

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 546.07>273.54-165 https://doi.org/10.17308/kcmf.2024.26/11943

Синтез и характеризация гексаборатов свинца и кадмия, легированных Cr³⁺

Т. Н. Хамаганова⊠

ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ 670047, Республика Бурятия Российская Федерация

Аннотация

Бораты, легированные переходными металлами (Mn, Cu, Cr), проявляют ярко выраженное и длительное свечение при комнатной температуре, высокую мощность и другие выдающиеся характеристики. В этой связи целью работы явилось установление возможности образования боратных материалов, содержащих хром, определение их структуры и термических свойств.

Гетеровалентным замещением ионов Cd^{2+} на ионы Cr^{3+} методом твердофазных реакций при 640 °С синтезированы новые фазы переменного состава в системе $PbCd_{2-x}B_6O_{12}$: xCr^{3+} . Фазы выделены в концентрационном интервале $0 \le x \le 7.0$ мол. % и охарактеризованы методами рентгенофазового анализа (РФА), дифференциальной сканирующей калориметрии (ДСК) и ИК-спектроскопией. По данным РФА и ИК-спектрам полученные бораты кристаллизуются в моноклинной ячейке и отнесены к одному структурному типу (пр. гр. $P2_1/n$, Z = 4).

Определены кристаллографические характеристики новых фаз. Параметры кристаллических решеток и их объемы монотонно убывают, указывая на образование непрерывного ряда твердых растворов замещения в изученном интервале концентраций. По результатам ДСК образец PbCd_{2-x}B₆O₁₂: 0.03 Cr³⁺ плавится инконгруэнтно при 729 °C.

Ключевые слова: поликристаллы боратов свинца и кадмия, ионы Сг³⁺, твердофазный синтез, твердые растворы, рентгенофазовый анализ, ДСК, ИК-спектроскопия

Источник финансирования: Работа выполнена в рамках Государственного задания БИП СО РАН № 0273-2021-0008.

Благодарности: Исследования проводились с использованием научного оборудования лаборатории оксидных систем БИП СО РАН и ЦКП БНЦ СО РАН. Автор благодарит О. Ж. Аюрову за регистрацию ИК-спектров синтезированных боратов.

Для цитирования: Хамаганова Т. Н. Синтез и характеризация гексаборатов свинца и кадмия, легированных Cr³⁺. Конденсированные среды и межфазные границы. 2024;26(2): 321–326. https://doi.org/10.17308/kcmf.2024.26/11943 **For citation:** Khamaganova T. N. Synthesis and characterization of lead and cadmium hexaborates doped with Cr³⁺. *Condensed Matter and Interphases*. 2024;26(2): 321–326. https://doi.org/10.17308/kcmf.2024.26/11943

🖂 Хамаганова Татьяна Николаевна, e-mail: khama@binm.ru

© Хамаганова Т. Н., 2024

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Т. Н. Хамаганова

Синтез и характеризация гексаборатов свинца и кадмия, легированных Сг³⁺

1. Введение

Одним из эффективных способов улучшения функциональных свойств многих классов неорганических соединений является замещение катионов в их кристаллических структурах. Замещая катионы в пределах структурного типа, можно осуществлять не только направленный синтез нужной кристаллической фазы, но и задавать и регулировать необходимые физико-химические свойства [1–5].

В спектре возбуждения при 300 нм вблизи края поглощения гексабората PbCd₂B₆O₁₂ обнаружены две широкие полосы излучения при 510 и 617 нм [6]. По мнению авторов [6] полосы излучения являются неотъемлемым свойством нелегированного соединения и согласуются с полосами излучения в CdB₄O₇ и Cd₂B₆O₁₁.

