011/EOS.2023.05.56516.58-22

26. Fedorov P., Sobolev B. P. Concentration dependence of unit-cell parameters of phases $M_{1-x}R_xF_{2+x}$ with the fluorite structure. *Soviet Physics. Crystallography*. 1992;37: 651–656.

Информация об авторах

Ермакова Юлия Александровна, м. н. с. Института общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0002-9567-079X julia.r89@mail.ru

Федоров Павел Павлович, д. х. н., профессор, гл. н. с. Института общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0002-2918-3926 ppfedorov@yandex.ru

Воронов Валерий Вениаминович, к. ф.-м. н., в. н. с. Института общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0001-5029-8560 voronov@lst.gpi.ru

Батыгов Сергей Хачетурович, к. ф.-м. н., в. н. с. Института общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0001-9862-0504 sbatygov@mail.ru

Кузнецов Сергей Викторович, к. х. н., и. о. заведующего лабораторией Института общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0002-7669-1106 kouznetzovsv@gmail.com

Поступила в редакцию 18.10.2023; одобрена после рецензирования 31.10.2023; принята к публикации 15.11.2023; опубликована онлайн 25.06.2024.