

ISSN 1606-867X (Print) ISSN 2687-0711 (Online)

Condensed Matter and Interphases

Kondensirovannye Sredy i Mezhfaznye Granitsy https://journals.vsu.ru/kcmf/

Original articles

Research article

https://doi.org/10.17308/kcmf.2024.26/12446

The solid-phase equilibria in the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₅ system at 300 K and the characterization of tetradymite-type layered solid solutions

E. R. Nabiyev¹, E. N. Orujlu², A. I. Aghazade³, A. A. Hasanov², M. B. Babanly³,4

¹Ganja State University, 429 Heydar Aliyev ave., Ganja AZ-2001, Azerbaijan

²Azerbaijan State Oil and Industry University, 6/2,1 Azadlıq ave., Baku AZ-1010, Azerbaijan

³Institute of Catalysis and Inorganic Chemistry, 113 H. Javid ave., Baku, AZ-1143, Azerbaijan

⁴Baku State University, 23 Z. Khalilov, Baku Az-1048, Azerbaijan

Abstract

The GeTe-SnTe-Bi $_2$ Te $_3$ system is of great interest due to the potential formation of a series of cation-substituted solid solutions based on ternary layered compounds with a tetradymite-type structure, which have significant potential as valuable thermoelectric materials and topological insulators. This study presents the results of investigating this system in the composition range of GeBi_2Te_4 -SnBi $_2\text{Te}_4$ -Bi $_2\text{Te}_3$ using powder X-ray diffraction analysis. Particular attention is given to obtaining equilibrium alloys.

An isothermal section of the phase diagram at 300 K has been constructed, consisting of four single-phase regions separated by three two-phase regions. The X-ray diffraction patterns of the equilibrium alloys were refined using the Rietveld method. The obtained diffraction results clearly indicate the presence of continuous series of solid solutions along the sections $GeBi_2Te_4$ - $SnBi_2Te_4$, $GeBi_4Te_7$ - $SnBi_4Te_7$, and $GeBi_6Te_{10}$ - $SnBi_6Te_{10}$. The lattice parameters for all the solid solution series were determined, showing a linear increase with the rise in Sn concentration.

Keywords: Solid solutions, Germanium bismuth tellurides, Tin bismuth tellurides, Topological insulators, Isothermal section, XRD

Funding: The work was partially supported by the Azerbaijan Science Foundation - Grant № AEF-MCG-2022-1(42)-12/10/4-M-10.

For citation: Nabiyev E. R., Orujlu E. N., Aghazade A. I., Hasanov A. A., Babanly M. B. The solid-phase equilibria in the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₅ system at 300 K and characterization of tetradymite-type layered solid solutions. *Condensed Matter and Interphases*. 2024;26(4): 725–731. https://doi.org/10.17308/kcmf.2024.26/12446

Для цитирования: Набиев Э. Р., Оруджлу Э. Н., Агазаде А. И., Гасанов А. А., Бабанлы М. Б. Твердофазные равновесия в системе $GeBi_2Te_4-SnBi_2Te_4-Bi_2Te_3$ при 300 К и характеристики тетрадимитоподобных слоистых твердых растворов. Конденсированные среды и межфазные границы. 2024;26(4): 725–731. https://doi.org/10.17308/kcmf.2024.26/12446

[⊠] Elnur N. Orujlu, e-mail: elnur.oruclu@yahoo.com

[©] Nabiyev E. R., Orujlu E. N., Aghazade A. I., Hasanov A. A., Babanly M. B., 2024

E. R. Nabiyev et al.

The solid-phase equilibria in the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₇ system at 300 K...

1. Introduction

The quest for advanced materials with enhanced properties has led to extensive research in the field of multi-component chalcogenides, particularly those based on M-Bi-Te (M – Ge, Sn, Pb, and Mn) systems [1–8]. These materials, which have attracted great interest due to their thermoelectric properties, have been intensively studied in recent years again as materials exhibiting properties of a new quantum state of matter – topological insulators [9–14]. Topological insulators (TIs) are a class of materials that have garnered significant interest due to their ability to conduct electricity on their surfaces while remaining insulating in their bulk [15–18].

