

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 546.161 https://doi.org/10.17308/kcmf.2024.26/11942

Стабилизация фазы $Ba_4Y_3F_{17}$ в системе $NaF-BaF_2-YF_3$

П. П. Федоров[⊠], А. А. Волчек, В. В. Воронов, А. А. Александров, С. В. Кузнецов

Институт общей физики им. А. М. Прохорова Российской академии наук, ул. Вавилова, 38, Москва 119991, Российская Федерация

Аннотация

Путем твердофазного спекания компонентов во фторирующей атмосфере при 750 °C на протяжении двух недель с закалкой в жидком азоте изучено фазообразование в системе NaF-BaF₂-YF₃.

Подготовленные образцы запаковывали в никелевые капилляры, которые вместе с гидрофторидом бария BaF_2 ·HF помещали в медные контейнеры. Контейнеры заваривали аргонно-дуговой сваркой. Фторирующая атмосфера создавалась пиролизом гидрофторида бария BaF_2 ·HF. Рентгенофазовый анализ проведен на дифрактометре Bruker D8 Advanced, излучение CuK α . Для обработки дифрактограмм было использовано программное обеспечение TOPAS, DifWin, и Powder 2.0.

Фторид натрия является хорошей спекающей добавкой, введение его уже в количестве 5 мол. % NaF позволило синтезировать хорошие спеки с четкими дифрактограммами. Обнаружено образование твердого раствора на основе соединения $Ba_4Y_3F_{17}$ с тригонально-искаженной структурой флюорита (пр. группа *R*-3) с содержанием до ~ 20 мол. % NaF. Параметры тригональной ячейки связаны с параметром флюоритовой субъячейки a_0 соотношениями $a \sim \sqrt{7}/2a_0$, $c \sim 2\sqrt{3}a_0$. Общая формула образующегося твердого раствора $Ba_{1-x-y}Y_xNa_yF_{2+x-y}$. Введение фторида натрия уменьшает параметры тригональной решетки и сопровождается образованием анионных вакансий. Стабилизация структуры, выражающаяся в расширении области гомогенности фазы на основе $Ba_4Y_3F_{17}$, по-видимому, связана с исчезновением интерстициальных ионов фтора, находящихся в анионном окружении в структуре $Ba_4Y_3F_{17}$ как в кубооктаэдрической полости кластеров Y_6F_{36} , так и в центре кубов F_8 .

Соответствующий твердый раствор может быть основой новых материалов фотоники. Система NaF-BaF $_2$ -YF $_3$ аналогична изученной ранее системе NaF-BaF $_2$ -GdF $_3$.

Ключевые слова: фторид натрия, фторид бария, фторид иттрия, твердый раствор

Источник финансирования: Исследование выполнено за счет гранта Российского научного фонда № 22-13-00167, https://rscf.ru/project/22-13-00167/

Благодарности: В работе использовалось оборудование центра коллективного пользования ИОФ РАН.

Для цитирования: Федоров П. П., Волчек А. А., Воронов В. В., Александров А. А., Кузнецов С. В. Стабилизация фазы Ва₄Y₃F₁₇ в системе NaF-BaF₂-YF₃. *Конденсированные среды и межфазные границы*. 2024;26(2): 314–320. https://doi. org/10.17308/kcmf.2024.26/11942

For citation: Fedorov P. P., Volchek A. A., Voronov V. V., Aleksandrov A. A., Kuznetsov S. V. Stabilization of the Ba₄Y₃F₁₇ phase in the NaF-BaF₂-YF₃ system. *Condensed Matter and Interphases*. 2024;26(2): 314–320. https://doi.org/10.17308/kcmf.2024.26/11942

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Θ

[🖂] Федоров Павел Павлович, e-mail: ppfedorov@yandex.ru

[©] Федоров П. П., Волчек А. А., Воронов В. В., Александров А. А., Кузнецов С. В., 2024

П. П. Федоров и др.