Построенные нами температурные зависимости интенсивности термолюминесценции полученных новых серий боратов PbCd_{2-x}B₆O₁₂: xM от состава активных ионов (M = Mn²⁺, Eu³⁺, Cu²⁺) показали их перспективность [7–9]. На рис. 1 приведены кривые термического высвечивания образцов твердых растворов системы Pb-Cd₂B₆O₁₂: Cu²⁺ (x = 0.01; 0.03; 0.05; 0.06; 0.08) при возбуждении ультрафиолетом в течение 5 мин. Результаты измерений термолюминесцентной чувствительности нормировались по сигналу от эталона, которым служил фторид лития LiF:Mg,Ti (TLD-100). Интенсивности термолюминесценции изученной серии боратов не уступают ин-

Рис. 1. Кривые термического высвечивания образцов PbCd_{2-x}B₆O₁₂:xCu²⁺ с *x* = 0.03 (*1*), 0.05 (*2*), 0.07 (*3*), 0.06 (*4*), 0.08 (*5*); LiF – (*6*) при возбуждении УФ в течение 5 мин

тенсивности первого максимума промышленного люминофора (TLD-100) [9].

Полученные данные позволяют рассматривать материалы на основе гексабората свинца и кадмия как перспективные люминофоры. Ионы хрома Cr³⁺ относятся к числу известных активаторов, успешно применяемых для создания люминесцентных материалов для современной светотехники [10–14]. Представляет интерес изучение свойств вышеуказанных гексаборатов с активными ионами хрома Cr³⁺ для оценки эффективности термолюминесцентных свойств, которые предполагается исследовать в дальнейшем.

Цель настоящей работы – получение поликристаллических образцов фаз на основе двойного бората свинца и кадмия PbCd₂B₆O₁₂, легированных ионами хрома Cr³⁺, исследование их методами рентгенографии, ИК- спектроскопии и дифференциальной сканирующей калориметрии.

2. Экспериментальная часть

Синтез порошковых препаратов PbCd_{2-x}B₆O₁₂: *x*Cr³⁺ проводили методом твердофазных реакций, варьируя содержанием активатора от 1 до 7 мол. %.

Исходными реагентами служили химически чистые борная кислота Н₂ВО₂ и оксиды металлов PbO, CdO, Cr₂O₂ (ООО «Красный химик», Россия). Оксиды металлов предварительно прокаливали при 500 °C в течение 5-6 ч. Стехиометрические количества исходных реагентов отжигали в интервале от 400 до 640 °C в течение 150 ч с многократной промежуточной гомогенизацией. Температуру синтеза последовательно повышали на 50-100 °С. Перед каждым повышением температуры образцы гомогенизировали и устанавливали их фазовый состав рентгенофазовым анализом (РФА). Идентификацию легированных фаз проводили сопоставлением с рентгенограммой индивидуального бората PbCd₂B₆O₁₂, структура которого определена на монокристалле [6].

Рентгенографические данные поликристаллов синтезированных боратов получали на порошковом автодифрактометре D8 ADVANCE Bruker AXS с детектором Vantec-1 (Си*K*α-излучение). Съемку образцов проводили при комнатной температуре в интервале углов дифракции 10–60° с шагом сканирования – 0.02°. Обработка экспериментальных интенсивностей и уточнение параметров элементарных ячеек полученных фаз выполнена с использованием паТ. Н. Хамаганова

Синтез и характеризация гексаборатов свинца и кадмия, легированных Cr³⁺

кета программ TOPAS 4.2 [15]. Дифрактограммы легированных образцов и чистого гексабората свинца и кадмия приведены на рис. 2. Монофазность поликристаллов чистого PbCd₂B₆O₁₂ и активированного PbCd_{2-x}B₆O₁₂: 0.03 Cr³⁺ подтверждены методом термического анализа.

Термоаналитические исследования выполнены методом дифференциальной сканирующей калориметрии (ДСК) на синхронном термоанализаторе Netzsch STA 449c F1 JUPITER. Навеску массой 19.7 мг помещали в Рt тигель с крышкой и нагревали в атмосфере аргона в интервале 25–800 °C. Скорость нагрева образца составляла 10 °C/мин.

