

Condensed Matter and Interphases

ISSN 1606-867X (Print)

Kondensirovannye Sredy i Mezhfaznye Granitsy https://journals.vsu.ru/kcmf/

Review

Review article https://doi.org/10.17308/kcmf.2024.26/12384

Functional borates and their high-pressure polymorphic modifications. Review

T. B. Bekker^{1,2}, A. V. Davydov^{1,2}, N. E. Sagatov^{1,2}

¹V. S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, 3 Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation

²Novosibirsk State University

1 Pirogova st., Novosibirsk 630090, Russian Federation

Abstract

The article presents the results of many years of studies of the growth of a low-temperature modification of barium borate β -BaB₂O₄ (*R3c*) crystals in the Na, Ba, B // O, F quaternary reciprocal system. Barium borate β -BaB₂O₄ is the most important nonlinear optical crystal of the UV spectrum. The key factor determining the quality of crystals is the choice of an optimal solvent. The article presents phase diagrams and the results of the growth of β -BaB₂O₄ crystals in several subsystems of the studied quaternary reciprocal system. Using atomistic modeling, we predicted and then experimentally obtained new high-pressure modifications: γ -BaB₂O₄ (*P2*₁/*n*), whose structure includes edge-sharing tetrahedra, and d-BaB₂O₄ with assumed symmetry *Pa*3. In our study, we also focused on a solid solution with an "antizeolite" structure, which also crystallizes in the Na, Ba, B // O, F system.

Keywords: Low-temperature modification of barium metaborate, Quaternary reciprocal system, High-temperature solution growth, Borates with "antizeolite" structure

Funding: The study was supported by the Russian Science Foundation grant No. 24-19-00252, https://rscf.ru/project/24-19-00252/

For citation: Bekker T. B., Davydov A. V., Sagatov N. E. Functional borates and their high-pressure polymorphic modifications. Review. *Condensed Matter and Interphases*. 2024;26(4): 620–632. https://doi.org/10.17308/kcmf.2024.26/12384

Для цитирования: Беккер Т. Б., Давыдов А. В., Сагатов Н. Е. Функциональные бораты и их высокобарические полиморфные модификации. Обзор. *Конденсированные среды и межфазные границы*. 2024;26(4): 620–632. https://doi. org/10.17308/kcmf.2024.26/12384

⊠ Tatyana B. Bekker, e-mail: bekker@igm.nsc.ru, t.b.bekker@gmail.com © Bekker T. B., Davydov A. V., Sagatov N. E., 2024

The content is available under Creative Commons Attribution 4.0 License.

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

1. Introduction

Modifications of barium metaborate, α -BaB₂O₄ ($R\bar{3}c$) and β -BaB₂O₄ ($R\bar{3}c$), are important materials with birefringent and nonlinear optical properties in the UV and visible spectra respectively. Low-temperature non-centrosymmetric modification β -BaB₂O₄ is widely used for the generation of the fourth and fifth harmonics of Y₃Al₅O₁₂:Nd³⁺ lasers (266 and 213 nm respectively), and as optical parametric generators and amplifiers [1-4]. β -BaB₂O₄ crystals are characterized by a wide transparency range (from 185 to 2500 nm), high nonlinear optical susceptibility (d_{22} (1064 nm) = 2.2 pm/V, d_{22} = 5.7 d_{36} (KDP), an acceptable birefringence value ($\Delta n = 0.113$ (1064 nm)), a low light dispersion in the range from 204 to 1500 nm, and good physical and chemical properties [5].

The melting point of the high-temperature modification α -BaB₂O₄ is 1100 °C. Due to the α - β phase transition at a temperature of 925 °C the main method of growing β -BaB₂O₄ crystals is the high-temperature solution growth method, which ensures crystallization before the phase transition temperature is reached. The key factor determining the actual structure and optical quality of crystals is the choice of an optimal solvent. Earlier we suggested combining the main solvents used for the growth of β -BaB₂O₄ crystals, namely Na₂O [6] and components of the BaO-Na₂O-B₂O₃ ternary system [7-9], NaF [10–13] and BaF₂ [14, 15, 16], into a single quaternary reciprocal system Na, Ba, B // O, F [1, 17, 18]. Composition diagrams of quaternary reciprocal systems containing six salts A, B, C // X, Y are presented as a trigonal prism according to Jänecke [19]. A polytope of the Na, Ba, B // O, F system is shown in Fig. 1. The compositions of individual phases are presented in Table 1. Presented below are the results of the growth of β -BaB₂O₄ crystals performed using six solvents

and the results of the synthesis of two new polymorphic modifications of BaB_2O_4 at high temperatures and pressures.

The Na, Ba, B // O, F system also includes a composition range of the solid solution of borates with an "antizeolite" structure. The structure of the solution is based on the $\{Ba_{12}(BO_3)_6\}^{6+1}$ framework with channels along the c axis built of barium cubes and anticubes. The general formula of the solid solution in this system can be presented as $\{Ba_{12}(BO_3)_6\}[(F_2)_x(BO_3)_{1-x}][(F_4)_x(NaF_4)_y(BO_3)_{1-x-y}],$ where $x + y \le 1$, and $[(F_2)_x(BO_3)_{1-x}]^{3^2}$ and $[(F_4)_x(BO_3)_{1-x}]^{3^2}$ $_{x}(NaF_{4})_{y}(BO_{3})_{1-x-y}]^{3-}$ – are anionic groups in the barium anticubes and cubes, respectively. Fig. 1 shows a crosshatched triangle whose vertices contain experimentally determined phases: $Ba_{z}(BO_{z})_{2}, \{Ba_{12}(BO_{z})_{6}\}[BO_{z}][BO_{z}], x = 0, y = 0$ $[23], Ba_{3}(BO_{3})_{1.8}^{12}F_{0.6}, \{Ba_{12}(BO_{3})_{6}\}[(F_{2})_{0.4}(BO_{3})_{0.6}]$ $[(F_4)_{0.4}(BO_3)_{0.6}], x = 0.4, y = 0$ [24] and NaBa₁₂(BO₃)₇F₄, $\{Ba_{12}(BO_3)_6\}[BO_3][NaF_4], x = 0, y = 1$ [22]. The $NaBa_{12}(BO_3)_7F_4$ phase was first described in [25] as having a centrosymmetric *I4/mcm* structure.