1. Введение

При изучении фазовых диаграмм систем фторида бария (BaF₂) с фторидами редкоземельных элементов (RF₃) для R = Sm-Lu, Y Ткаченко и Соболев [1–3] выявили, что наряду с твердыми растворами $Ba_{1-x}R_xF_{2+x}$ флюоритовой структуры и соединениями BaR_2F_8 (R = Ho-Lu,Y), образуются упорядоченные флюоритоподобные фазы Ва₄R₃F₁₇. Ранее монокристаллы такой фазы вырастили из нестехиометрического расплава Гуггенгейм и Джонсон, однако они ошибочно приписали им состав BaRF_с [4]. Кизер и Грайс [5–7] обнаружили, что медленное охлаждение твердых растворов $Ba_{1-x}R_xF_{2+x}$, синтезированных при 1000 °С, приводит к их упорядочению с образованием тригонально-искаженных фаз Ba₄R₃F₁₇ для R = Ce-Lu, и правильно определили пространственную группу симметрии R-3. Расшифровка кристаллической структуры $Ba_{A}R_{3}F_{17}$ (R = Yb, Y) [8] подтвердила правильность данных [5]. Повторное структурное исследование [9] не дало ничего нового. Синтезированы также изоструктурные соединения $Pb_4R_5F_{17}$ (R = Sm-Lu,Y) [10], Рb₈Y₆F₃₂O [11] и Ва₄Вi₃F₁₇ [12].

Особенность систем BaF₂-RF₃ заключается в том, что при низкотемпературных синтезах твердые растворы $Ba_{1\text{-}x}R_xF_{2\text{+}x}$ на основе фторида бария не образуются. При соосаждении из водных растворов формируются фазы флюоритовой структуры, содержащие 40-50 мол. % RF₃ без признаков упорядочения [13-16]. Такая кубическая фаза синтезирована также для фторида висмута [17]. Состав таких фаз часто рационализуется, следуя ошибке Гуггенгейма и Джонсона, как «BaRF_г» [18-21]. Отсутствие в этих образцах признаков тригонального искажения, присущего фазам $Ba_4R_3F_{17}$, можно интерпретировать как проявление действия правила ступеней Оствальда [22, 23]: метастабильные кубические фазы соответствующего состава являются предшественниками упорядоченных фаз, стабильных при температурах синтеза.

Синтезируемые таким образом фазы малорастворимы в воде в отличие от наночастиц фторида бария. Эти фазы являются матрицами для материалов фотоники [4, 18–21, 24–31].

При исследовании фазообразования при 350–500 °С в системах BaF₂-RF₃ из расплава нитрата натрия с использованием фторида натрия в качестве фторирующего агента [32] было обнаружено, что для РЗЭ иттриевой подгруппы фторид натрия входит в состав продуктов реакции [33, 34] (в отличие от РЗЭ цериевой подгруппы [35, 36]). Целью данной работы было изучение системы NaF-BaF₂-YF₃ методом твердофазного синтеза с целью установления состава образующихся фаз.

2. Методика эксперимента

В эксперименте использовали реактивы: NaF (х.ч., Химмед), BaF₂ (99.99 %, ЛАНХИТ), YF₃ (99.99%, ЛАНХИТ). Исходные порошки дополнительно очищали от кислородосодержащих примесей плавлением во фторирующей среде CF₄ в графитовых тиглях. Полученные поликристаллические були измельчали и, в соответствии со стехиометрическими расчетами, подготавливали смеси порошков поликристаллических фторидов. Смеси перетирали в агатовой ступке в течение 15 минут с этиловым спиртом для достижения однородности состава, после чего сушились при 60 °C под ИК-лампой в течение 10 минут и снова перетирали 3 минуты. Подготовленные порошки хранились в эксикаторе во избежание гидратации.

Подготовленные образцы запаковывали в никелевые капилляры, которые вместе с гидрофторидом бария BaF₂·HF помещали в медные контейнеры. Контейнеры заваривали аргоннодуговой сваркой. При нагревании гидрофторид бария разлагался с образованием фторирующей атмосферы.

Спекание перетертых смесей NaF, BaF₂, YF₃ проводили при следующих условиях: температура выдержки – 750 °С, время нагрева – 2.5 ч., время выдержки – 336 ч. После спекания контейнеры закаливали в жидком азоте.

Использованная методика отжига и закалки близка к методике, использованной при изучении фазовых равновесий в системах MF_2 - RF_3 , M = Ca, Sr, Ba в работах [1, 37, 38]. Закалка в жидком азоте является менее эффективной по сравнению с закалкой в воде из-за низкой теплоты испарения жидкого азота и низкой теплоемкости газообразного азота, но предотвращает возможность пирогидролиза образцов при попадании воды внутрь контейнера за счет катастрофического растрескивания сварных швов.

