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Abstract 
Composite materials with magnetic fillers play an important role in a number of industries, from functional coatings in electronics 
to electromagnetic wave absorption and  microwave-shielding materials. An important feature is the selection of a magnetic 
nano-sized filler that does not cause increased degradation of the polymer binder, and the selection of a polymer that ensures 
the weather resistance of the nanocomposite material. In this study, composite samples of micro- and nanofibers based on 
fabricated particles of nanosized magnetite (Fe3O4) as a cheap electromagnetic wave absorption material were investigated. 
Magnetic polymer-dielectric fibers polystyrene-Fe3O4 were obtained by electrospinning. The X-ray diffraction analysis 
showed that the synthesized Fe3O4nanoparticles have a cubic space group structure Fd3m with crystal lattice parameter 
a = 8.422±0.026 Å. The analysis of the ferromagnetic resonance spectrum showed the ferromagnetic nature of the obtained 
magnetite nanoparticles. It has been shown that during the production of composite fibers by electrospinning, a dispersion 
of nano-sized magnetite powder can be included in the spinning solution, which, as a result of the electrospinning process, 
allows obtaining magnetic composite micro- and nanofibers. The average size of the included magnetite particles was 
15±3 nm.
The resulting non-woven magnetic material is predominantly composed of two types of fibers with an average diameter 
of 680±280 nm and larger associated fibers with a diameter of 1500±300 nm. Based on a certain frequency dependence of 
losses upon reflection RL in the frequency range 15 MHz – 7.0 GHz, the synthesized fibrous material can be considered to 
be an effective electromagnetic wave absorption material.
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1. Introduction
The diverse applications of magnetic nano-

sized particles or materials are widely explored 
by scientists and researchers around the world for 
various industrial, engineering, structural, and 
biomedical applications. This interest is due to 
the exceptional physical and chemical properties 
of nanoscale objects, such as large specific surface 
area, small size, surface functionalization, and 
magnetism. Magnetic nanoparticles usually 
consist of pure metals (Fe, Co, Ni), metal alloys 
(CoPt, FePt) and metal oxides or ferrites [1]. In the 
last decade, magnetic nanoparticles have gained 
enormous interest due to their use in specialized 
areas such as medicine: as a carriers in targeted 
drug delivery [2, 3], cancer theranostics [4, 5], 
biosensors [6, 7], contrast agents for magnetic 
resonance imaging [8-10]; electromagnetic 
wave absorption and radio-shielding materials 
of electromagnetic radiation [11–14], fillers of 
composite materials for FDM printing [15, 16], 
production of magnetorheological fluids for 
systems of controlled hydraulic automation 
devices, in which such particles are a component 
of the complex dispersed phase [17], magnetic ink 
[18 ], etc. Magnetic nanoparticles of magnetite 
(Fe3O4) and maghemite (g-Fe2O3) are of particular 
interest [19].

Nanoscale Fe3O4 is a cheap, effective magnetic, 
electromagnetic wave absorption and radio-
shielding nanomaterial with a combination of 
unique magnetic, optical and photocatalytic 
properties [20–23]. Composite fibrous materials 
based on Fe3O4 are of particular interest due to the 
development of new materials with magnetic and 
conductive properties [24–26]. In [27], the authors 
obtained composite fibers by electrospinning 
based on a polyacrylonitrile/DMSO fiber-
forming system with the inclusion of magnetite 
nanoparticles, in [28] the authors studied the effect 
of the concentration of magnetite nanoparticles in 
a colloidal solution on the process of their loading 
into calcium carbonate microparticles grown 
on polycaprolactone fibers; in [29] the authors 
obtained composite fibers by electrospinning 
based on the polyvinylpyrrolidone/water 
fiber-forming system containing magnetite 
nanoparticles. Composite fibrous materials based 
on nanosized magnetite can be used both for 
effective electromagnetic microwave absorption 

and for ensuring electromagnetic compatibility 
of radio-electronic equipment at ultrahigh 
frequencies [28–35]. From practical experience 
it is known that ultrafine Fe3O4 nanoparticles, 
which have strong catalytic properties, cause 
increased degradation of polymer binders, 
leading to poorly predictable changes in the 
properties of electromagnetic wave absorption 
and radio-shielding nanocomposite materials 
based on Fe3O4 on time and temperature. In 
addition, an important problem is the provision 
of the protection of nano-sized magnetic filler 
in a composite material from chemical leaching 
by precipitation.

