

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы

https://journals.vsu.ru/kcmf/

Оригинальные статьи

Научная статья УДК 544.6 https://doi.org/10.17308/kcmf.2024.26/12277

Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов

Т. А. Минакова¹, С. А. Калужина², Е. Н. Аксёнова²

¹Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина». ул. Старых Большевиков, д. 54 а, Воронеж 394064, Российская Федерация

²Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

Аннотация

Цель статьи – исследование влияния гидрокарбонат-ионов на локальную активацию алюминия при температуре 25 °C.

Методами вольтамперометрии, хроноамперометрии, оптической и сканирующей электронной микроскопии, рентгеноспектрального микроанализа изучены особенности локальной активации алюминия в присутствии гидрокарбонат-ионов (2·10⁻⁴-4·10⁻³ М).

Установлена область концентраций гидрокарбоната натрия, где алюминий подвергается локальной активации, получены экспериментальные данные о зависимости основных количественных характеристик данного процесса (потенциала питтингообразования, потенциала локальной активации и индукционного периода) от концентрации гидрокарбоната натрия. На основе формально-кинетического подхода предложен механизм локальной активации алюминия в гидрокарбонатных средах.

Ключевые слова: гидрокарбонат натрия, алюминий, локальная активация, пассивация, вольтамперометрия, хроноамперометрия, сканирующая электронная микроскопия

Для цитирования: Минакова Т. А., Калужина С. А., Аксёнова Е. Н. Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов. Конденсированные среды и межфазные границы. 2024;26(3): 464-473. https://doi. org/10.17308/kcmf.2024.26/12277

For citation: Minakova T. A., Kaluzhina S. A., Aksenova E. N. Features of aluminum local activation in the presence of bicarbonate ions. Condensed Matter and Interphases. 2024;26(3): 464-473. https://doi.org/10.17308/kcmf.2024.26/12277

🖂 Минакова Татьяна Анатольевна, e-mail: tatiana bor vrn@mail.ru

© Минакова Т. А., Калужина С. А., Аксёнова Е. Н., 2024

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

1. Введение

Основными источниками поступления гидрокарбонатов в поверхностные воды являются природные процессы химического выветривания и растворения карбонатных пород или алюмосиликатов, а также сточные воды предприятий химической, силикатной, содовой промышленности. Гидрокарбонат-ионы являются одними из основных анионов, содержащихся в природной воде, поступающей в системы водои теплоснабжения, оборудование которых изготавливается из различных металлов и сплавов, в том числе алюминия, меди, сталей и др. [1–5].

Согласно литературным данным [6, 7], у меди и железа существует способность как к пассивации, так и к развитию локальных поражений в зависимости от солесодержания гидрокарбонатного раствора. Так, в [8, 9] установлено, что в разбавленных электролитах (*C*NaHCO₃ ≤ 0.08 М) образующиеся пассивные слои обладают низкими защитными характеристиками, и НСО_л-ионы выступают в качестве активаторов питтинговой коррозии, вызывая депассивацию металла при потенциалах локальной активации больше потенциала коррозии. С увеличением концентрации НСО₋-ионов защитные свойства оксидной пленки по отношению к питтингообразованию (ПО) повышаются, что объясняется стабилизацией пассивной пленки на меди и железе под действием формирующихся в этих условиях малахита или основного карбоната железа соответственно. В отличие от анодного поведения меди и железа в разбавленных растворах, в более концентрированных (C(NaHCO₇) = 0.1 M) наблюдается широкая зона их пассивности (вплоть до потенциала выделения кислорода). Сканирующая электронная микроскопия (СЭМ) в этом случае не фиксирует появления питтингов (ПТ) на указанных выше металлах после их анодного окисления [10].

Иной подход предложен в [11, 12]. Согласно ему ПО на меди не связано с особыми свойствами HCO_3^- -ионов, обладающих слабой активирующей способностью, а определяется величиной pH растворов, возрастающей в концентрированных средах, что приводит к более глубокому пассивному состоянию металла. Влияние pH проявляется также и в изменении соотношения CO_2 , H_2CO_3 , HCO_3^- и CO_3^{2-} . В равновесных условиях соблюдается баланс между всеми четырьмя формами [3, 4, 13]:

$$\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \leftrightarrow 2\text{H}^+ + \text{CO}_3^{2-}.$$
 (1)

При pH = 4.3 в воде присутствует практически только CO₂. С увеличением pH растет содержание HCO₃⁻, при pH = 8.35 в воде присутствуют только ионы HCO₃⁻, а при pH ~ 12 – только ионы CO₃²⁻ [13].