Fig. 1. Polytope of the quaternary reciprocal system Na, Ba, B//O, F. Subsystems used for growing β -BaB₂O₄ crystals: I BaB₂O₄ – BaF₂, II BaB₂O₄ – (NaF)₂, III BaB₂O₄ – Ba₂Na₃[B₃O₆]₂F, IV BaB₂O₄ – (NaBO₂)₂, V BaB₂O₄ – 30 NaBaBO₃, VI 70BaB₂O₄ – NaBaBO₃ – Ba₂Na₃[B₃O₆]₂F

Table 1. Compositions of individual phases of the quaternary reciprocal system Na, Ba, B // O, F

Chemical formula	Compositions, mol %					D
	BaO	Na ₂ O	B ₂ O ₃	BaF ₂	Syngony, sp. gr., Z	Reference
NaBaBO ₃	50	25	25	_	Monoclinic, $C2/m$, 4	[20]
Ba ₂ Na ₃ [B ₃ O ₆] ₂ F	23.1	23.1	46.1	7.7	Hexagonal, $P6_{_3}/m$, 2	[21]
NaBa ₁₂ (BO ₃) ₇ F ₄	62.5	3.1	21.9	12.5	Tetragonal, <i>P</i> 4 ₂ <i>bc</i> , 4	[22]

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

However, this was not confirmed by the results of our X-ray structural analysis [22]. In this article we briefly describe the conditions for the growth of the NaBa₁₂(BO₃)₇F₄ phase and analyze the stability of the Ba₃(BO₃)_{1.8}F_{0.6} phase at high temperatures and pressures.

2. Experimental research methods

2.1. High-temperature solution growth of β -BaB₂O₄ and NaBa12(BO3)7F4 crystals

 β -BaB₂O₄ crystals were grown from hightemperature solutions in a top seed solution growth (TSSG) furnace. The compositions of the used high-temperature solutions I–VI are given in Table 2.

The starting materials were commercially available extra pure reagents BaCO₃, Na₂CO₃, $H_{z}BO_{z}$, NaF, and BaF₂. The initial batch weighing about 2 kg, whose composition corresponded to those presented in Table 2, was prepared by means of solid-phase synthesis and then melted in a platinum crucible (standard diameter of 80 and 100 mm). After determining the equilibrium temperature, a crystal seed was placed in contact with the top surface of the high-temperature solution; the seed was oriented along the optical axis and had a cross-section of 5×5 mm². The crystals were grown by constantly revolving the seed at a speed of 1 r/min. The cooling and pulling rates varied from 0.4 to 2 °C/day and from 0.5 to 0.1 mm/day respectively. In order to use the solution multiple times, β -BaB₂O₄ was added after each growth cycle obtained by means of solid-phase synthesis from metaboric acid HBO, and barium carbonate BaCO₃. The weight of the added β -BaB₂O₄ corresponded to the weight of the grown crystals.

NaBa₁₂(BO₃)₇F₄ crystals were grown from 38 mol % BaO, 36 mol % BaF₂, 13 mol % B₂O₃, and 13 mol % Na₂O compositions; the starting materials were the same commercially available reagents as used for the growth of β -BaB₂O₄ crystals. After the solid-phase synthesis, the batch (300 g) was melted in a platinum crucible (diameter 60 mm). To grow the crystals, a crystal seed was used oriented along the [001] axis with constant pulling (0.3 mm/day) and revolving (1 r/ min). The weight of the grown crystal was about 30 g.

2.2. Synthesis at high temperatures and pressures

Based on the ab initio calculations, we predicted the existence of two high-pressure polymorphic modifications of BaB_2O_4 , which we denoted as γ -BaB₂O₄ and δ -BaB₂O₄. These modifications are stable under pressures above 0.9 GPa and 6.1 GPa respectively [14]. According to the calculations, δ -BaB₂O₄ is isostructural to CaB₂O₄ – *Pa*3 [15].

We synthesized the new high-pressure modification γ -BaB₂O₄ using a Discoverer-1500 multi-anvil hydraulic press of the DIE type at a pressure of 3 GPa and a temperature of 900 °C [26]. The experiment lasted 24 hours. The anvils were 26 mm cubes of tungsten carbide. The medium of pressure transmission was semi-sintered ceramics ZrO₂ in the shape of an octahedron with the edge of 20.5 mm. Conducting another experiment at a pressing force of 6 GPa, which is the maximum pressure for the hydraulic press used, and a temperature of 900 °C for 48 hours, we also obtained the phase γ -BaB₂O₄. In both experiments the initial samples were

N⁰	Compositions (mol %)	Na (wt. %)	ΔT_{theor} (°C)	$\frac{K_{ ext{theor}}}{(g/(ext{kg}\cdot^{\circ} ext{C}))}$	Reference
Ι	54.5 $BaB_2O_4 - 45.5 BaF_2$	_	165	1.58/1.05,0.72	[18, 39]
II	$79.9 \text{ BaB}_{2}\text{O}_{4} - 20.1 \text{ (NaF)}_{2}$ $60 \text{ BaB}_{2}\text{O}_{4} - 20 \text{ Ba}_{2}\text{Na}_{3}[\text{B}_{3}\text{O}_{6}]_{2}\text{F} - 20 \text{ BaF}_{2}$	4.75	125	3.63 / 2.76,2.02	[13]
III	$60 \text{ BaB}_2\text{O}_4 - 40 \text{ Ba}_2\text{Na}_3[\text{B}_3\text{O}_6]_2\text{F}$	7.22	100	3.09/2.85,2.39	[39, 30]
IV	$70 \text{ BaB}_2\text{O}_4 - 30 (\text{NaBO}_2)_2$	7.05	94	3.83/3.22,3.20	[34, 35]
V	$70 \text{ BaB}_2\text{O}_4 - 30 \text{ NaBaBO}_3$	3.11	115	2.49/1.89,1.60	[40]
VI	$70BaB_2O_4 - 22.5NaBaBO_3 - 7.5Ba_2Na_3[B_3O_6]_2F$	4.09	120	2.80/2.2,2.03	[18, 39]

Table 2. Characteristics of high-temperature solutions used for growing β -BaB₂O₄ crystals

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

polycrystalline β -BaB₂O₄ obtained by means of solid-phase synthesis.

Up to the present moment, the fourth modification δ -BaB₂O₄ has only been obtained as a product of decomposition of barium-sodium metaborate Ba₂Na₃(B₃O₆)₂F in an experiment conducted at a pressure of 6 GPa and a temperature of 900 °C for 64 hours [27]. The initial sample was a grounded Ba₂Na₃(B₃O₆)₂F crystal.

The stability of the $Ba_3(BO_3)_{1.8}F_{0.6}$ phase was analyzed at 3 GPa and 1000 °C for 5 hours. The initial sample was a grounded $Ba_3(BO_3)_{1.8}F_{0.6}$ crystal.

During all the experiments, polycrystalline samples were put into holes in graphite cassettes. The diameter of the holes was 0.9 mm and the depth was 1.1 mm. Each sample was covered with an individual graphite lid. The temperature gradient between the low-temperature (LT) and high-temperature (HT) regions of the samples at 900 °C was about 5°C. The design of the high-pressure cell was detailed in [28].

2.3. Analytical research methods

The samples synthesized at high temperatures and pressures were filled with epoxy resin and polished. Due to the small size of the synthesized samples, whose crystals are usually no bigger than tens of micrometers, the main analysis method was scanning electron microscopy (MIRA 3 LMU, Tescan Orsay Holding) using an INCA 450 energydispersive microanalysis system with a large area EDS X-Max-80 Silicon Drift Detector.