Инфракрасные спектры поглощения синтезированных препаратов регистрировали на ИК-Фурье-спектрометре ALPHA (BRUKER) в таблетках с KBr в диапазоне 400–4000 см⁻¹. Расшифровка спектров и отнесение полос поглощения выполнены на основании данных [16–20].

3. Результаты и обсуждение

Кристаллическая структура $PbCd_2B_6O_{12}$ представляет собой трехмерный каркас, образованный борокислородными слоями $[(B_6O_{12})^{6-}]_n$, простирающимися параллельно плоскости *ab* [6]. Между ними проходят одномерные туннели 8-членных колец, заполненные цепочками Сd(2)O₆-октаэдров. Цепочки Cd(2)O₆-октаэдров, связываясь общими ребрами, формируют новые двухмерные [Cd₂B₆O₁₂]⁴⁻ - слои, также параллельные плоскости *ab*. Двухмерные слои [Cd₂B₆O₁₂]⁴⁻, соединяясь мостиковыми димерами из связанных ребрами Cd(1)O₇- полиэдров, формируют трехмерную [Cd₂B₆O₁₂]²⁻ анионную сеть. Ионы Pb²⁺ с KЧ = 7 располагаются в пустотах трехмерного каркаса. Атомы бора в структуре координируются тремя и четырьмя атомами кислорода.

РФА образцов, активированных ионами хрома, показал отсутствие примесных фаз. Индицирование рентгенограмм боратов изученной системы выполнены методом структурной аналогии по монокристальным данным PbCd₂B₆O₁₂ [6]. Кристаллографические характеристики по результатам индицирования рентгенограмм приведены в табл. 1. Все легированные бораты кристаллизуются в моноклинной сингонии, пр.гр. *P*2₁/n.

В структуре моноклинного $PbCd_2B_6O_{12}$ атомы кадмия проявляют двоякую координацию с КЧ = 6 и 7. Радиус иона Cr^{3+} для КЧ = 6 согласно [21] составляет 0.615 Å, что немного меньше радиуса иона Cd^{2+} , который для этой координации имеет значение 0.65 Å, а для КЧ = 7 составляет 0.745 Å. Незначительное содержание легирующей добавки и малые размеры их по срав-

Рис. 2. Рентгенограммы системы PbCd_{2-x}B₆O₁₂: *x*Cr³⁺

Т. Н. Хамаганова

Синтез и характеризация гексаборатов свинца и кадмия, легированных Сг³⁺

	Фаза	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	β, град.	<i>V</i> , Å ³	<i>Т</i> _{пл} ,° С
-	$PbCd_{2}B_{6}O_{12}[6]$	6.5570(3)	6.9924(4)	19.2094(10)	90.285(4)	880.72(8)	731
	PbCd ₂ B ₆ O ₁₂	6.5618(3)	6.9868(4)	19.2081(8)	90.250(3)	880.61(7)	734
-	$PbCd_{2-x}B_{6}O_{12}: 0.02 Cr^{3+}$	6.5605(5)	6.9885(9)	19.213(2)	90.253(6)	880.9(2)	
	$PbCd_{2-x}B_{6}O_{12}: 0.03 Cr^{3+}$	6.5598(6)	6.9861(7)	19.219(1)	90.246(5)	880.8(1)	729
	$PbCd_{2-x}B_6O_{12}: 0.04 Cr^{3+}$	6.5573(6)	6.9855(7)	19.204(2)	90.248(6)	879.7(1)	
	$PbCd_{2-x}B_{6}O_{12}: 0.05 Cr^{3+}$	6.5567(7)	6.9852(6)	19.217(1)	90.244(6)	880.0(1)	
	$PbCd_{2-x}B_{6}O_{12}: 0.06 Cr^{3+}$	6.5546(6)	6.9793(7)	19.215(6)	90.228(6)	878.9(1)	
	$PbCd_{2-x}B_6O_{12}: 0.07 Cr^{3+}$	6.5508(5)	6.9801(8)	19.207(2)	90.224(5)	878.3(1)	