Известно [14–22], что алюминий и его сплавы могут находиться в пассивном состоянии, а также подвергаться локальной активации (ЛА) в присутствии хлорид-, сульфат-, нитрат- и других ионов. При этом в литературе практически не содержится сведений о поведении алюминия и его сплавов в присутствии гидрокарбонат-ионов. В работах [23-24] проведены исследования по влиянию температуры на ЛА алюминия в растворах NaHCO₃. Параллельно показано, что при концентрациях 10⁻⁵-10⁻⁴ и 5·10⁻³-10⁻¹ М NaHCO₃ алюминий находится в пассивном состоянии, а при концентрациях 2·10⁻⁴ до 4·10⁻³ М NaHCO₃ – подвергается ЛА. Обнаруженное неоднозначное поведение алюминия [23-24], а также наличие различных взглядов [6-12] на роль рН гидрокарбонатных растворов и НСО₃-ионов в процессах ЛА на металлах при низком солесодержании в растворе требует более детального исследования в широкой зоне потенциалов, уточнения концентрационных границ ЛА и ее кинетических параметров, а также установления механизма процесса ЛА алюминия в гидрокарбонатных средах. В связи с этим целью настоящей работы явилось исследование влияния гидрокарбонатионов на локальную активацию алюминия при температуре 25 °С.

2. Экспериментальная часть

Эксперименты осуществляли на стационарном алюминиевом (Al 99.99 %) электроде в водных растворах гидрокарбоната натрия в диапазоне концентраций от 2·10⁻⁴ до 4·10⁻³ М, которые готовили из реактивов марки «Ч» на дистиллированной воде и выдерживали сутки. Контроль рН исследуемых растворов (на pH-метре PH-107 с точностью до 0.1) показал изменение значения рН от 6.5 до 7.7 с увеличением солесодержания электролитов.

Перед каждым опытом поверхность алюминия шлифовали на наждачной бумаге с уменьшающимся радиусом зерна, полировали на фильтровальной бумаге, обезжиривали этиловым спиртом и промывали дистиллированной водой.

Электролитической ячейкой служила стеклянная трехэлектродная ячейка с неразделенными катодным и анодным пространствами и

свободным доступом воздуха. Рабочий (алюминиевый) и вспомогательный платиновый электроды вместе с отводом от электролитического ключа крепили в крышке ячейки. В качестве электрода сравнения использовали хлоридсеребряный электрод (*E* = 0.20 В), находящийся в электролитическом

ключе, заполненном рабочим раствором при комнатной температуре и заканчивающимся капилляром Габера–Луггина. Все потенциалы в работе в дальнейшем пересчитывали по шкале нормального водородного электрода [25–28].

Анодное поведение алюминия в соответствующих растворах NaHCO₃ изучали при комнатной температуре на потенциостате IPC-Compact с помощью программного обеспечения Equivalent Circuits Solver (Ver 1.2) (точность ± 0.002 B).

В качестве основного электрохимического метода исследования выбрали вольтамперометрию с линейной разверткой потенциала, для реализации которого в настоящей работе в начале каждого опыта электрод помещали в рабочий раствор и выдерживали в нем в течение 10 минут, после чего снимали анодную поляризационную кривую (АПК) от установившегося потенциала со скоростью сканирования $v_{p} = 0.15$ В/мин, последовательно смещая потенциал электрода в область положительных значений вплоть до Е = +1.00 В. Для количественной оценки стадии зарождения ПТ использовали потенциал ПО $(E_{\Pi\Omega})$, т. е. критическое значение потенциала, положительнее которого проявляется активирующее действие анионов. Приближенно *E*_{по} определяли по потенциалу, отвечающему резкому росту анодного тока на АПК [29-31].

Дополнительные исследования осуществляли методом хроноамперометрии, в рамках которого по форме кинетических *I* – т кривых при фиксированных значениях потенциалов можно судить о том, в каком состоянии находится исследуемый металл: активно растворяется, пассивируется или подвергается ЛА. При этом количественной характеристикой ЛА служит потенциал ЛА (Е_{ль}), фактически отвечающий потенциалу образования первых метастабильных ПТ, дальнейшее развитие или репассивация которых определяется рядом причин: условиями эксперимента, природой металла и активатора, температурой и скоростью образования ПТ. Для получения хроноамперограмм (ХАГ) перед каждым опытом поверхность электрода обрабатывали по выше указанной методике. Затем электрод выдерживали в рабочем растворе в течение 10 мин. После этого образец анодно поляризовали при различных значениях потенциалов вблизи *E*_{лA}. Далее регистрировали изменение тока во времени в течение 10 мин через каждые 10 сек. Полученные хроноамперометрические данные совмещали с визуальными (микроскопическими) наблюдениями [32–34].