A solution to this problem may be the creation 
of fibrous composite materials in which Fe3O4 
nanoparticles are “encapsulated” in a weather-
resistant polymer binder (polystyrene or acrylate-
styrene copolymer) using fiber electrospinning 
technology. This approach fundamentally allows 
reducing the temporary degradation of the 
operational properties of electromagnetic wave 
absorption and radio-shielding nanocomposite 
materials based on Fe3O4 under atmospheric 
conditions.

The purpose of this study was the creation 
and investigation of the characteristics of a 
fibrous composite material based on nano-
sized magnetite in a polystyrene matrix using 
electrospinning.

2. Experimental
A sample of nanosized magnetite was obtained 

using the ammonium hydroxide method. As iron 
salts FeSO4·7H2O (chemically pure) and Fe2(SO4)3 
(reagent grade) which were dissolved in double-
distilled water at a concentration of 0.05 M were 
used. Next, the salt solution in the required 
proportions was heated on a laboratory electric 
stove with a power stirrer to a temperature of 65 
°C and the calculated amount of a 25% ammonium 
hydroxide solution (NH3·H2O with density 
r = 0.9070 g/ml) with a 1% excess was poured drop 
by drop with constant stirring at a slow rate upon 
reaching pH = 8.5. The formation of magnetite 
took place in accordance with the ionic equation:

Fe2+ + 2Fe3+ +8OH– → Fe3O4↓ + 4H2O.

After pouring in the ammonia precipitant, 
the solution was kept for 20 min at a temperature 
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of 65 °C for the formation of the magnetite 
nanoparticles. The resulting magnetite 
nanoparticles were separated from the resulting 
solution using magnetic decantation with a 
permanent magnet. The powder was thoroughly 
washed four times with bidistilled water. The 
resulting black wet powder was dried in air for 
3-4 days. The dried magnetite powder was then 
ground in a ceramic mortar until homogeneity 
was achieved.

The microstructure of the synthesized 
magnetite powder was analyzed using a JEOL 
JSM-7500F electron scanning microscope. The 
microstructure was studied using the secondary 
electron registration mode. The advantage of 
using the secondary electron registration mode is 
the ability to study the surface morphology, taking 
into account the dependence of the contrast on 
the relief [36]. Elemental analysis was performed 
using an Inca X Sight EDX Spectrometer X-ray 
energy dispersive microanalysis attachment. 
The X-ray spectral analysis method allows both 
qualitative and quantitative analysis of samples 
without compromising their integrity [37]. Laser 
granulometric analysis was performed using 
laser particle size analyzer Analysette 22 of 
JEOL JES-FA300X ESR/FMR X-ray spectrometer. 
X-ray phase analysis of a sample of nanosized 
magnetite powder was carried out using a 
powder diffractometer D2 Phaser. The sample 
was examined at room temperature in the 2q 
angle range from 10° to 70° with a scanning step 
of 0.02°. 

The synthesis of individual and composite 
polystyrene nano- and microfibers was carried out 

using an independently developed installation 
for needle-free electrospinning. Emulsion-type 
polystyrene was dissolved in toluene (chemically 
pure) until the mass fraction of polystyrene in the 
solution reached 18%. To obtain nanocomposite 
fibers based on nanomagnetite and polystyrene, 
a concentrated aqueous dispersion of purified 
magnetite nanoparticles was used. Magnetite 
nanoparticles were removed from the aqueous 
dispersion by magnetic decantation using 
a permanent magnet. The solution for 
electrospinning fibers was prepared in order to 
obtain a composite fiber with a mass content of 
nanosized magnetite of 25%. The electroforming 
process was carried out at a electric potential 
difference between the electrodes of 18 kV and 
an interelectrode distance of 10 cm.