Raman spectroscopy was also used to determine the composition and the polymorphic modification of each phase. Raman spectra were registered using a Horiba Jobin Yvon LabRAM HR800 spectrometer with a 1024-pixel LN/CCD detector. The wavelength of the Nd-YAG laser was 532 nm. Raman spectra were measured in the backscattering geometry using an Olympus BX41 microscope. The spectral resolution was ~2.0 cm⁻¹. The microscope with an Olympus 100× lens, WD = 0.37 mm with a numerical aperture for the visible spectrum had a focal diameter of ~2 µm. The power of laser radiation was 0.5 mW to prevent the heating of the sample.

The study was conducted using the equipment of the Centre for Collective Use of Scientific Equipment of the Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences.

3. Results and discussion

3.1. Growth of β -BaB₂O₄ and NaBa₁₂(BO₃)₇F₄ crystals

Presented below is a brief description of the six systems used for the growth of β -BaB₂O₄ crystals (Table 2). Besides the compositions of the initial high-temperature solutions, Table 2 presents some additional characteristics, namely the concentration of sodium in the initial high-temperature solution, theoretical crystallization intervals (ΔT_{theor}), and theoretical and experimental yield coefficients ($K_{\text{theor}} / K_{\text{exp}}$). Theoretical crystallization interval (ΔT_{theor}) is a temperature range corresponding to the region of primary crystallization of β -BaB₂O₄ in the system. The theoretical yield coefficient (K_{theor}) is the difference (in grams) in the concentration of BaB_2O_4 in 1 kg of the high-temperature solution in the compositions limiting the region of primary crystallization of β -BaB₂O₄ divided by the theoretical crystallization interval. Therefore, the yield coefficient is measured in $g/(kg \times C)$. Both parameters (the theoretical crystallization interval and the theoretical yield coefficient) are determined based on the phase diagram of the system. The experimental yield coefficient is determined as the weight of the grown crystal divided by the weight of the initial hightemperature solution and by the crystallization interval specific for each experiment.

I BaB₂O₄ – BaF₂. The melting point of BaF₂ is 1353 °C. The coordinates of the eutectic points are 41 mol % BaB₂O₄, 59 mol % BaF₂, 760 °C [18], the theoretical yield coefficient is 1.58 g/(kg×°C). A significant difference between the experimental and theoretical yield coefficients, as well as the drop of the experimental coefficient from 1.05 to 0.72 g/(kg×°C) in three consequent experiments can be explained by a rapid pyrohydrolysis of barium fluoride. During the third consequent experiment, co-crystallization of phases β-BaB₂O₄ and Ba₅B₄O₁₁ took place, which can be described by the following reactions:

$$BaF_{2} + H_{2}O \rightarrow BaO + 2HF\uparrow$$
(1)

$$2BaB_{2}O_{4} + 2BaO \rightarrow Ba_{5}B_{4}O_{11}.$$
 (2)

II $BaB_2O_4 - (NaF)_2$. The study determined that the $BaB_2O_4 - (NaF)_2$ system is not chemically stable, which is completely different from the results obtained in [10]. A chemical reaction occurs between BaB_2O_4 and NaF [13, 29], which results in the formation of barium-sodium borate fluoride $Ba_2Na_3[B_3O_6]_2F$ ($P6_3/m$) [21], available for the study of phase equilibria in the system. The second product of the chemical reaction is barium fluoride:

$$79.9 \text{ BaB}_{2}\text{O}_{4} + 20.1 \text{ (NaF)}_{2} \rightarrow$$

$$\rightarrow 13.4 \text{ Ba}_{2}\text{Na}_{3}[\text{B}_{3}\text{O}_{6}]_{2}\text{F} + 13.4 \text{ BaF}_{2} + 39.7 \text{ BaB}_{2}\text{O}_{4}(3)$$

$$66.7 \text{ BaB}_{2}\text{O}_{4} + 33.3 \text{ (NaF)}_{2} \rightarrow$$

$$\rightarrow 22.2 \text{ Ba}_{2}\text{Na}_{3}[\text{B}_{3}\text{O}_{6}]_{2}\text{F} + 22.2 \text{ BaF}_{2} \qquad (4)$$

Thus, the initial composition 79.9 mol % BaB_2O_4 , 20.1 mol % $(NaF)_2$ transforms into a composition 20 mol % $Ba_2Na_3[B_3O_6]_2F$, 20 mol % BaF_2 , 60 mol % BaB_2O_4 during the solid-phase synthesis at 720 °C, which is demonstrated in Table 2. The region of primary crystallization of β -BaB $_2O_4$ in the system is limited by the composition 66.7 mol % BaB_2O_4 , 33.3 mol % $(NaF)_2$, when BaB_2O_4 and $(NaF)_2$ react completely according to (4), which results in the formation of $Ba_2Na_3[B_3O_6]_2F$ and BaF_2 (Fig. 2a). This composition was used to grow a $Ba_2Na_3[B_3O_6]_2F$ crystal [13], whose image is given in the insert

to Fig. 2a. We should note that the composition of $Ba_2Na_3[B_3O_6]_2F$ is not on the BaB_2O_4 – (NaF)₂ section. It belongs to the Na, Ba // BO₂, F ternary reciprocal system, which was detailed in [29].

The crystallization interval of β -BaB₂O₄ is 125 °C. The drop in the experimental yield coefficient from 2.76 to 2.02 g/(kg×°C) in three consequent experiments can be accounted for by the pyrohydrolysis of barium fluoride formed in the system. An image of the β -BaB₂O₄ crystal grown in the system is presented in the insert to Fig. 2a.

III BaB₂**O**₄ – **Ba**₂**Na**₃[**B**₃**O**₆]₂**F**. The Ba₂Na₃[B₃O₆]₂F compound melts congruently at 835 °C. The coordinates of the eutectic points of the system are 85 mol % Ba₂Na₃[B₃O₆]₂F, 15 mol % BaB₂O₄, 810 °C [30]. The system is characterized by a relatively high theoretical yield coefficient of 3.09 g/(kg×°C). The experimental yield coefficient in three consequent cycles changed from 2.85 to 2.39 g/(kg×°C). The phase diagram and an image of the crystal grown in the system are presented in Fig. 2b.

IV BaB₂**O**₄ – (NaBO₂)₂. The melting point of NaBO₂ is 997 °C. The coordinates of the eutectic points of the system are 44 mol % (NaBO₂)₂, 56 mol % BaB₂O₄, 831 °C [31]. The crystallization interval of β-BaB₂O₄ is 94 °C and the theoretical yield coefficient is 3.83 g/(kg×°C). The system is

Fig. 2. Phase diagrams of the BaB_2O_4 - $(NaF)_2$ (a) and BaB_2O_4 - $Ba_2Na_3[B_3O_6]_2F$ (b) systems and photographs of crystals grown in these systems

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

characterized by the highest experimental yield coefficient of 3.22 g/(kg×°C).