Синтезированные образцы исследовали рентгенофазовым и частично термическим анализом. Рентгенофазовый анализ (РФА) проводили с использованием дифрактометра Bruker D8 Advanced, излучение Си*К*а. Для обработки рентгенограмм использовали программное обеспечение TOPAS, DifWin и Powder 2.0.

П.П.Федоров и др.

3. Результаты и обсуждение

Фазовые равновесия в системе NaF-BaF₂-YF₃ отличаются большой сложностью. Заметим, что спекание в бинарной системе BaF₂-YF₃ при 750 °C на протяжении двух недель не привело к установлению равновесия. На дифрактограммах была зафиксирована смесь фаз, включая рефлексы соединения BaY₂F₈. Заметим, что исследование этой системы в работе [1, 2] было ограничено температурой 870 °C. Время установления равновесия, определяемое коэффициентами диффузии катионов, при понижении температуры становится слишком большим [39], но добавка уже 5 мол. % фторида натрия позволила синтезировать хорошие спеки с разрешающимися пиками на дифрактограммах.

На рис. 1 представлен участок фазовой диаграммы NaF-BaF₂-YF₃, построенной на основании данных рентгенофазового анализа отожженных образцов. Область гомогенности твердого раствора на основе $Ba_4Y_3F_{17}$ оконтуривается вполне отчетливо. Максимальное содержание фторида натрия в этом твердом растворе составляет около 20 мол. % NaF. Параметры решетки этого твердого раствора (фаза *R*) приведены в табл. 1. Можно видеть (рис. 2), что увеличение количества натрия в твердом растворе проводит к уменьшению параметров решетки.

Заметим, что в бинарной системе ВаF₂-YF₃ имеется небольшая область гомогенности этой фазы. По данным [5] она составляет 41– 44 мол. % YF₃. Как можно видеть из рис. 1, введение натрия резко расширяет область гомогенности. Таким образом, можно констатировать, что гетеровалентный изоморфизм [40] стабилизирует кристаллическую решетку фазы *R*. Такое же явление наблюдалось ранее и в системе NaF-BaF₂-GdF₃ [41].

Стабилизация фазы Ва₄Y₃F₁₇ в системе NaF-BaF₂-YF₃

Естественно ожидать, что имеет место частичное катионное замещение натрием ионов иттрия, близких по размерам. Такое замещение имеет место, например, во флюоритовой фазе, образующейся в системе NaF-YF₃ [3]. Исследование строения флюоритоподобных фаз, образующихся в системе NaF-BaF₂-YF₃, показало, что натрий способен также частично замещать и барий в его кристаллографических позициях (фаза BaNa_{0.25}Y_{2.75}F_{10.5}) [34].

Исследуемая нами фаза R является производной от структурного типа флюорита. Общая формула ее может быть записана следующим образом: Ва_{1-x-y}Y_xNa_yF_{2+x-y}. Параметры тригональной ячейки связаны с параметром флюоритовой субъячейки a_0 соотношениями $a \sim \sqrt{7}/2a_0$, $c \sim 2\sqrt{3}a_0$ [5, 8]. В структуре Ва₄Y₃F₁₇ имеются комплексы Y₆F₃₇ из 6 ионов иттрия с внутренней кубооктаэдрической полостью, образованной анионами, в которую входит дополнительный ион фтора, находящийся в однозарядном окружении (позиции F8 по [8, 12]). Кроме того, имеются такие же интерстициальные ионы фтора, находя

Рис. 1. Концентрационная область существования фазы R в системе NaF-BaF₂-YF₃ при 750 °C. *1* – однофазные образцы, *2* – двух- или трехфазные образцы

Рис. 2. Изменение мольного объема фазы *R* при постоянном содержании фторида иттрия (40 мол. % YF₃). *1* – наши данные, *2* – данные Грейса и Кизера [6], экстраполяция на 40 мол. % YF₃

П. П. Федоров и др.

