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Abstract 
Computer modeling is currently a promising technique used in pharmaceutical technologies to develop drug compositions. 
Molecular dynamics has provided space and time resolutions unavailable during experiments and thus has greatly extended 
the capabilities of chemistry and some other areas. Molecular dynamics stimulations are very important for the development 
of solid drug dispersions. The purpose of this study is to simulate the molecular dynamics of the release of desloratadine 
from alloys containing polyvinylpyrrolidone-10000 into the dissolution medium.
The release of desloratadine from alloys containing polyvinylpyrrolidone-10000 was simulated by the method of molecular 
dynamics (Gromacs 2023 program, Amber 99 force field). The study involved calculating van der Waals energies of interaction 
between desloratadine and PVP and desloratadine and water and the proportion of desloratadine molecules that lost their 
bonds with PVP. The desloratadine molecule was considered released into water provided that it did not bind either to the 
polymer or water.
It was found that the degree of desloratadine release from PVP into the aqueous medium was the highest at a ratio of 1:1 
(24.56±2.08%), and the lowest at ratios of 1:2 and 1:5 (8.27±1.79 and 8.65±0.98%, respectively). At a ratio of 1:1, the average 
energy of interaction between desloratadine with PVP per one molecule of desloratadine was the highest (–36.13±0.62 kJ/mol) 
when the energy of interaction between desloratadine and water was low (–52.03±0.82 kJ/mol), which indicates that 
desloratadine involvement in the solvation and desorption processes was the highest at this ratio. The average energy of 
interaction between desloratadine and the polymer was the lowest at a ratio of 1:5 (–52.03±0.82 kJ/mol) when the energy 
of interaction between desloratadine and water was –44.45±1.60 kJ/mol. This fact indicates a low intensity of the desorption 
and solvation processes at this ratio.
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1. Introduction
Currently, a large percentage of medicines on 

the pharmaceutical market (~ 40%) and medicines 
under development (~ 90%) are poorly soluble in 
water [1,2]. Substances poorly soluble in water 
include desloratadine, which has proven safe and 
effective non-sedative antihistamine activity that 
is useful for allergic rhinitis, allergic asthma, and 
urticaria [3, 4]. Several studies have attempted to 
improve desloratadine solubility by the formation 
of a complex inclusion of desloratadine with 
b-cyclodextrin in a solution [5].

The solubility and dissolution rate of medicines 
poorly soluble in water can be increased with 
solid dispersions [6, 7]. Solid dispersions with 
amorphous carriers usually exhibit higher 
solubility and dissolution rates due to the high 
energy of the amorphous phase of the medicine 
[8–10]. Among amorphous polymer carriers 
widely used in solid dispersion technologies are 
polyvinylpyrrolidone (PVP), polyvinylpyrrolidone 
vinyl acetate, and hydroxypropylmethylcellulose 
[11 13]. An analysis of scientific literature did not 
reveal information on the use of PVP as carrier 
polymers to prepare solid dispersions with 
desloratadine in order to increase its solubility 
in water during the development of semi-solid 
formulations.

The preparation and study of solid dispersions 
with PVP, including by the method of molecular 
dynamics, is a promising area of pharmaceutical 
technology. Molecular dynamics has significantly 
extended the capabilities of chemistry and 
some other areas by providing space and time 
resolutions unavailable during experiments 
[14]. Molecular modeling allows calculating the 
physical properties of the medicine/excipient 
without conducting costly experiments. Molecular 
modeling, which is important for optimizing 
formulations and predicting drug release profiles, 
can provide information about interactions 
between medicines and excipients, including 
their complexation. The understanding of these 
interactions allows researchers to develop 
optimal filler compositions to increase drug 
stability and bioavailability [15–17].

The purpose of the study is to simulate 
the molecular dynamics of the release of 
des loratadine  f rom a l loys  conta in ing 
polyvinylpyrrolidone-10000 (desloratadine 

ratio: PEG-6000 1:1, 1:2, 1:5 by weight) into the 
dissolution medium.

2. Experimental
The release of desloratadine from alloys 

containing PVP-10000 was simulated by the 
method of molecular dynamics (Gromacs 2023 
program [16,18], Amber 99 force field [19]). 
Desloratadine molecules and spatial structures 
of monomers were built in the HyperChem 
program [20]. The assembly of polymer chains 
and parametrization of the force field for the 
molecules of the components in the simulated 
systems was completed using the ParmEd 
program [21].

The simulated system included PVP molecules 
(Fig. 1) with a length of 90 monomers with a 
molar mass of 10.005 kDa (PVP), desloratadine 
molecules in the form of a cation, and Cl ions 
(Fig. 2).

Fig. 1. Structure of the PVP molecule

Fig. 2. Chemical structure and spatial structure of the 
desloratadine molecule

Models of desloratadine alloys containing PVP 
were built to study the release of desloratadine. 
Alloy models were prepared by a molecular 
dynamics simulation of desloratadine and PVP 
mixtures using periodic boundary conditions 
along all coordinate axes [16, 22–25]. The 
geometries of the systems were preliminarily 
optimized by the gradient method. Further, the 
molecular dynamics of desloratadine and PVP 
mixtures was simulated using thermostatting 
(Berendsen thermostat) and barostatting 
(Berendsen barostat, 1 atm.) [13, 23] with a step 
of 2 fs for 25 ns.
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The study involved calculating van der Waals 
energies of interaction between desloratadine 
and PVP and desloratadine and water and the 
proportion of desloratadine molecules that lost 
their bonds with PVP. The desloratadine molecule 
was considered released into water provided that 
it did not bind either to the polymer or water.