V BaB₂O₄ – NaBaBO₃. The NaBaBO₃ (*C*2/*m*) compound [20] melts congruently at 1270 °C. It was determined that the BaB₂O₄–NaBaBO₃ system is quasi-binary only in the solid state, i.e. at temperatures below 760 °C, and crosses the region of primary crystallization of Ba₅B₄O₁₁ [32] and NaBa₄(BO₃)₃ [33]. The crystallization interval corresponding to the region of primary crystallization of primary crystallization of β-BaB₂O₄ (Fig. 3) is 115 °C and the theoretical yield coefficient is 2.49 g/(kg×°C). The experimental yield coefficient varies in the range of 1.89÷1.60 g/(kg×°C).

VI BaB₂**O**₄ – **NaBaBO**₃ – **Ba**₂**Na**₃[**B**₃**O**₆]₂**F**. The composition used for the growth of β -BaB₂O₄ in this ternary system is 70 mol % BaB₂O₄, 22.5 mol % NaBaBO₃, and 7.5 Ba₂Na₃[B₃O₆]₂F mol %. The crystallization interval of β -BaB₂O₄ is 120 °C and the theoretical yield coefficient is 2.80 g/(kg×°C). The experimental yield coefficient is 2.20 g/(kg×°C).

One of the key characteristics determining the possibility of using optical elements based on β -BaB₂O₄ crystals in laser systems is the absence of scattering, when laser radiation passes through a crystal. We assume that the formation of scattering centers in β -BaB₂O₄ crystals is associated with the introduction of sodium impurities. The concentration of sodium in the initial high-temperature solution is presented in Table 2. Inductively coupled plasma atomic emission spectroscopy demonstrated that the concentration of sodium in crystals is lower by at least three orders of magnitude [34, 35]. Sodium ions can be incorporated both into barium positions and into interstitial sites [36–38].

Despite the rapid pyrohydrolysis and a drop in the yield coefficient, crystals grown in system I did not scatter the laser beam. During long-term storage, the crystals were split by cleavage, which can be a result of thermoelastic relaxation. Crystals grown in systems II and III (the concentration of Na in the initial solutions was 4.75 wt. % and 7.22 wt. % respectively) appeared to be of good quality. However, they demonstrated laser beam scattering in the entire volume. Crystals obtained in system IV (7.05 wt. % Na) contained solid-phase inclusions of up to 200 µm; the regions without inclusions also

Fig. 3. Phase diagram of the BaB₂O₄ - NaBaBO₃ system

demonstrated laser scattering. Crystals grown in system V (3.11 wt. % Na) did not scatter laser beams, which was confirmed be a few dozen experiments. The disadvantages of the system are a low yield coefficient and a loss of stability of the crystallization front at a certain point resulting in cellular growth. The crystals of system VI (4.09 wt. % Na) were also characterized by a high optical quality and a higher experimental yield coefficient than the crystals of system V. We should note that in the consequent experiments with system VI the yield coefficient changed insignificantly, which can be explained by the absence of free barium fluoride susceptible to

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

pyrohydrolysis in the initial composition. At the same time, the presence of borate fluoride $Ba_2Na_3[B_3O_6]_2F$ apparently helps to reduce the viscosity of the high-temperature solution.

Fig. 4 demonstrates an image of the $NaBa_{12}(BO_3)_7F_4$ crystal, the end member of the solid solution with an "antizeolite" structure grown in the Na, Ba, B // O, F system. The crystal presented in Fig.4 is dark crimson. Another formally colorless group of compounds that were first classified as "antizeolites", are compounds of the meionite group $Ca_{12}Al_{14}O_{33}$ [41-44]. The color of the NaBa₁₂(BO₃)₇ F_4 crystals grown in the Na, Ba, B// O, F system is determined by the concentration of intrinsic defects and depends on the composition of the initial high-temperature solution [45]. The crystals are characterized by linear dichroism, i.e. different light absorption depending on the orientation of the light-wave vector, which makes it possible to use them as polarizers in optical systems [46]. It was also determined that depending on the composition of the initial hightemperature solution, the dielectric permeability of the NaBa₁₂(BO₃)₇ F_4 crystals changes by an order of magnitude and becomes unusually high for borate crystals (319(5)) [47].

3.2. Synthesis at high temperatures and pressures

As an initial sample in our experiment we used polycrystalline β -BaB₂O₄ obtained by means

Fig. 4. Photograph of a crystal NaBa₁₂(BO₃)₇ F_4 (*P*4₂*bc*), 28×28×11 mm, grown in the system Na, Ba, B // O, F from a composition of 38 mol % BaO, 13 mol % Na₂O, 13 mol % Ba₂O₃, 36 mol % BaF₂

of solid-phase synthesis. At 3 GPa and 900 °C we obtained a BaB₂O₄ single crystal of about 350 µm, which could further be used for X-ray diffraction analysis (Fig. 5a). Letter L in Fig. 5a denotes the region of partial melting (quenched melt). The obtained crystal is a *new high-pressure modification* of γ -BaB₂O₄, which is crystallized in the centrosymmetric space group *P*2₁/*n*, *a* = 4.6392(4) Å, *b* = 10.2532(14) Å, *c* = 7.066(1) Å, β = 91.363(10)°, *Z* = 4. The structure was added to the CCDC database, No. 2106970. A unique feature of the structure is the presence of the [B₂O₆] group consisting of edge-sharing tetrahedra. The

Fig. 5. Backscattered electron image of synthesis products under high pressure and temperature conditions: (a) synthesis at 3 GPa, 900 °C, initial sample $-\beta$ -BaB₂O₄, obtained by solid-phase synthesis (SPS); (b) synthesis at 6 GPa, 900 °C, the initial sample is a ground crystal of Ba₂Na₃[B₃O₆]₂F; (c) synthesis at 3 GPa, 1000 °C, the initial sample is a ground crystal of Ba₃(BO₃)_{1.8}F_{0.6}. L – quenched melt, LT and HT – low and high temperature zones of the sample, respectively

metaborate ring disappears from the γ -BaB₂O₄ and two $_{\infty}$ [B₄O₄O_{8/2}] double endless chains appear along the *a* axis built of [B₂O₆] groups connected by two [BO₃] triangles. The γ -BaB₂O₄ phase is characterized by the shortest distance between the boron atoms of the edge-sharing tetrahedra, 1.984 Å, with the corresponding angles of 95.5° and 105.5° [24,48].

Edge-sharing tetrahedra were first discovered in 2002 in the Dy₄B₆O₁₅ compound synthesized at 8 GPa and 1000 °C by a group of researchers headed by professor Huppertz [49]. The discovery of edgesharing tetrahedra led to the revision of one of the main rules of crystal chemistry of borates: it used to be considered that polymerization in borates takes place only at the vertices [50]. At the moment, there are a limited number of known structural types of borates with edgesharing tetrahedra synthesized at high pressures by Prof. Huppertz's group [51, 52], as well as KZnB₃O₆[53], Li₄Na₂CsB₇O₁₄[54], BaZnB₄O₈[55], and other compounds synthesized at atmospheric pressure. The theory of crystal chemistry of hard boron-oxygen groups formed by edge-sharing tetrahedra is only starting to develop, so there is little information yet about the properties of such compounds [56]. Thus, [54] states that Li₄Na₂CsB₇O₁₄ demonstrates an uncharacteristic anisotropy of a thermal expansion, BaZnB₄O₈ is characterized by both high birefringence $\Delta n = 0.14$ at a wavelength of 589.3 nm and a large band gap [55], while the $BaZnB_4O_8$: Tb³⁺, Eu³⁺ phosphor based on it demonstrates outstanding thermal stability (90.2 % at 423 K) [57].