Стабилизация фазы Ва₄Y₃F₁₇ в системе NaF-BaF₂-YF₃

Состав смеси фторидов, мол. %	Параметры решетки R фазы, Å	Объем элементарной ячейки. ų	Мольный объем, ų
5 % NaF – 60 % BaF ₂ – 35 % YF ₃ однофазный образец	a = 11.141 c = 20.57	2211.5	368.6
5 % NaF – 55 % BaF ₂ – 40 % YF _{3,} однофазный образец	<i>a</i> = 11.074 <i>c</i> =20.41	2167.0	361.2
5 % NaF – 50 % BaF ₂ – 45 % YF ₃	<i>a</i> = 11.046 <i>c</i> = 20.36	2150.9	358.5
5 % NaF – 45 % BaF ₂ – 50 % YF ₃	<i>a</i> = 11.081 <i>c</i> = 20.35	2163.9	360.7
10 % NaF – 60 % BaF ₂ – 30 % YF ₃	<i>a</i> = 11.131 <i>c</i> = 20.63	2213.2	368.9
10 % NaF – 50 % BaF ₂ – 40 % YF ₃ однофазный образец	<i>a</i> = 11.055 <i>c</i> = 20.37	2156.2	359.4
10 % NaF – 45 % BaF ₂ – 45 % YF ₃	<i>a</i> = 11.040 <i>c</i> = 20.36	2149.1	358.2
10 %NaF – 40 %BaF ₂ – 50 %YF ₃	<i>a</i> = 11.049 <i>c</i> = 20.35	2151.9	358.7
15 % NaF – 50 % BaF ₂ – 35 % YF ₃ однофазный образец	<i>a</i> = 11.101 <i>c</i> = 20.47	2184.5	364.1
15 % NaF – 45 % BaF ₂ – 40 % YF ₃ однофазный образец	<i>a</i> = 11.044 <i>c</i> = 20.36	2150.7	358.5
15 % NaF – 40 % BaF ₂ – 45 % YF ₃	<i>a</i> = 11.040 <i>c</i> = 20.36	2148.8	358.1
15 % NaF – 35 % BaF ₂ – 50 % YF ₃	<i>a</i> = 11.068 <i>c</i> = 20.41	2164.9	360.8
20% NaF – 50% BaF ₂ – 30% YF ₃	<i>a</i> = 11.146 <i>c</i> = 20.60	2215.8	369.3
20 % NaF – 40 % BaF ₂ – 40 % YF ₃	<i>a</i> = 11.038 <i>c</i> = 20.36	2147.9	358.0
25 % NaF – 40 % BaF ₂ – 35 % YF ₃	<i>a</i> = 11.065 <i>c</i> = 20.39	2162.0	360.3
25 % NaF – 35 % BaF ₂ – 40 % YF ₃	<i>a</i> = 11.038 <i>c</i> = 20.36	2148.0	358.0
25 % NaF – 30 % BaF ₂ – 45 % YF ₃	<i>a</i> = 11.042 <i>c</i> = 20.36	2149.3	358.2
30 % NaF – 30 % BaF ₂ – 40 % YF ₃	<i>a</i> = 11.040 <i>c</i> = 20.36	2149.2	358.2

Таблица 1. Рентгенографические характеристики твердого раствора (фаза *R*). Тригональная сингония, пр. гр. *R*-3, Z = 6 при расчете на формулу $Ba_4R_5F_{17}$

циеся в кубическом окружении (позиции F7 по [8, 12]). Именно такие интерстициальные ионы фтора и должны исчезать при появлении анионных вакансий, что и приводит к стабилизации кристаллической структуры.

4. Заключение

Таким образом, проведенное исследование показало, что в тройной системе $NaF-BaF_2-YF_3$ введение фторида натрия стабилизирует фазу $Ba_4Y_3F_{17}$, расширяя область ее гомогенности. Со-

ответствующий твердый раствор может быть основой новых материалов фотоники.

Заявленный вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы не имеют явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

П.П.Федоров и др.

Стабилизация фазы $Ba_4Y_3F_{17}$ в системе $NaF-BaF_2-YF_3$

Список литературы

1. Ткаченко Н. Л., Швантнер М., Соболев Б. П. Диаграмма состояния системы BaF₂-YF₃. Известия Академии наук СССР. Неорганические материалы. 1977;13(5):847–849.