For the determination of the electromagnetic 
wave absorption properties of the fabricated 
fibrous composite based on polystyrene fiber 
with nano-sized magnetite, the reflection loss 
characteristics of its compressed layer with the 
thickness of 2.54 mm were measured in a 10-cm 
HP-11566A coaxial cell with toroid dimensions 
of 7.0 × 3.05 mm. A KC901V Deepace vector 
network analyzer was used in the operating 
frequency range from 15 MHz to 7.0 GHz. Losses 
upon reflection RL for the nanocomposite was 
determined experimentally by measuring the 
complex transmission coefficient S11 in a short-
circuited line.

3. Results and discussion 
Based on the data obtained by processing 

photographs of the microstructure at high 

Fig. 1. Photograph of nanoparticles (а) and EDA spectrum (b) of the resulting nano-sized magnetite powder
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resolution (Fig. 1), the size of magnetite 
nanoparticles in the synthesized sample was 
15 ± 3 nm. Our results are consistent with the 
results of [38], in which a similar synthesis 
method was used, but with iron chlorides and 
low temperature, short exposure of the resulting 
nanomagnetite in the mother solution, and 
are in good agreement with the data of [39]. In 
this case, the synthesis product, according to 
energy-dispersive microanalysis, in terms of the 
percentage of Fe and O atoms corresponded to the 
expected composition of Fe3O4 without impurities 
in significant quantities.

Laser granulometric analysis of the synthesized 
magnetite powder showed (Fig.  2a) significant 
agglomeration of particles in it; therefore, 
an aqueous dispersion of purified magnetite 
nanoparticles was used to obtain nanocomposite 
fibers based on magnetite and polystyrene. 
Before adding the magnetite dispersion to the 
polymer molding solution, the nanoparticles were 

dispersed using an AG SONIC TC-50 ultrasonic 
bath for 20 min at room temperature.

FMR spectrum of synthesized nanosized 
Fe3O4, magnetite powder is shown in Fig. 2b. 
Based on the shape of the FMR spectrum, the 
studied sample of Fe3O4 nano-sized magnetite 
powder is a typical ferromagnetic material with 
a highly symmetrical nanoparticle shape.

The powder X-ray diffraction pattern of 
the studied sample of synthesized nanosized 
magnetite is shown in Fig. 3. Based on X-ray 
diffraction analysis, it was found that Fe3O4 
nanopowder has a typical cubic space group 
structure Fd3m with crystal lattice parameter 
a = 8.422±0.026 Å and an average Fe-O distance 
of 2.55 Å, which correlates well with known 
literature data for Fe3O4 (a  =  8.407-8.414 Å 
[40], a  =  8.40-8.42 Å [41], a  =  8.397 Å [42] or 
JCPDS19–0629 a = 8.396 Å [43]). This confirms 
that the sample was composed of Fe3O4 without 
possible traces of g-Fe2O3.

Fig. 2. Laser granulometric analysis (a) and FMR spectrum (b) of the resulting nano-sized magnetite powder 
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Average size of coherent scattering regions 
(CSR) - D for a sample of nano-sized magnetite 
was calculated based on X-ray diffraction data for 
all peaks using the Scherrer formula: 

D
k= ¥
¥

l
b qcos

where k = 0.9 − for spherical particles; l − wave-
length of the x-ray radiation used (l = 0.15405 nm), 
nm; q − Bragg angle, rad; b − half-width of integral 
peaks at half-maximum, rad. 