Based on the calculations, the fourth modification $\delta\text{-BaB}_{_2}O_{_4}$ with the proposed structure $Pa\bar{3}$ isostructural to CaB₂O₄- $Pa\bar{3}$ [15], is stable under pressure above 6.1 GPa. In order to obtain δ -BaB₂O₄ crystals we conducted an experiment at a pressure of 6 GPa, which is the maximum pressure for the Discoverer-1500 multi-anvil hydraulic press of the DIE type. The initial samples were both β -BaB₂O₄ samples obtained by means of solid-phase synthesis and grounded crystals. The Raman spectra of the synthesized BaB₂O₄ crystals were identical to the spectra of γ -BaB₂O₄. However, we still managed to experimentally confirm the existence of the fourth modification δ -BaB₂O₄ when studying compound $Ba_2Na_3(B_3O_6)_2F$. When grounded $Ba_2Na_3(B_3O_6)_2F$ crystals were used as an initial sample at 6 GPa and 900 °C, the synthesized sample contained phases BaB_2O_4 , $NaBO_2$, and NaF (Fig. 5b), which were identified by means of energy dispersive X-ray spectroscopy and Raman spectroscopy. At the same time, the $Ba_2Na_3(B_3O_6)_2F$ phase completely disappeared [27]. The small size of the formed crystals made it impossible to conduct X-ray diffraction studies. The results of the analysis of the synthesized BaB_2O_4 phase by means of Raman spectroscopy are presented in section 3.3.

For the first time we conducted experiments in order to study the stability of borates with an "antizeolite" structure under high pressures. When grounded $Ba_3(BO_3)_{1.8}F_{0.6}$ crystals were used as the initial sample at 3 GPa and 1000 °C, we obtained a single-phase sample of a similar composition, which had a region of partial melting (quenched melt) (Fig. 5c). The study determined that the compositions of the initial and synthesized samples were close, while their Raman spectra differed, which makes it possible to assume the presence of a phase transition that requires further research.

3.3. Raman spectra of polymorphic modifications of BaB_2O_4

Fig. 6 shows the Raman spectra of the four known polymorphic modifications of BaB_2O_4 . The basis of the α -BaB_2O_4 ($R\bar{3}c$) [58] and β -BaB_2O_4 ($R\bar{3}c$) structure [59] is a *metaborate* ring $[B_3O_6]^{3-}$, built of three triangles sharing a common vertex $[BO_3]$. The most intense vibration in the Raman spectra for metaborates traditionally corresponds to the so-called breathing mode of the metaborate ring, whose location practically does not depend on the composition of the compound. Thus, for α -BaB₂O₄ the vibration is registered at 634 cm⁻¹ (Fig. 6a), for β -BaB₂O₄ – at 637 cm⁻¹ (Fig. 6b), for Ba₂Na₃[B₃O₆]₂F - at 628 cm⁻¹ [27], and for NaBO₂ ($R\bar{3}c$) at 626 cm⁻¹ [60].

The spectrum of β -BaB₂O₄ (Fig. 6b) is in good agreement with the previous studies, namely with [61], which describes out-of-plane modes at 58, 73, 99, 124, 172, and 197 cm⁻¹, and in-plane modes at 598, 620, 770, 788, 1499, 1526, and 1541 cm⁻¹ of the metaborate ring [B₃O₆]³⁻. In [62], the most intense peaks at 390, 498, and 620 cm⁻¹ in the spectra of β -BaB₂O₄ at temperatures from 300 to

Functional borates and their high-pressure polymorphic modifications. Review

Fig. 6. Raman spectra of four polymorphs of $BaB_{2}O_{4}$

1100 K are attributed to the in-plane deformation vibrations of $[B_3O_6]^{3-}$; at higher temperatures the peaks monotonously move towards the region of lower frequencies.

The structure of γ -BaB₂O₄ (*P*2₁/*n*) includes double endless chains built of edge-sharing tetrahedra connected by [BO₃]-triangles [26]. Experimental and numerical studies of the Raman spectra demonstrated that the most intense band at 853 cm⁻¹ corresponds to the breathing mode of the ⁽⁴⁾B–O–⁽⁴⁾B–O ring formed by two edgesharing tetrahedra. Bands at 1436, 1390, 1150, and 1114 cm⁻¹ correspond to stretching modes ⁽³⁾B–O. Bands in the range of 770–300 cm⁻¹ are a combination of libration and deformation modes of groups [BO₃] and [BO₄], and bands below 300 nm – are combined out-of-plane libration and translation modes $[BO_3]$ of barium atoms and triangles. A more detailed study of the analyzed Raman spectra is presented in [26]. An analysis of the previous studies led us to a conclusion that the location and the intensity of the vibration corresponding to the breathing mode of the ⁽⁴⁾ $B-O-^{(4)}B-O$ ring significantly depend on the structure of the boron-oxygen anionic complex *in general*. Thus, for KZnB₃O₆ the most intense vibration is registered at 723 cm⁻¹ [52], and for HP-KB₃O₅ – at 760 cm⁻¹ [51].

As we have mentioned earlier, we could not conduct X-ray diffraction studies of δ -BaB₂O₄ single crystals due to their small size. According to *ab initio* calculations, modification δ -BaB₂O₄ is

Functional borates and their high-pressure polymorphic modifications. Review

isostructural to CaB_2O_4 - $Pa\overline{3}$ [15]. We can assume that the most intense vibration at 906 cm⁻¹ is explained by the stretching vibrations of the [BO₄] tetrahedron.

Numerical methods demonstrated that in the series $\alpha \rightarrow \beta \rightarrow \gamma \rightarrow \delta$ the band gap gradually increases (6.315 \rightarrow 6.468 \rightarrow 7.045 \rightarrow 7.340 eV respectively). We should note that the calculated band gaps for the α - and β -BaB₂O₄ modifications are in good agreement with the experimental ones. The calculated *PT* phase diagram of BaB₂O₄ is presented in [48].

4. Conclusions

Based on the numerous studies of phase equilibria in the Na, Ba, B // O, F quaternary reciprocal system conducted in order to optimize the composition of the solvent used for the growth of β -BaB₂O₄ crystals, we can conclude that crystals of reproducibly good optical quality can be obtained when using compounds of systems BaB_2O_4 - NaBaBO₃ and BaB_2O_4 - NaBaBO₃ - $Ba_{2}Na_{3}[B_{3}O_{6}]_{2}F$. Using a Discoverer-1500 multianvil hydraulic press of the DIE type at high temperatures and pressures we synthesized two new polymorphic modifications: γ -BaB₂O₄ with a $P2_1/n$ structure (CCDC, Nº 2106970) and δ -BaB₂O₄ with a proposed structure $Pa\bar{3}$. A unique feature of the γ -BaB₂O₄ structure is the presence of the $[B_2O_4]$ group consisting of edge-sharing tetrahedra. Both modifications were analyzed using the Raman light scattering method.