2. Sobolev B. P., Tkachenko N. L. Phase diagrams of BaF_2 -(Y, Ln) F_3 systems. *Journal of the Less Common Metals*. 1982;85: 155–170. https://doi.org/10.1016/0022-5088(82)90067-4

3. Sobolev B. P. *The rare earth trifluorides. Part 1. The high temperature chemistry of the rare earth triflu- orides.* Barcelona: Institut d'Estudis Catalans; 2000. 520 p.

4. Guggenheim H. J., Johnson L. F. New fluoride compounds for efficient infrared-to-visible conversion. *Applied Physics Letters*. 1969;15(2): 51-52. https://doi.org/10.1063/1.1652898

5. Kieser M., Greis O. Darstellung und Eigenschaften der Fluorituberstrukturhasen $Ba_4SE_3F_{17}$ mit SE = Ce-Nd, Sm-Lu und Y. *Zeitschrift für anorganische und allgemeine Chemie*. 1980;469: 164–171. https:// doi.org/10.1002/zaac.19804690123

6. Greis O., Kieser M. Electron diffraction from single crystals of $Ba_4Pr_3F_{17}$, $Ba_4Nd_3F_{17}$, $Ba_4Gd_3F_{17}$ and $Ba_4Dy_3F_{17}$. *Journal of the Less Common Metals*. 1980;75(1): 119–123. https://doi.org/10.1016/0022-5088(80)90376-8

7. Greis O., Haschke J. M. Rare earth fluorides. *Handbook on the physics and chemistry of rare earths*. K. A. Gschneidner & Le Roy Eyring (eds.). Amsterdam, N.Y., Oxford: 1982;5: 387–460. https://doi.org/10.1016/ S0168-1273(82)05008-9

8. Максимов Б. А., Соланс Х., Дудка А. П., ... Соболев Б. П. Кристаллическая структура $Ba_4R_3F_{17}$ (R = Y,Yb), формирующаяся на основе матрицы флюорита: упорядочение катионов и особенности анионного мотива. *Кристаллография*. 1996;41(1): 51–59.

9. Tyagi F. K., Kohler J. Preparation and structural elucidation of new anion-excess fluorite variant Ba₄Er₃F₁₇. *Solid State Science*. 2001;3: 689–695. https://doi.org/10.1016/S1293-2558(01)01167-0

10. Greis O., Uwais B. M., Horne W. Preparation and characterization of superstructure phases $Pb_4R_3F_{17}$ with R = Sm, Gd and Er to Lu. *Zeitschrift für anorganische und allgemeine Chemie*. 1989;186: 104–107.

11. Dib A., Aleonard S. J. Structure cristalline de $Pb_{8}Y_{6}F_{32}O$. *Journal of Solid State Chemistry*. 1986;64(2): 148–161. https://doi.org/10.1016/0022-4596(86)90134-9

12. Dombrovski E. N., Serov T. V., Abakumov A. M., Ardashnikova E.I., Dolgikh V.A., Van Tendeloo G. The structural investigation of $Ba_4Bi_3F_{17}$. *Journal of Solid State Chemistry*. 2004;177(1): 312–318. https://doi. org/10.1016/j.jssc.2003.08.022 13. Кузнецов С. В., Яроцкая И. В., Федоров П. П., ... Осико В. В. Получение нанопорошков твердых растворов $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba; R = Ce, Nd, Er, Yb). *Журнал неорганической химии*. 2007;52(3): 364–369. Режим доступа: https://www.elibrary.ru/ item.asp?id=9517093

14. Kuznetsov S. V., Fedorov P. P., Voronov V. V., Samarina K. S., Ermakov R. P., Osiko V. V. Synthesis of Ba₄R₃F₁₇ (R stands for rare-earth elements) powders and transparent compacts on their base. *Russian Journal of Inorganic Chemistry*. 2010;55(4): 484–493. https://doi.org/10.1134/S0036023610040029

15. Fedorov P. P., Mayakova M. N., Kuznetsov S. V., ... Osiko V. V. Co-Precipitation of Yttrium and Barium Fluorides from Aqueous Solutions. *Materials Research Bulletin*. 2012;47: 1794–1799. https://doi.org/10.1016/j. materresbull.2012.03.027