Recently, a homologues series of layered ternary compounds with a general formula of $nA^{IV}Te \cdot mBi_{a}Te_{a}$ have gained great attention for their unique electronic structures. Systhematic investigations into ternary compounds in these chalcogenides systems show that these tetradymite-type layered van der Waals phases are 3D Tls and hold potential for revolutionary applications in spintronics, quantum computing, and low-power electronics [19-24]. All these compounds share a structural similarity as they belong to the tetradymite-type layered structure which is composed of repeating units of quintuple or septuple layers, typically consisting of alternating atomic layers such as chalcogenides (e.g., Se or Te) and metals (e.g., Bi or Sb with *M* – Ge, Sn, Pb, and Mn) [1–4; 14]. Research on existing layered topological insulator phases indicates that addressing the limitations of their applicability across various fields necessitates the precise tuning of their bulk band structure. An effective approach to promoting electron transport dominated by topologically protected states is through targeted chemical substitution, whereby specific atomic sites in the material's crystal lattice are replaced to modify its electronic structure and enhance the prevalence of these states. This type of topological engineering has been previously studied in numerous works and has demonstrated significant potential for tuning material properties and improving performance for application prospects [25–30].

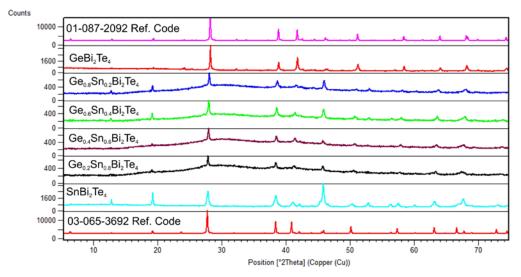
In this study, by means of differential thermal analysis (DTA) and powder X-ray diffraction (XRD) methods, we studied solid-phase equilibria diagram in the $GeBi_2Te_4$ - $SnBi_2Te_4$ - Bi_2Te_3 system at 300 K and characterized the $Ge_{1-x}Sn_xBi_2Te_4$, $Ge_{1-x}Sn_xBi_4Te_7$, and $Ge_{1-x}Sn_xBi_6Te_{10}$ continuous series of solid solutions with examining compositional effects on the material's crystalline behaviours. Our findings provide insights into the phase diagrams of the $GeTe-SnTe-Bi_2Te_3$ pseudoternary system and contribute to understanding the influence of $Ge \leftrightarrow Sn$ substitution on the thermodynamic and structural properties of these topological insulator compounds. Data on phase equilibria in the boundary systems $GeTe-Bi_2Te_3$ and $SnTe-Bi_2Te_3$ are taken from [2, 5].

2. Experimental

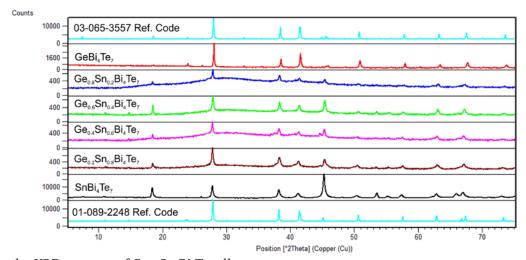
The starting materials for the preparation of alloys were high-purity germanium pieces (Alfa Aesar, CAS 7440-56-4), tin lump (Alfa Aesar, CAS 7440-31-5), bismuth shots (Alfa Aesar, CAS 7440-69-9), and tellurium lump (Alfa Aesar, CAS 13494-80-9). During the first stage, GeTe, SnTe, and Bi₃Te₄ binary compounds were synthesized. The phase purity of the synthesized binary compounds was checked via DTA and powder XRD methods. Alloys of the studied systems with different compositions were prepared using presynthesized binary compounds. The weighed three components were sealed in guartz ampoules, then melted at 1050 K for 6 h, followed by rapid quenching in ice water. All the ampoules were then placed in a muffle furnace at a temperature of 770 K for 720 hours to achieve a state close to equilibrium. After heat treatment, the alloys were cooled in a switched off furnace.

Powder XRD and DTA techniques were used to characterize the products. The temperatures of the phase transformations were determined by DTA using the LINSEIS HDSC PT1600 system (heating rate of 10 °C/min) and a multichannel DTA device based on a TC-08 Thermocouple Data Logger. Powder X-ray diffraction (XRD) was examined on Bruker D2 PHASER diffractometer using $CuK\alpha_1$ radiation within a scanning range of $2\theta = 5 \div 75$. COD and PDF-2 databases were used for the interpretation of the powder diffraction patterns. Both qualitative and quantitative assessments of the XRD patterns were carried out using Rietveld analysis with FullProf and HighScore Plus software package.