The Na, Ba, B // O, F system also includes the region of compositions of the solid solution with an "antizeolite" structure. The composition of the solution in the system can be presented as $\{Ba_{12}(BO_3)_6\}[(F_2)_x(BO_3)_{1-x}][(F_4)_x(NaF_4)_y(BO_3)_{1-x-y}],$ where $x + y \le 1$. Phases $Ba_3(BO_3)_2$, $Ba_3(BO_3)_{1.8}F_{0.6}$, and $NaBa_{12}(BO_3)_7F_4$ were experimentally determined. The crystals have dichroic properties that depend on the composition of the initial high-temperature solution; the dielectric permeability of $NaBa_{12}(BO_3)_7F_4$ is unusually high for borate crystals (319(5)). Raman spectroscopy determined that under high pressures $Ba_3(BO_3)_{1.8}F_{0.6}$ undergoes a phase transition, whose nature requires further research.

Author contributions

T. B. Bekker – idea, writing of the article, scientific editing of the text, experimental studies, head of the project; A. V. Davydov – experimental studies, project executor; N. E. Sagatov – numerical and experimental studies.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

1. Chen C., Wu B., Jiang A., You G. A new-type ultraviolet SHG crystal – β -BaB₂O₄. *Materials Science, Physics Science in China Series B*.1985;28: 235–243. https://doi.org/10.1360/yb1985-28-3-235

2. Perlov D., Livneh S., Czechowicz P., Goldgirsh A., Loiacono D. Progress in growth of large β -BaB₂O₄ single crystals. *Crystal Research and Technology*. 2011;46:651–654. https://doi.org/10.1002/crat.201100208

3. Mutailipu M., Poeppelmeier K. R., Pan S. Borates: A rich source for optical materials. *Chemical Reviews*.2021;121: 1130–1202. https://doi.org/10.1021/acs.chemrev.0c00796

4. Fedorov P. P., Kokh A. E., Kononova N. G., Barium borate beta-BaB₂O₄ as a material for nonlinear optics. *Russian Chemical Reviews* 2002;71(8): 651–671. https://doi. org/10.1070/RC2002v071n08ABEH000716

5. Chen C., Sasaki T., Li R., ... Kaneda Y. *Nonlinear optical borate crystals, principles and applications*. Wiley-VCH Verlag GmbH & Co. KGaA; 2012. 387 p. https://doi. org/10.1002/9783527646388

6. Feigelson R. S., Raymakers R. J., Route R. K. Solution growth of barium metaborate crystals by top seeding. *Journal of Crystal Growth*. 1989;97: 352–366. https://doi. org/10.1016/0022-0248(89)90217-0

7. Nikolov V., Peshev P. On the growth of β -BaB₂O₄ (BBO) single crystals from hightemperature solutions: I. Study of solvents of the BaO–Na₂O–B₂O₃ system. *Journal of Solid State Chemistry*. 1992;96: 48–52. https://doi.org/10.1016/S0022-4596(05)80295-6

8. Tang D.Y., Zeng W. R., Zhao Q. L. A study on growth of β -BaB₂O₄ crystals. *Journal of Crystal Growth*. 1992;123: 445–450. https://doi.org/10.1016/0022-0248(92)90605-I

9. Fedorov P. P., Kokh A. E., Kononova N. G., Bekker T. B. Investigation of phase equilibria and growth of BBO (β -Ba-B₂O₄) in BaO-B₂O₃-Na₂O ternary system. *Journal of Crystal Growth*. 2008;310: 1943–1949. https://doi.org/10.1016/j. jcrysgro.2007.11.119

10. Roth M., Perlov D. Growth of barium borate crystals from sodium fluoride solutions, *Journal of Crystal Growth*. 1996;169: 734–740. https://doi.org/10.1016/S0022-0248(96)00450-2

11. Chen W., Jiang A., Wang G. Growth of high-quality and large-sized β -BaB₂O₄ crystal. *Journal of Crystal Growth*. 2003;256: 383–386. https://doi.org/10.1016/S0022-0248(03)01358-7

Functional borates and their high-pressure polymorphic modifications. Review

12. Perlov D., Livneh S., Czechowicz P., Goldgirsh A., Loiacono D. Progress in growth of large β-BaB₂O₄ single crystals. *Crystal Research and Technology*. 2011;46: 651–654. https://doi.org/10.1002/crat.201100208

13. Bekker T. B., Kokh A. E., Kononova N. G., Fedorov P. P., Kuznetsov S. V. Crystal growth and phase equilibria in the BaB_2O_4 -NaF system. *Crystal Growth and Design*. 2009;9: 4060–4063. https://doi.org/10.1021/cg9002675

14. Sagatov N. E., Bekker T. B., Podborodnikov I. V., Litasov K. D. First-principles investigation of pressure-induced structural transformations of barium borates in the $BaO-B_2O_3-BaF_2$ system in the range of 0–10 GPa. *Computational Materials Science*. 2021;199: 110735. https://doi. org/10.1016/j.commatsci.2021.110735

15. Marezio M., Remeika J. P., Dernier P. D. The crystal structure of the high-pressure phase CaB_2O_4 (IV), and polymorphism in CaB_2O_4 . *Acta Crystallographica B*. 1969;25: 965–970. https://doi.org/10.1107/S0567740869003256

16. Bekker T. B., Fedorov P. P., Kokh A. E. Phase formation in the BaB2O4 -BaF2 system. *Crystallogr. Rep.* 2012;57(4): 574–578. https://doi.org/10.1134/S1063774512040025

17. Jiang A., Cheng F., Lin Q., Cheng G., Zheng Y. Flux growth of large single crystals of low temperature phase barium metaborate. *Journal of Crystal Growth*. 1986;79: 963–969. https://doi.org/10.1016/0022-0248(86)90579-8

18. Bekker T. B., Kokh A. E., Fedorov P. P. Phase equilibria and beta-BaB₂O₄ crystal growth in the BaB₂O₄-BaF₂ system. *CrystEngComm.* 2011;13: 3822–3826. https://doi. org/10.1039/C1CE05071K

19. Jänecke E. Über reziproke Salzpaare und doppeltternäre Salzmischungen, *Zeitschrift für Physikalische Chemie*. 1913;82: 1–34. https://doi.org/10.1515/zpch-1913-8202

20. Tu J. -M. Keszler D. A. BaNaBO₃. *Acta Crystallo-graphica*.1995;51(10): 1962–1964. https://doi.org/10.1107/s010827019400750x

21. Kokh A.E., Kononova N.G., Bekker T. B., Fedorov P.P., Nigmatulina E.A., Ivanova A.G. An investigation of the growth of β-BaB₂O₄ crystals in the BaB₂O₄-NaF system and new fluoroborate Ba₂Na₃[B₃O₆]₂F. *Crystallogr. Rep.* 2009;54(1): 146–151. https://doi.org/10.1134/S1063774509010258