Таблица 1. Кристаллографические и термические характеристики фаз $PbCd_{2-x}B_6O_{12}$: xCr^{3+} (пр. гр. $P2_1/n$, Z = 4)

нению с радиусом ионов заместителя не приводят к перестройке структуры, о чем свидетельствуют параметры решеток твердых растворов. Видно, что полученные фазы кристаллизуются в одном структурном типе с исходной матрицей, образуя непрерывный ряд твердых растворов замещения $PbCd_{2-x}B_6O_{12}$: xCr^{3+} в рассматриваемом концентрационном интервале $0 \le x \le 7.0$ мол. %.

На рис. 3 показана кривая нагревания образца PbCd_{2-x}B₆O₁₂: 0.03Cr³⁺, содержащая один эндотермический эффект при 729 °C, соответствующий процессу плавления образца. В процессе подъема температуры масса бората оставалась постоянной вплоть до его плавления. Аналогичный термоэффект был обнаружен для чистого гексабората PbCd₂B₆O₁₂ [7].

Рентгенограмма расплава порошка Pb-Cd_{2-x}B₆O₁₂: 0.03Cr³⁺ содержала основные рефлексы фаз, идентифицированных как CdB₄O₂, PbO, указывая на инконгруэнтный характер плавления бората. Результаты РФА находятся в согласии с ранее полученными нами данными [7–9]. В табл. 2 приведены температуры плавления некоторых активированных боратов свинца и кадмия.

ИК-спектры образцов PbCd₂B₆O₁₂ (1) и Pb-Cd_{2-x}B₆O₁₂: 0.03 Cr³⁺ (2), представленные на рис. 4, содержат большое количество полос в области 600–1400 см⁻¹ и проявляют значительное сходство. Сложное строение борокислородного каркаса исследуемых боратов не позволяет провести строгую интерпретацию спектров. Сходство по форме и расположению полос поглощения указывает на одинаковый тип координации атомов бора в обеих фазах и подтверждает результаты РФА о близости их кристаллических структур. Полосы в спектрах поглощения обусловлены присутствием в структуре PbCd₂B₆O₁₂ BO₃-треугольников и BO₄-тетраэдров, колебания ко-

Рис. 3. Кривая нагревания для образца PbCd_{2-v}B₆O₁₂: 0.03Cr³⁺

Т. Н. Хамаганова Синтез и характеризация гексаборатов свинца и кадмия, легированных Cr³⁺

•	1 1 1	1 <u>2-x</u>	6 12 CI	, ,
	Поликристаллы	<i>Т</i> _{пл} ,° С	Характер плавления	Ссылка
	PbCd ₂ B ₆ O ₁₂	731	инконгруэнтный	[6]
	PbCd ₂ B ₆ O ₁₂	734	инконгруэнтный	[7]
	$Pb_{1-x}Cd_{2}B_{6}O_{12}$: 0.03Eu ³⁺	732	инконгруэнтный	[8]
	$PbCd_{2-x}B_{6}O_{12}: 0.05Cu^{2+}$	728	инконгруэнтный	[9]
	PbCd _{2-x} B ₆ O ₁₂ : 0.03Cr ³⁺	729	инконгруэнтный	наст. иссл.

Таблица 2. Термические характеристики фаз PbCd₂ $_{\nu}B_{4}O_{12}$: *x*Cr³⁺ (пр. гр. *P*2,/n, *Z* = 4)

Рис. 4. ИК-спектры образцов PbCd₂B₆O₁₂(1) и PbCd_{2-x}B₆O₁₂:0.03Cr³⁺(2)