The calculated CSR value for magnetite 
crystallites using the Scherrer method for the 
main diffraction peak was D = 15.1 nm, which 
was consistent with the results of electron 
microscopy, and according to all observed 
diffraction peaks D = 19.5±6 nm. Our results are 
in good agreement with the data of [44], in which 
the size of synthesized magnetite nanoparticles 
based on electron microscopy data of 15 nm was 
lower than the size calculated based on powder 
X-ray diffractometry data of 19.4 nm.

Calculation of CSR sizes and microstresses 
for a sample of the studied Fe3O4 nanopowder 
using the Williamson-Hall method, provided the 
following results: CSR sizes D = 17.2 nm, which 
agreed with the value obtained using Scherrer’s 
formula, the microstresses value e = 4.6·10–4. 

It should be noted that a electrospinning 
spinneret in the form of a hollow needle is 
usually used to produce non-woven materials 
by electrospinning. However, the use of a 
hollow needle has the following limitations 
and disadvantages: clogging of the needle 
channel with a dispersion of filler particles 
of the spinning solution due to the narrow 

internal diameter of the hole, which may 
not allow encapsulation of particles that 
can improve the properties of the resulting 
fibers and/or functionalize the resulting non-
woven material; limited productivity (up to 
0.1 grams per hour), nonlinear scaling [45]; a 
needle-down spinneret placement can result 
in droplets forming at the needle tip, which 
can fall onto the collector, preventing the 
formation of uniform fibers [46]. To overcome 
these disadvantages, needleless electrospinning 
units can be used to produce polymer nano- and 
microfibers filled with nanoparticles. Needleless 
electrospinning is the process of producing 
nanofibers by electrospinning of a polymer 
solution directly from the exposed surface of a 
liquid/liquid dispersion of a spinning solution 
with nanoparticles using various structural 
elements as a spinning electrode [46], such as 
a conical wire supported by gravity [47], metal 
plate [48], rotating cone [49], gear [50], spinneret 
with a mechanical shift [51], etc. Such structural 
elements are partially immersed and rotated 
in the polymer molding solution, resulting in 
the formation of a thin polymer solution layer 
on their surface and thus from the surface 
of the thin polymer layer, multiple cones are 
formed, which, after applying an electric field, 
initiate electrospinning. In our unit the fibers 
were formed from a polymer solution flowing 
under the influence of gravitational force along 
a vertically oriented spinning electrode. The 
forming electrode consisted of a metal rod made 
of surgical stainless steel with a diameter of 1 
mm, on top of which a wire with a diameter of 
0.2 mm was wound as a spiral.

Fig. 3. Powder diffraction pattern of a sample of nano-sized magnetite

Condensed Matter and Interphases / Конденсированные среды и межфазные границы  	 2024;26(3): 547–557

R. P. Yakupov et al.	 Preparation of composite micro-nanofibers based on nano-sized magnetite...



552

The microstructure of  the resulting 
polystyrene micro- and nanofibers according to 
scanning electron microscopy data are shown 
in Fig. 4. According to the studies, the average 
thickness of the obtained polystyrene microfibers 
was 910 ± 160 nm (Fig. 4a). At the same time, the 
resulting fibrous material also contained a small 
fraction of thin nanofibers with a thickness of 89 
± 7 nm (Fig. 4b).

The results of studying the microstructure 
of the obtained composite polystyrene fibers 
with included magnetite nanoparticles are 
shown in Fig. 5. According to studies conducted 
in the resulting fibrous material, polystyrene-
Fe3O4 the fraction of submicron fibers with a 
thickness of 680 ± 280 nm predominated. At 
the same time, the discussed material also 
contained a small fraction of large microfibers 
with a thickness of 1500 ± 300 nm, probably 
being pairs of submicron fibers. We concluded 

that the obtained composite fibers based on 
nanosized magnetite had an average diameter 
almost 2-3 times higher compared to the results 
for composite nanofibers based on nanosized 
magnetite from [8] with a diameter of 200-350 
nm and [13] with a diameter of 200-320 nm. This 
was due to the use of low potential difference of 
18 kV in the electrospinning process, compared 
to the electrospinning process carried out at 30 
kV in [8] and at 65 kV in [13].