16. Mayakova M. N., Voronov V. V., Iskhakova L. D., Kuznetsov S. V., Fedorov P. P. Low-temperature phase formation in the BaF_2 -CeF₃ system. *Journal of Fluorine Chemistry*. 2016;187: 33–39. https://doi.org/10.1016/j. jfluchem.2016.05.008

17. Федоров П. П., Маякова М. Н., Кузнецов С. В., ... Исхакова Л. Д. Исследование соосаждения фторидов бария и висмута из водных растворов: нанохимические эффекты. *Российские нанотехнологии.* 2011;6(3-4): 33–37. Режим доступа: https://www. elibrary.ru/item.asp?id=15635356

18. Zhang C., Ma P., Li C., ... Lin J. Controllable and white upconversion luminescence in $BaYF_5$: Ln^{3+} (Ln = Yb, Er, Tm) nanocrystals. *Journal of Materials Chemistry*. 2011;21: 717–723. https://doi.org/10.1039/C0JM02948C

19. Lei Y., Pang M., Fan W., ... Zhang H. Microwawe-assisted synthesis of hydrophilic BaYF₅:Tb/Ce,Tb green fluororescent colloid nanocrystals. *Dalton Transactions*. 2011;40: 142-145. https://doi.org/10.1039/ C0DT00873G

20. Lei L., Chen D., Huang F., Yu Y., Wang Y. Syntheses and optical properties of monodisperse BaLnF₅ (Ln = La-Lu, Y). *Journal of Alloys and Compounds*. 2012;540: 27–31. https://doi.org/10.1016/j. jallcom.2012.06.078

21. Karbowiak M., Cichos J. Does $BaYF_5 exist? - The BaF_2-YF_3$ solid solution revisited using photoluminescence spectroscopy. *Journal of Alloys and Compounds*. 2016;673: 258–264. https://doi.org/10.1016/j. jallcom.2016.02.255

22. Ostwald W. Studien ueber die Bilding und Umwandlung fester Koerper. *Zeitschrift für Physikalische Chemie*. 1897;22: 289–330. https://doi. org/10.1515/zpch-1897-2233

23. Threifall T. Structural and thermodynamic explanations of Ostwald's rule. *Organic Process Research & Development*. 2003;7(6): 1017–1027. https://doi.org/10.1021/op030026l

П.П.Федоров и др.

24. Nizamutdinov A. S., Kuznetsov S. V., Madirov E. I.,...Fedorov P. P. Down-conversion luminescence of Yb³⁺ in novel Ba₄Y₃F₁₇:Yb:Ce solid solution by excitation of Ce³⁺ in UV spectral range. *Optical Materials*. 2020;108: 110185. https://doi.org/10.1016/j. optmat.2020.110185

25. Tomkus M., Natansohn S. J. Anti-Stocs phosphors in BaF₂-RF₃ systems. *Journal of The Electrochemical Society*. 1971;118(3): 70.

26. Johnsen L. F., Guggenheim H. J., Rich T. C., Ostermayer F. W. Infrared-to-visible conversions by rare-earth ions in crystals. *Journal of Applied Physics*. 1972;43(3): 1125-1137. https://doi. org/10.1063/1.1661225

27. Rich T. C., Pinnow D. A. Exploring the ultimate efficiency in infrared-to visible converting phosphors activated with Er and sensitized with Yb. *Journal of Applied Physics*. 1972;43(5): 2357–2365. https://doi.org/10.1063/1.1661503

28. Xincren L., Gang X., Powell R. C. Fluorescence and energy-transfer characteristics of rare earth ions in BaYF₅ crystals. *Journal of Solid State Chemistry*. 1986;62: 83–91. https://doi.org/10.1016/0022-4596(86)90219-7

29. Liu F., Wang Y., Chen D., ... Huang P. Upconversion emission of a novel glass ceramic containing $Er^{3+}:BaYF_5$ nano-crystals.*Materials Letters*. 2007;61(28): 5022 - 5025. https://doi.org/10.1016/j. matlet.2007.03.089

30. Vetrone F., Mahalingam V., Capobianco J. H. Near-infrared-to blue upconversion in colloidal BaY- $F_5:Tm^{3+},Yb^{3+}$ nanocrystals. *Chemistry of Materials*. 2009;21: 1847–1851. https://doi.org/10.1021/cm900313s