Сочетание вольтамперометрического и хроноамперометрического методов в данном случае необходимо, поскольку, как правило, $E_{_{ЛA}}$ и $E_{_{\Pi O}}$ не совпадали между собой, и обычно $E_{_{ЛA}} < E_{_{\Pi O}}$.

При исследовании стадии зарождения ПТ часто пользуются понятием индукционного периода ПО или ЛА (т_{инл}) [33, 35], под которым, в зависимости от принятой концепции пассивности металла, понимают время, необходимое для проникновения иона-активатора через оксидную пленку (пленочная теория), либо для успешной конкурентной адсорбции между пассиватором и активатором в пользу последнего (адсорбционная теория) [28, 35]. Величина т_{инл} зависит не только от природы металла, состава раствора, вида активатора, его концентрации, pH, присутствия посторонних веществ и температуры, но и от потенциала электрода. Это дает основание [32, 33, 35] трактовать значение 1/т_{инл} как характеристику, пропорциональную скорости реакции, ответственной за возникновение ПТ. Величину т_{инд} определяли по следующей методике. После механической обработки поверхности электрода и погружения его на 10 минут в раствор, образец подвергали анодной поляризации в растворе при потенциале, соответствующем потенциалу устойчивой ЛА, и регистрировали время начала активации электрода т_{инд}, соответствующее началу флуктуаций анодного тока или его резкому росту [31, 36].

Электрохимические измерения дополняли визуальным контролем состояния поверхности рабочего электрода до и после каждого эксперимента (вольтамперометрии, хроноамперометрии) на микроскопах МБС-2 (при увеличении ×7) и МИМ-7 (при увеличении ×500). По форме, диаметру и глубине ПТ, их концентрации на поверхности определяли интенсивность ЛА алюминия в рабочих растворах. Глубину ПТ устанавливали методом двойной фокусировки с помощью микрометрического винта микроскопа МИМ-7, который заключался в поочередной фокусировке оптической системы на внутреннюю поверхность ПТ и на гладкую поверхность металла [37], а диаметр, используя окулярную сетку микроскопа МИМ-7. Фотосъемка разру-

шений поверхности металла проводили цифровой фотокамерой. Морфологию поверхности рабочего электрода определяли методом СЭМ. При этом образец для анализа помещали в кювете в рабочую камеру растрового электронного микроскопа JSM-6510 LV и далее снимали соответствующие микрофотографии.

Элементный состав продуктов, образующихся в ходе электрохимических исследований, определяли с помощью рентгеноспектрального микроанализа (PCM) на энергодисперсионной приставке BRUKER 129 эВ к сканирующему электронному микроскопу JSM-6510 LV.

3. Результаты и обсуждение

Электрохимические исследования поведения алюминия в гидрокарбонатных растворах позволили установить точную область ЛА металла, соответствующую диапазону концентраций $2\cdot 10^{-4}$ – $4\cdot 10^{-3}$ М. За пределами указанной зоны алюминий сохранял пассивное состояние [23–24]. Результаты исследования показали, что область ЛА характеризуется как изменением формы анодных поляризационных кривых (рис. 1), так и немонотонными зависимостями основных количественных характеристик процесса ЛА ($E_{\Pi O}, E_{Л A}$ и $\tau_{_{инд}}$) от концентрации гидрокарбонат-ионов.

В диапазоне от $2 \cdot 10^{-4}$ до $4 \cdot 10^{-3}$ М на АПК зафиксировали $E_{\Pi O}$, который варьировал от 0.165 (в растворе $2 \cdot 10^{-4}$ NaHCO₃) до 0.766 В (в растворе $4 \cdot 10^{-3}$ M NaHCO₃) (табл. 1). При этом на поверхности алюминия после снятия АПК отметили присутствие локальных поражений – ПТ, диаметр (d) и глубина (*h*) которых уменьшались с увеличением концентрации HCO₂-ионов (табл. 1).

Нарушение пассивности металла в исследуемых системах подтвердили и характерные флуктуации на соответствующих ХАГ, снятых при $E_{\rm ЛA}$ (рис. 2).

Хроноамперометрически установили, что питтинговые поражения на поверхности алюминия при $E_{\Lambda\Lambda}$ возникали не сразу, а лишь после некоторого $\tau_{_{\rm инд}}$ (рис. 2), величина которого заметно возрастала с ростом концентрации NaHCO₃ от 2·10⁻³ до 4·10⁻³ М. Противоположный эффект наблюдали в растворах 2·10⁻⁴–2·10⁻³ М NaHCO₃, где значение $\tau_{_{\rm инд}}$ уменьшалось с ростом содержания соли.