The frequency dependence of losses upon RL 
reflection for a manufactured fiber composite with 
nanosized magnetite particles in the frequency 
range from 15 MHz to 7.0 GHz is shown in Fig. 
6. According to the data in Fig. 6, the resulting 
fibrous nanocomposite material in compressed 
form had wide-range radio absorption and 
electromagnetic wave absorption properties in 
the microwave range acceptable for practical use, 
taking into account its microporosity and the low 

Fig. 5. Photographs of the structure of synthesized composite fibers, obtained at magnifications of 1000 (a), 
10,000 (b) and 50,000x (c)

Fig. 4. Structure of polystyrene microfibers obtained at a magnification of 5000x (a) and 50,000x (b) 
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proportion of magneto-dielectric filler in the form 
of nano-sized magnetite in it.

 Prev ious ly  publ ished  data  on  the 
electromagnetic wave absorption properties 
of composites with different thicknesses and 
concentrations of magnetite particles are shown 
in Table 1. The size of magnetite particles used in 
various studies ranged from 15 nm to 1000 nm. As 
can be seen from the data in Table 1, the material 
made of Fe3O4 nanoparticles had the highest 
radio absorption of – 8.2 d, with a diameter of 30 
nm in a silicone binder [57], however, it should 

be noted that the thickness of this sample was 
4  mm, and the percentage of magnetite was 
30% by weight. Our sample had a microwave 
absorption of –2.97  dB with a thickness of 
2.54 mm and a magnetite concentration of 25% 
in polystyrene. Taking into account the thickness 
of the studied materials, the proportion and 
size of filler particles, and the used polymer 
binder, we can suggest the using the material 
of submicron polystyrene fibers with included 
magnetite nanoparticles, as a cheap non-woven 
electromagnetic wave absorption material.

4. Conclusions
Thus, we can conclude that the combination 

of a simple solution method for the synthesis 
of magnetite nanoparticles without the use of 
expensive stabilizing polymers or surfactants in 
combination with the encapsulation technique of 
Fe3O4 nanoparticles into polystyrene submicron 
fibers during electrospinning allowed to develop 
elements of the technology for creating fibrous 
magnetic and electromagnetic wave absorption 
nanocomposite materials based on magnetic Fe3O4 
nanoparticles. According to their characteristics, 
the resulting micro- and nanofibers with nanosized 
magnetite particles we can suggest the promise 
of the obtained material for use as a cheap non-
woven electromagnetic wave absorption material.

Fig. 6. Frequency dependence of reflection loss RL for 
a fabricated fiber composite based on polystyrene fiber 
with nanosized magnetite

Table 1. Radio absorption properties of various composites based on magnetite particles of various 
natures

Material Filler (Fe3O4), %
Sample 

thickness, mm Reflection loss, dB Reference

Fe3O4 nanoparticles 15 nm in 
submicron polystyrene fibers 25 2.54 –2.97 at 4.96 GHz this article

Fe3O4 nanoparticles 20–30 nm in 
submicron polyvinyl chloride fibers 40 2.4 –6.6 at 9.7 GHz [52]

natural Fe3O4 in paraffin 50 5 –5.47 at 7.44 GHz [53]

cubic Fe3O4 nanoparticles 15–20 nm 
in paraffin 40 5.5 –7.6 at 5.1 GHz [54]

Fe3O4 microspheres 300 nm in 
paraffin 50 2 –1.0 at 5.6 GHz [55]

hedgehog-like microspheres Fe3O4 
500–1000 nm in paraffin 50 5 –4.1 at 8.4 GHz [56]

Fe3O4 nanoparticles 30 nm in 
silicone polymer 30 4 –8.2 at 6.7 GHz [57]

Fe3O4 microspheres 200–1000 nm in 
paraffin 20 4 –7.5 at 7.6 GHz [58]
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