The solid-phase equilibria in the GeBi₃Te₄-SnBi₃Te₄-Bi₃Te₇ system at 300 K...


3. Results and discussion

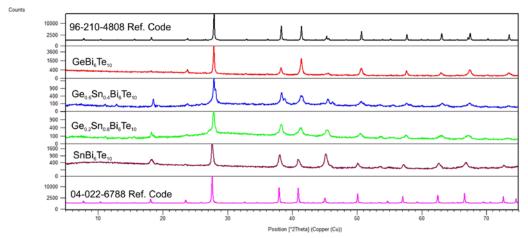
The powder XRD patterns of annealed alloys of Ge_{1-x}Sn_xBi₂Te₄ systems are shown in Fig. 1. The observed peaks of the XRD patterns indicate a trigonal symmetry with the R-3m space group. As can be seen, the diffraction peaks exhibit a systematic shift towards lower 2θ angles as the Sn content increases, indicating an expansion of the lattice due to the larger atomic radius of Sn compared to Ge. Additionally, the absence of any new peaks or the splitting of existing peaks suggests that no phase separation occurs, confirming the formation of a continuous solid solution. The broadening of peaks with increasing Sn content may also be attributed to microstrains or slight variations in crystallite size as the alloy composition changes. Overall, these patterns confirm the successful incorporation of Sn


into the Ge-Bi-Te matrix, leading to a tunable modification of the crystal structure without disrupting the overall phase stability.

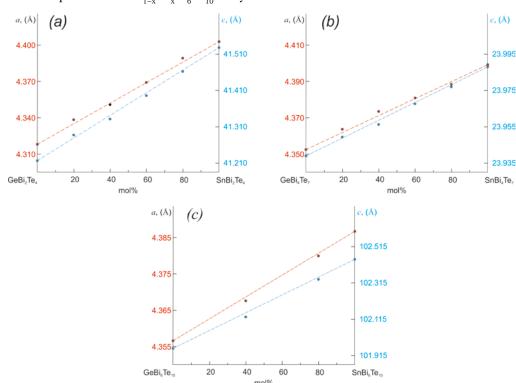
Similarly, the XRD patterns of $Ge_{1-x}Sn_xBi_4Te_7$ exhibit a comparable trend (see Fig. 2) with a systematic shift of diffraction peaks towards lower 2θ angles as the Sn concentration increases. This shift, like in the $Ge_{1-x}Sn_xBi_2Te_4$ system, indicates an expansion of the lattice due to the substitution of Sn for Ge. The consistency of this shift across the entire compositional range supports the formation of a continuous solid solution along the $GeBi_4Te_7$ -Sn Bi_4Te_7 section.

The XRD patterns of alloys of the GeBi $_6$ Te $_{10}$ -SnBi $_6$ Te $_{10}$ section also show a similar shift towards lower 20 angles with increasing Sn content, indicating lattice expansion and the formation of a continuous solid solution without

Fig. 1. Powder XRD patterns of Ge_{1-v}Sn_vBi₂Te₄ alloys


Fig. 2. Powder XRD patterns of Ge_{1-x}Sn_xBi₄Te₇ alloys

The solid-phase equilibria in the GeBi₃Te₄-SnBi₃Te₄-Bi₃Te₇ system at 300 K...


phase separation, as seen in Fig. 3. Thus, based on the obtained results, it can be stated that the GeBi₂Te₄-SnBi₂Te₄, GeBi₄Te₇-SnBi₄Te₇, and GeBi₆Te₁₀-SnBi₆Te₁₀ sections of the GeTe-SnTe-Bi₂Te₃ system are characterized by the formation of continuous series of solid solutions below the subsolidus temperature.