При этом $E_{\Lambda A}$ сначала постепенно смещали в отрицательную область от 0.180 В (при 2·10⁻⁴ M NaHCO₃) до -0.020 В (при 2·10⁻³ M NaHCO₃), а затем начинал резко увеличиваться до 0.600 В (при 4·10⁻³ M NaHCO₃) (табл. 1).

Для более детального изучения морфологии поверхности алюминия провели дополнительное исследование методами СЭМ и РСМ. С помощью последнего установили количественное содержание химических элементов, присутствующих в пленке на поверхности металла до (табл. 2) и после (табл. 3 и 4) электрохимических экспериментов. Затем провели сравнительные исследования области ПТ (табл. 3 а и 4а) и поверхности металла без локальных поражений (табл. 3б и 4б).

Согласно полученным данным до электрохимических экспериментов на поверхности алю-

Рис. 1. АПК алюминия в растворе NaHCO₃ с концентрациями 5·10⁻⁴ (1), 1·10⁻³ (2), 2·10⁻³ (3), 3·10⁻³ (4), 4·10⁻³ (5) М ($\tau_n = 0.15$ В/мин, $T = 25\pm 2^{\circ}$ С)

Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2024;26(3): 464–473

Т.А. Минакова и др. Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов

Концентрация NaHCO ₃ , M	рН до/рН после эксперимента	<i>Е</i> _{по} , В	<i>Е</i> _{ла} , В	τ _{инд.} , с	Глубина h, мкм	Диаметр <i>d</i> , мкм
2.10-4	6.5/6.5	0.165	0.180	155	6	10
5.10-4	6.8/6.8	0.340	0.080	40	6	10
1.10-3	7.2/7.2	0.260	0.060	53	6	10
2·10 ⁻³	7.4/7.4	0.0830	-0.020	32	<3	5
3.10-3	7.4/7.4	0.150	-0.020	202	<3	5
4·10 ⁻³	7.7/7.7	0.766	0.600	228	<3	5

Таблица 1. Количественные характеристики процесса ЛА алюминия в растворах NaHCO₃

Рис. 2. ХАГ алюминия в растворе NaHCO₃ при: a) *C* = 2·10⁻⁴ М и *E* = 0.18 B; б) *C* = 5·10⁻⁴ М и *E* = 0.08 B; в) *C* = 1·10⁻³ М и *E* = 0.06 B; г) *C* = 2·10⁻³ М и *E* = -0.02 B; д) *C* = 3·10⁻³ М и *E* = -0.02 B; e) *C* = 4·10⁻³ М и *E* = 0.60 B

миния присутствовали элементы: Al, O, Si, и C (табл. 2). После снятия АПК на поверхности алюминия в растворах $1\cdot10^{-3}$ и $4\cdot10^{-3}$ М NaHCO₃ обнаружили следующие элементы: Al, O, C, Na, Si и Mg (весовой процент соответствующего элемента, приведенный в табл. 3–4, соответствовал расположению выбранной на металле зоны). При этом особый интерес представляло соотноше-

Таблица 2. Элементный состав пленки (в выделенной области), присутствующей на поверхности алюминия до вольтамперометрических исследований при 25 °С и их количественное соотношение

Рентгенос	пектральный	Вид
микр	оанализ	поверхности
Элемент	Весовой %	по данным СЭМ
Al	70.38	Carl Martin
0	7.20	
Si	14.17	
С	8.25	and the second

ние весового процента элементов Al и O, связанное с толщиной образующейся на поверхности металла пленки [6, 18, 26]. Так, общая толщина пленки после вольтамперометрических исследований (табл. 3б и 4б) почти в 2 раза больше по сравнению с исходной поверхностью (табл. 2).

На основе формально-кинетического подхода [21, 22] для оценки контролирующей стадии процесса ПО зону ЛА разделили на две области ($n_1 = 0.60$ ($C_{\rm NaHCO_3} = 2 \cdot 10^{-4} - 2 \cdot 10^{-3}$ М) и $n_2 = -2.94$ ($C_{\rm NaHCO_3} = 2 \cdot 10^{-3} - 4 \cdot 10^{-3}$ М)), на границе которых, вероятно, происходила смена механизма ПО (рис. 3). При этом величина n – кажущийся кинетический порядок реакции по агрессивному иону, а $1/\tau_{\rm инд}$ – скорость зарождения ПТ [13, 33, 35] :

$$n_{\text{HCO}_{\pi}} = d \lg (1/\tau_{\text{uHg}}) / d \lg C n_{\text{HCO}_{\pi}}.$$
 (2)

Полученные в рассматриваемом процессе дробные порядки реакции (рис. 3) связали с точностью определения индукционного периода и, главным образом, с не учетом типа изотермы адсорбции ионов, участвовавших в процессах ПО