3. Results and discussion
The molecular compositions of the simulated 

systems are given in Table 1.
The desloratadine alloy with PEG-6000 was 

prepared with the ratios of 1:1, 1:2, and 1:5 by 
weight, since these ratios are the most widely 
used in the solid dispersion technology [11,12].

During the simulation, there was partial 
diffusion of desloratadine and PVP into water 
(Table 2). At a ratio of desloratadine and PVP of 
1:1, some of the desloratadine molecules lost 
their bonds with the polymer and clustered, 
and some of the PVP molecules passed into the 
dissolution medium.

The graph (Fig. 3) shows that the van der Waals 
energies of interaction between desloratadine, 

the polymer, and the solvent stabilized 20 ns after 
the beginning of the simulation.

Fig. 4 shows a graph of the dependence of 
the proportion of desloratadine molecules not 
bound to the polymer over time. During the first 
5 ns of the simulation, over 30% of desloratadine 
molecules released into the aqueous medium.

The simulation of the release of desloratadine 
from PVP into water at a ratio of desloratadine 
to the carrier of 1:2 was accompanied by the 
formation of clusters and a partial transition of 
polymer molecules into the solvent (Table 3). 
During the molecular dynamics simulation, some 
of the desloratadine molecules released into 
the aqueous medium, and others retained their 
bonds with PVP and interacted with water which 
penetrated into the alloy.

The average energy of the van der Waals 
interaction between desloratadine and PVP was 
close to the average energy of the van der Waals 
interaction between desloratadine and water 
(Fig. 5).

Fig. 6 provides information on the number 
of desloratadine molecules not bound to PVP in 

Fig. 3. Energy of van der Waals interaction of desloratadine with PVP and with water (desloratadine: PVP 1:1)

Table 1. Amounts of molecules of components of simulated systems 

Substance Desloratadine-PVP 1:1 Desloratadine-PVP 1:2 Desloratadine-PVP 1:5
Desloratadine cation 321 160 64

Cl– ion 321 160 64
PVP 10 10 10

Water 20264 20064 20960
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Table 2. Molecular dynamics simulation of the 
release of desloratadine from a 1:1 PVP alloy by 
mass into water

Time, ns Structure
0

9

19

29

Table 3. Molecular dynamics simulation of the 
release of desloratadine from a 1:2 PVP alloy by 
mass into water

Time, ns Structure
0

9

19

29

Fig. 4. Release rate of desloratadine (desloratadine: PVP 1:1)
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water at a ratio of desloratadine to PVP of 1:2 by 
weight. It was found that during the first 25 ns 
of simulation, more than 12% of desloratadine 
molecules were released into the aqueous 
medium.

During the simulation of the release of deslo-
ratadine from PVP into water at a ratio of deslo-
ratadine to carrier of 1:5, a small number of indi-
vidual desloratadine molecules were released from 
the polymer into the aqueous medium (Table 4).

The energy of the van der Waals interaction 
between desloratadine and PVP at a ratio of 
1:5 stabilized 20 ns after the beginning of the 
simulation (Fig. 7).

Fig. 8 shows a graph of the dependence of the 
proportion of desloratadine molecules not bound 

to the polymer over time. During the first 25 ns 
of the simulation, over 10 % of desloratadine 
molecules were released into the aqueous 
medium.

The average values for the parameters of the 
release of desloratadine from the studied PVP 
complexes are shown in Table 5. According to the 
results of the molecular dynamics simulation, it 
was found that the highest degree of desloratadine 
release from PVP into aqueous medium was 
achieved at a ratio of 1:1 (24.56±2.08%), and 
the lowest at ratios of 1:2 and 1:5 (8.27±1.79% 
and 8.65±0.98%, respectively). The average 
energy of interaction between desloratadine 
and the polymer was the lowest at a ratio of 
1:5 (–52.03±0.82 kJ/mol), and the energy of 

Fig. 5. Energy of van der Waals interaction of desloratadine with PVP and with water (desloratadine: PVP 1:2)

Fig. 6. Release rate of desloratadine (desloratadine: PVP 1:2)
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Fig. 7. Energy of van der Waals interaction of desloratadine with PVP and with water (desloratadine: PVP 1:5)

Fig. 8. Release rate of desloratadine (desloratadine: PVP 1:5)

Table 4. Molecular dynamics simulation of the release of desloratadine from a 1:5 PVP alloy by mass 
into water

Time, ns Structure Time, ns Structure
0 19

9 29
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interaction between desloratadine and water 
was –44.45±1.60 kJ/mol, which indicates a 
low intensity of the desorption and solvation 
processes at this ratio.

4. Conclusions 
The conducted study of the release of 

desloratadine from PVP alloys by the method 
of molecular dynamics showed that the highest 
degree of desloratadine release from PVP 
into the aqueous medium was achieved at a 
ratio of 1:1, and the lowest at ratios of 1:2 and 
1:5. At a ratio of 1:1, the average energy of 
interaction between desloratadine and PVP per 
one molecule of desloratadine was the highest 
(–36.13±0.62  kJ/mol) when the energy of 
interaction between desloratadine and water was 
low (–52.03±0.82 kJ/mol), which indicates that 
desloratadine involvement in the solvation and 
desorption processes was the highest at this ratio.
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