торых обычно наблюдаются в диапазоне спектра 400–2000 см⁻¹. Спектр (2) включает интенсивные полосы при 1384, 1299, 1183, 989, 795 см⁻¹. Полосы с меньшей интенсивностью наблюдаются при 1260, 1063, 895, 656, 620, 577, 414 см⁻¹. Межатомные расстояния В-О в треугольниках варьируют в пределах 1.334(9)-1.396(9) Å и существенно короче, чем в тетраэдрах (1.430(9)-1.538(8) Å [6]. Следовательно, высокочастотные полосы спектра при 1384 и 1299 см-1 вызваны антисимметричными валентными колебаниями (v_z) ВО,-групп. Пики в более низкочастотной области (<1200 см⁻¹) связаны с симметричными валентными колебаниями (v_1) BO₂ - и (v_2) BO₄ - групп. Различными деформационными колебаниями (v_{2}) и (v_{4}) гофрированного слоя $[(B_{2}O_{12})^{6-}]$ обусловлены полосы поглощения в области 577–795 см⁻¹. Наблюдаемые пики поглощения при 414 см⁻¹ могут быть отнесены к деформационному (v₂) колебанию связей в борокислородных тетраэдрах.

4. Выводы

Гетеровалентным замещением ионов кадмия на ионы хрома в двойном борате PbCd₂B₆O₁₂ методом твердофазных реакций получены фазы переменного состава. Твердые растворы замещения системы PbCd_{2-x}B₆O₁₂: *x*Cr³⁺ обнаружены в концентрационном интервале $0 \le x \le 7.0$ мол. %. По результатам РФА параметры и объемы моноклинных ячеек их монотонно уменьшаются с ростом содержания активатора. Изменения параметров ячеек новых фаз согласуются с ионными радиусами активатора и замещаемых ионов матрицы. Температура инконгруэнтного плавления PbCd_{2-x}B₆O₁₂: 0.03Cr³⁺ составляет 729 °C.

Конфликт интересов

Автор заявляет, что у нее нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье. Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2024;26(2): 321–326

Т. Н. Хамаганова

Синтез и характеризация гексаборатов свинца и кадмия, легированных Cr³⁺

Список литературы

1. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука; 1986. 173 с.

2. Урусов В. С. Твердые растворы в мире минералов. *Соросовский образовательный журнал*. 1996;11: 54-60. Режим доступа: https://web.archive. org/web/20051028213236/http://journal.issep.rssi.ru/ articles/pdf/9611_054.pdf

3. Кожевникова Н. М., Мохосоев М. В. *Тройные молибдаты*. Улан-Удэ: Изд-во Бурятского госуниверситета; 2000. 298 с.

4. Иванов-Шиц А. К., Мурин И. В. Ионика твердого тела: Т. 1. СПб: Изд-во СПбГУ; 2001. 616 с.

5. Петьков В. И. Сложные фосфаты, образованные катионами металлов в степенях окисления I и IV. *Успехи химии*. 2012;81(7): 606–637. Режим доступа: https://elibrary.ru/item.asp?id=17788409

6. Hao Y.-C., Xu X., Kong F., Song J.-L., Mao J.-G. PbCd₂B₆O₁₂ and EuZnB₅O₁₀: syntheses, crystal structures and characterizations of two new mixed metal borates. *CrystEngComm*. 2014;16: 7689–7695. https://doi.org/10.1039/c4ce00777h

7. Хамаганова Т. Н. Синтез и термолюминесцентные свойства твердых растворов PbCd_{2x}Mn_xB₆O₁₂. *Неорганические материалы*. 2019;55(3): 317–321. https://doi.org/10.1134/ s0002337x19030114

8. Хамаганова Т. Н., Хумаева Т. Г., Перевалов А. В. Синтез и термолюминесценция боратов Pb_{1-x}Cd₂B₆O₁₂: *x*Eu³⁺. *Журнал прикладной химии*. 2020;93(9): 1340–1344. https://doi.org/10.31857/ S004446182009011X

9. Хамаганова Т. Н. Синтез и спектрально-люминесцентные свойства медьсодержащих материалов на основе моноклинного $PbCd_2B_6O_{12}$. *Неорганические материалы*. 2023;59(4): 394–398. https:// doi.org/10.31857/s0002337x23040036