Таблица 3. Элементный состав пленки (в выделенной области), присутствующей на поверхности алюминия после вольтамперометрических исследований в растворе 1·10⁻³ M NaHCO₃ (в ПТ (а) и в пленке на поверхности (б)) при 25 °C, и их количественное соотношение

Рентгеноспектральный		Вид	Рентгеноспектральный		Вид
микроанализ		поверхности	микроанализ		поверхности
Элемент	Весовой %	по данным СЭМ	Элемент	Весовой %	по данным СЭМ
а) в питтинге			б) в пленке на поверхности алюминия		
Na	0.53		Na	0.30	
Al	82.43		Al	75.52	制度等加加加
С	7.06	1 2 1 1 T 1	С	7.62	Sec. 3 The Day
0	8.92	1825113	0	15.33	The sector
Si	0.67	138 JUL	Si	0.94	
Mg	0.39		Mg	0.29	

Таблица 4. Элементный состав пленки (в выделенной области), присутствующей на поверхности алюминия после вольтамперометрических исследований в растворе 4·10⁻³ M NaHCO₃ (в ПТ (а) и в пленке на поверхности (б)) при 25 °C, и их количественное соотношение

Рентгеноспектральный		Вид	Рентгеноспектральный		Вид
микроанализ		поверхности	микроанализ		поверхности
Элемент	Весовой %	по данным СЭМ	Элемент	Весовой %	по данным СЭМ
а) в питтинге		б) в пленке на поверхности алюминия			
Na	0.29	· · · · · · · · · · · · · · · · · · ·	Na	0.09	199
Al	39.32		Al	79.88	
С	47.81		С	4.81	
0	11.45	· · · · ·	0	14.23	· · · · · · · ·
Si	0.68	N			1
Mg	0.45		Si	0.99	50

Рис. 3. Влияние концентрации NaHCO₃ и pH на скорость процесса ЛА алюминия ($C_{\text{NaHCO}_3} = 2 \cdot 10^{-4} - 4 \cdot 10^{-3} \text{ M}$, $T = 25 \pm 2 \text{ °C}$)

и репассивации ПТ, а также доли реальной поверхности локального поражения на алюминии.

Показали, что с увеличением концентрации NaHCO₃ скорость зарождения ПТ $(1/\tau_{\text{инд}})$ сначала возрастала (n_1) , а затем убывала (n_2) (рис. 3).

На основе литературных данных, в частности, адсорбционной теории и модели нуклеофильного замещения [22, 35, 38–41], предположили следующий механизм наблюдаемого явления.

В диапазоне концентраций NaHCO₃ от $2 \cdot 10^{-4}$ до $2 \cdot 10^{-3}$ М (pH = 6.5–7.4) и $n_1 = 0.60$ пассивирующая пленка обладает низкими защитными характеристиками, и HCO₃⁻-ионы выступают в качестве активаторов питтинговой коррозии, вызывая депассивацию алюминия по схеме:

$$Al + 3OH^{-} \rightarrow [Al(OH)_{3}]_{anc} + 3e^{-}, \qquad (3)$$

 $[Al(OH)_3]_{adc} + 3HCO_{\overline{3}adc} \rightarrow [Al(HCO_3)_3]_{adc} + 3OH_{adc}^-, (4)$

$$[AI(HCO_3)_{3 \text{ agc}}] \rightarrow AI^{3+} + 3HCO_3^{-}.$$
 (5)

Поскольку кажущийся кинетический порядок процесса по HCO_3^- -ионам n = 0.60 (т. е. близок к целочисленной величине 1) (рис. 3), то лимитирующей стадией процесса, скорее всего, является ассоциация комплекса $[Al(OH)_3]_{acc}$ с гидрокарбонат-ионами (4).

Формирующиеся соединения [Al(HCO₃)_{задс}] неустойчивы, поскольку образованы слабым основанием и слабой кислотой и, вероятно, в дальнейшем распадаются и переходят в объем электролита (5). Подтверждением данного механизма служит образование открытых ПТ на алюминии в данной области ЛА, что отчетливо видно на фотографиях СЭМ (табл. 3а). Параллельно методом РСМ установлено, что соотношение весового процента элементов Al и О в ПТ соответствует изначальной поверхности (табл. 2 и 3а).