22. Bekker T. B., Rashchenko S. V., Solntsev V. P., ... Kuznetsov A. B. Growth and optical properties of $\text{Li}_x\text{Na}_{1-x}\text{Ba}_{12}(\text{BO}_3)_7\text{F}_4$ fluoride borates with 'anti-zeolite' structure. *Inorganic Chemistry*. 2017;56(9): 5411–5419. https://doi.org/10.1021/acs.inorgchem.7b00520

23. Bekker T. B., Rashchenko S. V, Seryotkin Y. V., Kokh A. E., Davydov A. V., Fedorov P. P. $BaO-B_2O_3$ system and its mysterious member $Ba_3B_2O_6$. *Journal of the American Ceramic Society*. 2018;101(1): 450–457. https://doi.org/10.1111/jace.15194

24. Rashchenko S. V., Bekker T. B., Bakakin V. V., Seryotkin Y. V., Simonova E. A., Goryainov S. V. New fluoride borate with 'anti-zeolite' structure: A possible link to $Ba_3(BO_3)_2$. Journal of Alloys and Compounds. 2017;694: 1196–1200. https://doi.org/10.1016/j.jallcom.2016.10.119

25. Zhao J., Li R. K. Two new barium borate fluorides ABa_{12} (BO₃)₇F₄ (A= Li and Na). *Inorganic Chemistry*. 2014;53(5): 2501-2505. https://doi.org/10.1021/ic402525

26. Bekker T. B., Podborodnikov I. V., Sagatov N. E., ... Litasov K. D. γ -BaB₂O₄: high-pressure high-temperature polymorph of barium borate with edge-sharing BO₄ tetrahedra. *Inorganic Chemistry*. 2022;61(4): 2340–2350. https://doi.org/10.1021/acs.inorgchem.1c03760

27. Sagatov N. E., Bekker T. B., Vinogradova Y. G., Davydov A. V., Podborodnikov I. V., Litasov K. D. Experimental and ab initio study of $Ba_2Na_3(B_3O_6)_2F$ stability in the pressure range of 0–10 GPa. *International Journal of Minerals, Metallurgy and Materials*. 2023;30(9): 1846–1854. https:// doi.org/10.1007/s12613-023-2647-0

28. Shatskiy A., Sharygin I. S., Gavryushkin P. N., ... Ohtani E. The system K_2CO_3 -MgCO₃ at 6 GPa and 900-1450 °C. *American Mineralogist*. 2013;98(8-9): 1593–1603. https:// doi.org/10.2138/am.2013.4407

29. Bekker, T. B., Fedorov, P. P. New type of ternary reciprocal system: Na,BalBO₂,F system. *Russian Journal of Inorganic Chemistry*. 2014;59: 1507–1511. https://doi. org/10.1134/S0036023614120055

30. Bekker T. B., Fedorov P. P., Kokh A. E. The ternary reciprocal system Na, Ba // BO₂, F. *Crystal Growth and Design*. 2012;12(1): 129–134. https://doi.org/10.1021/cg2008705

31. Huang Q. -Z., Liang J. K. The crystal growth of barium borate low temperature phase and the study of phase diagrams of related systems. *Acta Physica Sinica* 1981;30: 559. (In Chinese). https://doi.org/10.7498/aps.30.559

32 Furmanova, N. G., Maksimov, B. A., Molchanov, V. N., Kokh A. E., Kononova N. G., Fedorov P. P. Crystal structure of the new barium borate $Ba_5(BO_3)_2(B_2O_5)$. *Crystallography Reports*. 2006;51: 219–224. https://doi.org/10.1134/ S1063774506020076

33. Kokh A. E., Kononova N. G., Bekker T. B., ... Kargin Yu. F. New sodium barium orthoborate $NaBa_4(BO_3)_3$. Russian Journal of Inorganic Chemistry. 2004;49(7): 984–988.

34. Bekker T. B. *Phase formation and crystal growth in the quaternary reciprocal system Na, Ba, B // O, F*^{*}. Dissertation of Dr. Geol.-miner. Sci. Novosibirsk: 2015. 279 p. https://www.dissercat.com/content/fazoobrazovanie-i-rost-kristallov-v-chetvernoi-vzaimnoi-sisteme-na-ba-b-o-f

35. Bekker T. B., Fedorov P. P., Kokh A. E. Phase formation and crystal growth in the quaternary reciprocal system Na, Ba, B // O, F. Novosibirsk: Siberian Branch of the Russian Academy of Sciences Publ. 2016. 217 p. (In Russ.). Available at: https://www.rfbr.ru/library/books/2416/

36. Carrillo Romo F., Goutaudier C., Guyot Y., Cohen-Adad M. Th., Boulon G., Lebbou K., Yoshikawa A., Fukuda T. Yb³⁺⁻doped $Ba_2NaNb_5O_{15}$ (BNN) growth, characterization and spectroscopy. *Optical Materials*. 2001;16: 199–206. https:// doi.org/10.1016/S0925-3467(00)00078-1

37. Hong W., Perlov D., Halliburton L. E. Electron paramagnetic resonance study of Ag^0 atoms and Ag^{2+} ions in β -BaB₂O₄ nonlinear optical crystals. *Journal of Physics D: Applied Physics*. 2003;36: 2605–2611. https://doi. org/10.1088/0022-3727/36/21/002

38. Hong W., Halliburton L. E., Perlov D., Stevens K. T., Route R. K., Feigelson R. S. Observation of paramagnetic point defects in BBO (β -BaB₂O₄) crystals. *Optical Materials*. 2004;26(4): 437–441. https://doi.org/10.1016/j. optmat.2003.08.012

39. Bekker T. B., Kokh A. E., Fedorov P. P., Stonoga S. Yu. Phase equilibria and growth of β -BaB₂O₄ crystals in the BaB₂O₄-Ba₂Na₃[B₃O₆]₂F system. *Crystallography Reports*. 2012;57(2): 327-331. https://doi.org/10.1134/s1063774512020022]

Functional borates and their high-pressure polymorphic modifications. Review

40. Fedorov P. P., Kokh A. E., Kononova N. G., Bekker T. B. Investigation of phase equilibria and growth of BBO (β -BaB₂O₄) in BaO-B₂O₃-Na₂O ternary system. *Journal of Crystal Growth*. 2008;310(7-9): 1943–1949. https://doi. org/10.1016/j.jcrysgro.2007.11.119

41. Palacios L., Cabeza, A., Bruque S., García-Granda S., Aranda M. A. Structure and electrons in mayenite electrides. *Inorganic Chemistry*. 2008;47(7): 2661–2667. https://doi. org/10.1021/ic7021193

42. Kim S. W., Hosono H. Synthesis and properties of 12CaO·7Al₂O₃ electride: review of single crystal and thin film growth. *Philosophical Magazine*. 2012;92(19-21): 2596-2628. https://doi.org/10.1080/14786435.2012.685770

43. Zhang X., Feng Q., Zhao J., ... Lu Q. Sr-doping enhanced electrical transport and thermionic emission of single crystal 12CaO·7Al₂O₃ electride. *Current Applied Physics*. 2020;20(1): 96–101. https://doi.org/10.1016/j. cap.2019.10.008

44. Li R., Zhang X., Xiao Y., Liu Y. One-step preparation and electrical transport characteristics of single-crystal Ca₂₄Al₂₈O₆₆ electrides. *Journal of Electronic Materials*. 2020;49: 7308–7315. https://doi.org/10.1007/s11664-020-08469-0

45. Bekker T. B., Solntsev V. P., Rashchenko S. V., ... Park S.-H. Nature of color of the borates with the 'antizeolite' structure. *Inorganic Chemistry*. 2018;57(5); 2744– 2751. https://doi.org/10.1021/acs.inorgchem.7b03134

46. Bekker T. B., Solntsev V. P., Eliseev A. P., ... Kuznetsov A. B. *Dichroic material – fluoride borate with an "anti-zeolite" structure*^{*}. Russian Federation Patent RF: No. 2689596. Publ. 05.28.2019, bull. No. 16. (In Russ.)]