31. Shan Z., Chen D., Yu Y., ... Wang Y. Upconversion luminescence of Ho³⁺ sensitized by Yb³⁺ in transparent glass ceramic embedding BaYF₅ nanocrystals. *Materials Research Bulletin*. 2010;45(8): 1017–1020. https://doi.org/10.1016/j.materresbull.2010.04.004

32. Fedorov P., Mayakova M., Alexandrov A., ... Ivanov V. The melt of sodium nitrate as a medium for the synthesis of fluorides. *Inorganics*. 2018;6(2):38. https://doi.org/10.3390/inorganics6020038

33. Alexandrov A. A., Petrova L. A., Pominova D. V., ... Fedorov P. P. Novel fluoride matrix for dual-range optical sensors and visualization. *Applied Sciences*. 2023;13(18): 9999. https://doi.org/10.3390/app13189999

34. Федоров П. П., Волков С. В., Вайтиева Ю. А., Александров А. А., Кузнецов С. В., Конюшкин В. А. Флюоритоподобные фазы на основе фторидов бария и редкоземельных элементов. *Журнал структурной химии.* 2024;65(5): 126843. https://doi. org/10.26902/JSC id126843

Стабилизация фазы Ba₄Y₃F₁₇ в системе NaF-BaF₂-YF₃

35. Fedorov P. P., Alexandrov A. A., Voronov V. V., Mayakova M. N., Baranchikov A. E., Ivanov V. K. Lowtemperature phase formation in the SrF_2 -LaF₃ system. *Journal of the American Ceramic Society*. 2021;104(6): 2836-2848. https://doi.org/10.1111/jace.17666

36. Александров А. А., Брагина А. Г., Сорокин Н. И., ... Федоров П. П. Низкотемпературное фазообразование в системе BaF₂-LaF₃. *Неорганические материалы*. 2023;59(3): 306–316. https://doi. org/10.31857/S0002337X23030016

37. Sobolev B. P., Fedorov P. P. Phase diagramms of the CaF_2 - (Y,Ln) F_3 systems. I. Experimental. *Journal of the Less Common Metals*. 1978;60(1): 33-46. https://doi.org/10.1016/0022-5088(78)90087-5

38. Sobolev B. P., Seiranian K. B. Phase diagrams of systems SrF_2 -(Y,Ln) F_3 . II. Fusibility of systems and thermal behavior of phases. *Journal of Solid State Chemistry*. 1981;39(2): 337–344. https://doi. org/10.1016/0022-4596(81)90268-1

39. Федоров П. П. Применение третьего закона термодинамики к фазовым диаграммам. *Журнал неорганической химии*. 2010;55(11): 1825–1844. Режим доступа: https://elibrary.ru/item. asp?id=15249597

40. Fedorov P. P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. *Russian Journal of Inorganic Chemistry*. 2000;45(3): 268–291. Режим доступа: https://www.elibrary.ru/item.asp?id=13360696

41. Павлова Л. Н., Федоров П. П., Ольховая Л. А., Икрами Д. Д., Соболев Б. П. Упорядочение гетеровалентного твердого раствора флюоритовой структуры в системе NaF-BaF₂-GdF₃. *Кристаллография*. 1993;38(2): 164–169.

Информация об авторах

Федоров Павел Павлович, д. х. н., профессор, гл. н. с., Институт общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0002-2918-3926 ppfedorov@yandex.ru

Волчек Ангелина Алексеевна, и. о. м. н. с., Институт общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0001-7743-1376 angelina.vol4ek@yandex.ru

Воронов Валерий Вениаминович, к. ф.-м. н., в. н. с., Институт общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0001-5029-8560 voronov@lst.gpi.ru

П.П.Федоров и др.

Александров Александр Александрович, м. н. с., Институт общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация).

https://orcid.org/0000-0001-7874-7284 alexandrov1996@yandex.ru Стабилизация фазы Ва₄Y₃F₁₇ в системе NaF-BaF₃-YF₃

Кузнецов Сергей Викторович, в. н. с. Институт общей физики им. А. М. Прохорова Российской академии наук (Москва, Российская Федерация). https://orcid.org/0000-0002-7669-1106

kouznetzovsv@gmail.com

Поступила в редакцию 29.11.2023; одобрена после рецензирования 11.12.2023; принята к публикации 15.12.2023; опубликована онлайн 25.06.2024.