С увеличением концентрации HCO_3^- -ионов от $2 \cdot 10^{-3}$ до $4 \cdot 10^{-3}$ М (pH = 7.4–7.7) и $n_2^- = -2.94$ защитные свойства оксидной пленки по отношению к ПО повышались, наблюдали торможение процесса ЛА, уменьшался диаметр и глубина ПТ (табл. 1), что объяснили стабилизацией пассивной пленки на алюминии по схеме:

$$Al + 3OH^{-} \rightarrow [Al(OH)_{3}]_{anc} + 3e^{-}$$
(6)

$$[\operatorname{Al}(\operatorname{OH})_3]_{\operatorname{adc}} + \operatorname{3HCO}_{\operatorname{3}\operatorname{adc}} \to [\operatorname{Al}(\operatorname{CO}_3)_x(\operatorname{OH})_y]_{\operatorname{adc}}^z.$$
(7)

Для доказательства представленного механизма получили фотографии СЭМ (табл. 4а), на которых отчетливо видно, что во второй области ЛА ПТ сформировались под «шапкой» из нерастворимого соединения. При этом данные РСМ в ПТ (табл. 4а) показали высокое (по сравнение с исходной поверхностью (табл. 2)) содержание элементов О и С и низкое Al. На основе литературных данных [42] к подобным нерастворимым солям (8) алюминия можно отнести, например, давсонит NaAlCO₃(OH)₂. Однако для установления точной формулы образующегося на поверхности алюминия химического соединения необходимы дополнительные исследования.

4. Заключение

На основе комплекса независимых физикохимических методов установлены концентрационные границы области локального разрушения алюминия в гидрокарбонатных средах (2.10-4-4·10⁻³ М NaHCO, , получены систематические экспериментальные данные о зависимости основных количественных характеристик процесса ЛА (
 $E_{_{\rm ПО,}}E_{_{\rm ЛА}}$ и ${\rm \tau}_{_{_{\rm ИНД}}})$ от концентрации гидрокарбоната натрия. Показано, что НСО₃-ионы могут проявлять двойственную природу, вызывая как активацию, так и торможение процесса ЛА в зависимости от концентрации гидрокарбонатионов. При этом на основе формально-кинетического подхода для оценки контролирующей стадии процесса питтингообразования зона ЛА была разделена на две области 2·10⁻⁴-2·10⁻³ М и 2·10-3-4·10-3 М концентраций NaHCO3 с порядком реакции $n_1 = 0.60$ (C_{NaHCO₃} = $2 \cdot 10^{-4} - 2 \cdot 10^{-3}$ M) и $n_2 = -2.94$ (C_{NaHCO₃} = $2 \cdot 10^{-3} - 4 \cdot 10^{-3}$ M) соответственно. На основе адсорбционной теории и модели нуклеофильного замещения предложены механизмы ЛА алюминия в гидрокарбонатных средах. Лимитирующей стадией процесса в первой области ЛА является стадия ассоциация комплекса [Al(OH)₃]_{алс} с гидрокарбонат-ионами. Во второй области ЛА формируются нерастворимого соединения сложного состава (обобщенная формула которого, вероятно, $[Al(CO_z)_v(OH)_u]_{auc}^z$) в виде «шапки» над питтингами. Показана смена механизма процесса ЛА алюминия при концентрации 2.10-3 М NaHCO,, связанная с изменением растворимости и природы соединений, формирующих защитную пленку. Дальнейшие исследования должны быть направлены на изучение адсорбции гидрокарбонат-ионов на пассивном металле, а также учет типа ее изотерм.

Заявленный вклад авторов

Минакова Т. А. – написание статьи, литературный поиск, развитие методики, итоговые выводы. Калужина С. А. – научное руководство, концепция исследования, редактирование текста, Аксёнова Е. Н. – проведение исследования.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Балабан-Ирменин Ю. В., Фокина Н. Г., Петрова С. Ю. Защита от внутренней коррозии трубопроводов водяных тепловых сетей. Энергосбережение и водоподготовка. 2009;62(6): 1–4. Режим доступа: https://elibrary.ru/item.asp?edn=kzdbnh

2. Массовая концентрация гидрокарбонатов и щелочность природных вод. Руководящий документ РД 52.24.493-2020. Министерство природных ресурсов и экологии Российской Федерации. Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) Ростовна-Дону. 2020.

3. Акользин П. А. Локальная коррозия металла теплоэнергетического оборудования. М.: Энергоатомиздат; 1992. 272 с.

4. Тодт Ф. *Коррозия и защита от коррозии*. Ленинград: Химия; 1966. 709 с.

5. Балабан-Ирменин Ю. В. Защита от внутренней коррозии трубопроводов водяных тепловых сетей. М.: Изд-во «Новости теплоснабжения»; 2013. 288 с.