10. Shao Q. Y., Ding H., Yao L._bQ., Xu J. F., Liang C., Jiang J. Q. Photoluminescence properties of a ScBO₃:Cr³⁺ phosphor and its applications for broadband near-infrared LEDs. *RSC Advances*. 2018;8: 12035–12042. https://doi.org/10.1039/c8ra01084f

11. Fang M. H., Huang P.-Y., Bao Z., ... Liu R.-S. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared $ScBO_3$: Cr^{3+} phosphor. *Chemistry of Materials*. 2020;32: 2166–2171. https://doi.org/10.1021/acs.chemmater.0c00101

12. Malysa B., Meijerink A., Jüstel T. Temperature dependent photoluminescence of Cr^{3+} doped $Sr_8MgLa(PO_4)_7$. *Optical Materials*. 2018;85: 341–348. https://doi.org/10.1016/j.optmat.2018.09.001

13. Du J. R., Poelman D. Identifying near-infrared persistent luminescence in Cr³⁺-doped magnesium gallogermanates featuring afterglow emission at extremely low temperature. *Advanced Optical Materials*.

2020;8: 1901848. https://doi.org/10.1002/ adom.201901848

14. Jia Z. W., Yuan C. X., Liu Y. F., ... Jiang J. Strategies to approach high performance in Cr³⁺-doped phosphors for high-power NIR-LED light sources. *Light: Science & Applications*. 2020;9(1): 86. https:// doi.org/10.1038/s41377-020-0326-8

15. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Karlsruhe, Germany: Bruker AXS; 2008. 68 р. Режим доступа: http://algol.fis.uc.pt/jap/ TOPAS%204-2%20Users%20Manual.pdf

16. Weir C. E., Schroeder R. A. Infrared spectra of the crystalline inorganic borates. *Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry*. 1964;68A (5): 465–487. https://doi. org/10.6028/jres.068a.045

17. Егорышева А. В., Бурков В. И., Каргин Ю. Ф., Плотниченко В. Г., Колташев В. В. Колебательные сректры кристаллов боратов висмуту. *Кристаллография*. 2005:50(1): 135–144. Режим доступа: https:// elibrary.ru/item.asp?id=9152489

18. Пир П. В., Шабанов Е. В., Доценко В. П. Синтез и ИК-спектроскопическое изучение боратов стронция. Вестник Одесского национального университеma. 2005;10(1): 21–27. Режим доступа: https:// elibrary.ru/item.asp?id=24355545

19. Добрецова Е. А., Болдырев К. Н., Чернышев В. А., Петров В. П., Мальцев В. В., Леонюк Н. И. ИКспектроскопия европиевых боратов $EuM_3(BO_3)_4$, где M = Al, Cr, Fe, Ga, со структурным типом минералахантита. Известия РАН. Серия Физическая.2017;81(5): 589–593. https://doi.org/10.7868/S0367676517050118

20. Шмурак С. З., Кедров В. В., Киселев А. П., Фурсова Т. Н., Зверькова И. И. Спектральные и структурные характеристики ортоборатов La_{0.99-x}Y_xEu_{0.01}BO₃. *Физика твердого тела*. 2022;68(8): 955–966. https:// doi.org/10.21883/ftt.2022.08.52690.359

21. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*. 1976;A32: 751–767. https://doi.org/10.1107/s0567739476001551

Информация об авторе

Хамаганова Татьяна Николаевна, к. х. н., доцент, с. н. с. лаборатории оксидных систем, Байкальский институт природопользования СО РАН (Улан-Удэ, Российская Федерация).

https://orcid.org/0000-0002-8970-1481 khama@binm.ru

Поступила в редакцию 23.08.2023; одобрена после рецензирования 15.11.2023; принята к публикации 15.12.2023; опубликована онлайн 25.06.2024.