47. Bekker T. B., Khamoyan A. G., Davydov A. V., Vedenyapin V. N., Yelisseyev A. P., Vishnevskiy A. V. NaBa₁₂(BO₃)₇ F_4 (NBBF) dichroic crystals: optical properties and dielectric permittivity. *Dalton Transactions*. 2024; 53(29): 12215-12222. https://doi.org/10.1039/d4dt01380h

48. Bekker T. B., Davydov A. V., Sagatov N. E. Comparative characteristics of various solvents of the Na, Ba, B//O, F system for the growth of β -BaB₂O₄ crystals and PT-diagram of BaB₂O₄ polymorphs. *Journal of Crystal Growth*. 2022;599: 126895. https://doi.org/10.1016/j.jcrysgro.2022.126895

49. Huppertz H., von der Eltz B. Multianvil high-pressure synthesis of $Dy_4B_6O_{15}$: the first oxoborate with edge-sharing BO_4 tetrahedra. *Journal of the American Chemical Society*. 2002;124(32): 9376-9377. https://doi.org/10.1021/ja017691z

50. Grice J. D., Burns P. C., Hawthorne F. C. Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. *The Canadian Mineralogist*. 1999;37(3): 731–762.

51. Knyrim J. S., Roessner F., Jakob S., ... Huppertz H. Formation of edge-sharing BO_4 tetrahedra in the high-pressure borate HP-NiB₂O₄. *Angewandte Chemie International Edition*. 2007;46(47): 9097–9100. https://doi.org/10.1002/anie.200703399

52. Neumair S. C., Vanicek S., Kaindl R., ... Huppertz H. HP-KB $_{3}O_{5}$ highlights the structural diversity of borates:

corner-sharing BO_3/BO_4 groups in combination with edgesharing BO_4 tetrahedra. *European Journal of Inorganic Chemistry*. 2011;27: 4147–4152. https://doi.org/10.1002/ ejic.201100618

53. Jin S., Cai G., Wang W., He M., Wang S., Chen X. Stable oxoborate with edge-sharing BO_4 tetrahedra synthesized under ambient pressure. *Angewandte Chemie International Edition*. 2010;122(29): 5087–5090. https://doi.org/10.1002/ange.200907075

54. Mutailipu M., Zhang M., Li H.,... Pan S. Li₄Na₂CsB₇O₁₄: a new edge-sharing $[BO_4]_5$ -tetrahedra containing borate with high anisotropic thermal expansion. *Chemical Communications*. 2019;55(9): 1295–1298. https://doi. org/10.1039/c8cc09422e

55. Han J., Liu K., Chen L., ... Mutailipu M. Finding a deep-UV borate $BaZnB_4O_8$ with edge-sharing $[BO_4]$ tetrahedra and strong optical anisotropy. *Chemistry – A European Journal*. 023;9(6): 202203000. https://doi. org/10.1002/chem.202203000

56. Li J. J., Chen W. F., Lan Y. Z., Cheng J. W. Recent progress in crystalline borates with edge-sharing BO_4 tetrahedra. *Molecules*. 2023;28(13): 5068. https://doi. org/10.3390/molecules28135068

57. Liu N., Kong J., Wang Z., Wang Y. Color-tunability and energy transfer of a highly thermal-stable $BaZnB_4O_8$: Tb^{3+}/Eu^{3+} phosphor for single-component w-LEDs. *Journal* of *Molecular Structure*. 2024;1311: 138441. https://doi. org/10.1016/j.molstruc.2024.138441

58. Mighell A. D., Perloff A., Block S. The crystal structure of the high temperature form of barium borate, BaO·B₂O₃. *Acta Crystallographica*. 1966;20: 819–823. https://doi. org/10.1107/S0365110X66001920

59. Bubnova R., Volkov S., Albert B., Filatov S. Borates – crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. *Crystals*. 2017;7(3): 93. https://doi.org/10.3390/cryst7030093

60. Voronko Yu. K., Sobol A. A., Shukshin V. E. Structure of boron-oxygen fragments of metaborates of alkali and alkaline earth metals in crystalline, molten and glassy states. *Inorganic materials*. 2012:48(7); 837. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=17745523

61. Lu J. Q., Lan G. X., Li B., Yang Y. Y., Wang H. F., Bai C. W. Raman scattering study of the single crystal β-BaB₂O₄ under high pressure. *Journal of Physics and Chemistry of Solids*. 1988;49(5): 519–527. https://doi.org/10.1016/0022-3697(88)90063-7

62. Liu S., Zhang G., Wan S., ... Wu Y. High-temperature Raman spectroscopy of microstructure around the growing β-BaB₂O₄ crystal in the BaO–B₂O₃–Na₂O system. *Journal of Applied Crystallography*. 2014;47(2): 739-744. https://doi. org/10.1107/S160057671400377X

*Translated by author of the article

T. B. Bekker et al.

Functional borates and their high-pressure polymorphic modifications. Review

Information about the authors

Tatyana B. Bekker, Dr. Sci. (Geol.-Mineral.) Leading Researcher, Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, (Novosibirsk, Russian Federation), Senior Research Worker of Novosibirsk State University (Novosibirsk, Russian Federation).

https://orcid.org/0000-0003-3100-5210 bekker@igm.nsc.ru, t.b.bekker@gmail.com

Nursultan E. Sagatov, Cand. Sci. (Phys.- Math.), Researcher Fellow, Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, (Novosibirsk, Russian Federation), Novosibirsk State University (Novosibirsk, Russian Federation).

https://orcid.org/0000-0001-5158-3523 sagatovnye@igm.nsc.ru *Aleksey V. Davydov*, Researcher, Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, (Novosibirsk, Russian Federation), Novosibirsk State University (Novosibirsk, Russian Federation).

https://orcid.org/0000-0003-2770-3331

a davidov @igm.nsc.ru, a. davy dov 1 @nsu.ru

Received 01.07.2024; approved after reviewing 08.07.2024; accepted for publication 16.09.2024; published online 25.12.2024.

Translated by Yulia Dymant