6. Калужина С. А., Зибер И. В. Исследование пассивности меди и ее нарушения в гидрокарбонатных растворах методами сканирующей электронной микроскопии и рентгеновской фотоэлектронной и оже-спектроскопии. Электрохимия. 2006;42(12): 1501–1506. Режим доступа: https:// elibrary.ru/item.asp?id=9433365

7. Нафикова Н. Г., Калужина С. А., Санина М. Ю. Специфика пассивного состояния железа в слабощелочных водных средах различного анионного состава. *Конденсированные среды и межфазные* границы. 2017;19(3): 376-383. https://doi. org/10.17308/kcmf.2017.19/214

8. Skrypnikova E. A., Kaluzhina S. A. Effect of hydrodynamic conditions on copper pitting corrosion inhibition in hydrocarbonate-chloride solutions by benzotriazole. *International Journal of Corrosion and Scale Inhibition*. 2015;4(2): 139–145. https://doi. org/10.17675/2305-6894-2015-4-1-139-145

9. Thomas J. G. N., Tiller A. K. Formation and breakdown of surface films on copper in sodium hydrogen carbonate and sodium chloride solutions. I. Effect of anion concentrations. *British Corrosion Journal*. 1972;11(7): 256–262.

10. Skrypnikova E. A., Kaluzhina S. A. Inhibition of copper local depassivation in alkaline media with oxygen-containing anions. *International Journal of Corrosion and Scale Inhibition*. 2017;2(6): 142–150. https://doi.org/10.17675/2305-6894-2017-6-2-4

11. Ушакова Е. Ю., Тутукина Н. М., Маршаков И. К. Питтинговая коррозия меди и механизм ее инициирования в карбонатно-бикарбонатных растворах. *Защита металлов*. 1991;27(6): 934–939. Конденсированные среды и межфазные границы / Condensed Matter and Interphases 2024;26(3): 464–473

Т.А. Минакова и др. Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов

Режим доступа: https://elibrary.ru/item. asp?id=12713135

12. Ушакова Е. Ю., Тутукина Н. М., Маршаков И. К. Механизм роста питтинга на меди в бикарбонатных растворах. *Защита металлов*. 1991;27(6): 940–944. Режим доступа: https://www. elibrary.ru/item.asp?id=12712488

13. Коррозионная стойкость оборудования химических производств. Коррозия под действием теплоносителей, хладагентов и прочих рабочих тел/ под ред. А. М. Сухотина, В. М. Беренблит. Ленинград: Химия; 1988. 360 с.

14. Минакова Т. А., Калужина С. А. Особенности анодного поведения алюминия в средах с различным pH в присутствии хлорида натрия и глицина. *Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация.* 2012;12(2): 49–54. Режим доступа: https://www.elibrary.ru/item. asp?id=18358962

15. Борисенкова Т. А., Калужина С. А. Анодное поведение алюминия в нейтральных электролитах различного анионного состава. *Конденсированные среды и межфазные границы*. 2009;11(2): 106–110. Режим доступа: https://www.elibrary.ru/item. asp?edn=kxfppl

16. Борисенкова Т. А., Калужина С. А. Пассивация и локальная активация алюминия в водных растворах под действием неорганических и органических добавок. *Конденсированные среды и межфазные границы*. 2011;13(2): 132–136. Режим доступа: https://www.elibrary.ru/item.asp?id=16445515

17. Минакова Т. А. *Пассивация и локальная анодная активация алюминия в средах различного состава при повышенных температурах*. Автореферат диссертации на соискание ученой степени кандидата химических наук. Воронеж: 2013. 18 с. Режим доступа: https://viewer.rsl.ru/ru/rsl01005535132?pa ge=1&rotate=0&theme=white

18. Калужина С. А., Минакова Т. А. *Пассивация* и локальная активация алюминия. Саарбрюккен: Lambert Academic Publishing; 2015. 141 с. Режим доступа: https://www.elibrary.ru/item. asp?edn=wecplf

19. Сатараев Д. А., Ахметова А. Н., Дресвянников А. Ф., Петрова Е. В. Электрохимическое поведение алюминия в растворах хлорида натрия в присутствии ионов циркония (IV), магния (II) и лантана (III). Вестник Технологического универсиmema. 2023;26(10): 96–100. https://doi. org/10.55421/1998-7072_2023_26_10_96

20. Дресвянников А. Ф., Ившин Я. В., Чонг Ф. Т., Хайруллина А. И. Особенности анодного поведения комбинированного электрода титан–алюминий и физико-химические свойства продуктов его растворения. Физикохимия поверхности и защита *материалов*. 2022;58(1): 77-85. https://doi. org/10.31857/S0044185622010077

21. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. М.: Металлургия; 1984. 400 с.

22. Синявский В. С. Развитие представлений о питтинговой коррозии и коррозии под напряжением алюминиевых сплавов. *Физическая химия: Сборник докладов НИФХИ им. Карпова Д. Я., 5–9 июня* 2000, Москва. М.: НИИТЭХИМ; 2000. С. 86–98.

23. Калужина С. А., Аксенова Е. Н., Минакова Т. А. Влияние гидрокарбонат-ионов на анодное поведение алюминия при различных температурах. *Коррозия: материалы, защита.* 2016;5(1): 1–6. Режим доступа: https://www.elibrary.ru/item. asp?edn=vxcilj

24. Минакова Т. А., Калужина С. А., Аксёнова Е. Н. Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов. Электрохимия и коррозия металлов и сплавов: Сборник материалов Всероссийской конференции с международным участием; Посвящается 110-летию со дня рождения А. Я. Шаталова, 95-летию со дня рождения И. К. Маршакова, 4–5 октября 2023, Воронеж. Воронеж: Издательский дом ВГУ; 2023. с. 101–103. Режим доступа: https://www.elibrary.ru/item. asp?edn=rswppw

25. Шаталов А. Я. *Практикум по физической химии*. М.: Высшая школа; 1975. 284 с.

26. Скрыпникова Е. А. Ингибирование локальной активации меди в щелочных средах при повышенных температурах. Автореферат диссертации на соискание ученой степени кандидата химических наук. Тамбов: 2009. 24 с. Режим доступа: https:// new-disser.ru/_avtoreferats/01004592734.pdf

27. Хомутов Н. Е. Электродвижущие силы, электродные потенциалы и химические равновесия. М.: Химия; 1971. 116 с.

28. Гороховская В. И. Практикум по электрохимическим методам. М.: Высшая школа; 1983. 191 с.

29. Козин Л. Ф. Электроосаждение и растворение многовалентных металлов. Киев: Наукова думка; 1989. 462 с.

30. Рачев Х. *Справочник по коррозии*. М.: Мир; 1982. 517 с.

31. Плэмбек Д. Электрохимические методы анализа. Основы теории и применение. М.: Мир; 1985. 504 с.

32. Revie R. W. *Uhlig's corrosion handbook*. Hoboken: John Wiley & Sons Limited; 2011. 1285 p.

33. Фрейман Л. И. Стабильность и кинетика развития питтингов. *Итоги науки и техники. Коррозия и зашита от коррозии.* 1985;11(1): 3–71.

34. Розенфельд И. Л. *Коррозия и защита метал*лов. М.: Металлургия; 1969. 448 с.

35. Кузнецов Ю. И., Лукьянчиков О. А., Андреев Н. Н. О роли природы аниона в начальных стадиях депассивации металлов в нейтральных водных средах. Электрохимия. 1985;21(12); 1690–1693.

36. Колотыркин Я. М., Алексеев Ю. В. О механизме саморегулирования процесса растворения (коррозии) пассивного металла в водных растворах. Электрохимия. 1995;31(1) 5–10.

37. Жук Н. П. *Курс теории коррозии и защиты металлов*. М.: Металлургия; 1976. 472 с.

38. Скорчеллетти В. В. *Теоретическая электрохимия*. Л.: Химия; 1963. 305 с.

39. Кузнецов Ю. И., Лукьянчиков О. А. Инициирование и ингибирование питтингообразования на никеле в нейтральных растворах. *Защита металлов.* 1988;24(2): 241–248.

40. Кузнецов Ю. И., Валуев И. А. О роли анионов в кинетике зарождения питтинга на железе в водных растворах. Электрохимия. 1984;20(3): 424–427.

41. Кузнецов Ю. И. Роль концепции комплексообразования в современных представлениях об инициировании и ингибировании питтингообразования на металлах. *Защита металлов*. 2001;37(5): 485-490. Режим доступа: https://www.elibrary.ru/ item.asp?id=44609967 42. Степанов С. И., Аунг М. М., Аунг Х. Й., Бояринцев А. В. Химические аспекты карбонатного выщелачивания скандия из красных шламов. *Вестник ВГУИТ*. 2018;80(4): 349–355. http://doi. org/10.20914/2310-1202-2018-4-349-355

Информация об авторах

Минакова Татьяна Анатольевна, к. х. н., доцент кафедры физики и химии, Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю.А. Гагарина» (Воронеж, Российская Федерация).

https://orcid.org/0009-0001-8486-0029 tatiana_bor_vrn@mail.ru

Калужина Светлана Анатольевна, д. х. н., профессор кафедры физической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0009-0003-4722-1898 svetlana.kaluzhina@gmail.com

Аксёнова Евгения Николаевна, магистр_кафедры физической химии, Воронежский государственный университет (Воронеж, Российская Федерация).

https://orcid.org/0009-0006-7648-922X tatiana bor vrn@mail.ru

Поступила в редакцию 05.12.2023; одобрена после рецензирования 24.12.2023; принята к публикации 25.12.2023; опубликована онлайн 01.10.2024.