The structural parameters of all the alloys were refined by the Rietveld technique. Powder XRD-based Rietveld refinements yield the final lattice parameter values by showing good agreement between the experimental and calculated profiles

across all compositions. Calculated lattice parameters for the $Ge_{1-x}Sn_xBi_2Te_4$, $Ge_{1-x}Sn_xBi_4Te_7$, and $Ge_{1-x}Sn_xBi_6Te_{10}$ solid solutions were listed in Table 1. It can been seen that the values obtained by our refinements for all ternary end-member compounds are in good agreement with the values of the literature [2, 5]. Results for intermediate compositions are consistent with Vegard's law, which describes the linear relationship between lattice parameters and composition in solid solutions. The variation of lattice parameters a, and c with the Sn content is presented in Fig. 4 (a), (b), and (c). As expected,

Fig. 3. Powder XRD patterns of $Ge_{1-x}Sn_xBi_6Te_{10}$ alloys

Fig. 4. Dependence of lattice parameters a and c for alloys of $Ge_{1-x}Sn_xBi_2Te_4$ (a), $Ge_{1-x}Sn_xBi_4Te_7$ (b), and $Ge_{1-x}Sn_xBi_6Te_{10}$ (a) systems versus Sn content

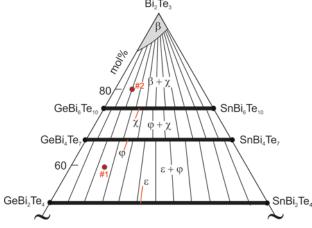

The solid-phase equilibria in the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₇ system at 300 K...

Table 1. Crystal structure parameters of some phases

Composition, mol%	Lattice parameters, Å		- Ref.
	а	С	Kei.
$Ge_{1-x}Sn_xBi_2Te_4$			
x = 0.0	4.3176(3)	41.259(5)	[5]
	4.3181(4)	41.217(5)	This work
x = 0.2	4.3384(2)	41.288(3)	This work
x = 0.4	4.3508(7)	41.332(5)	This work
x = 0.6	4.3691(4)	41.396(4)	This work
x = 0.8	4.3892(3)	41.462(5)	This work
<i>x</i> = 1.0	4.4035(3)	41.511(2)	[25]
	4.4029(3)	41.528(5)	This work
$Ge_{1-x}Sn_xBi_4Te_7$			
<i>x</i> = 0.0	4.3556(2)	23.928(4)	[5]
	4.3525(4)	23.939(2)	This work
x = 0.2	4.3637(2)	23.949(4)	This work
x = 0.4	4.3735(5)	23.956(3)	This work
x = 0.6	4.3809(7)	23.967(7)	This work
x = 0.8	4.3884(1)	23.977(1)	This work
<i>x</i> = 1.0	4.3998(2)	23.981(3)	[31]
	4.3992(5)	23.988(6)	This work
$Ge_{1-x}Sn_{x}Bi_{6}Te_{10}$			
<i>x</i> = 0.0	4.3572(3)	101.911(2)	[5]
	4.3566(1)	101.918(4)	This work
x = 0.4	4.3676(8)	102.128(3)	This work
x = 0.8	4.3799(5)	102.335(1)	This work
<i>x</i> = 1.0	4.3873(8)	102.431(1)	[32]
	4.3867(2)	102.438(4)	This work

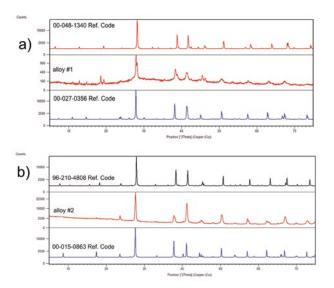

both lattice parameters increase with increasing concentration of Sn content due to the larger ionic radius of Sn^{2+} compared to Ge^{2+} .

Fig. 5 shows the solid-phase equilibrium diagram of the GeBi, Te, -SnBi, Te, -Bi, Te, system at 300 K constructed using the above experimental results and literature data. The isothermal section consists of four monophasic and three two-phase regions. As mentioned above, three out of four single-phase regions belong to a continuous series of solid solutions which are the ϵ -, ϕ -, and χ -phases. The β -phase corresponds to the homogeneity region of Bi₂Te₃, which we delimited taking into account the data from [2, 5]. The formation of biphasic areas is confirmed with XRD. Alloy #1 clearly demonstrated that the ε -phase is in equilibrium with the φ -phase, as shown in Fig. 6 (a). Similarly, alloy #2 (Fig. 2(b)) had two equilibrium phases, which were identified as the φ - and χ - phases. Since both alloy compositions located on the Ge-rich side of the diagram (see Fig. 5), reference XRD lines shown in Fig. 6 (a) and (b) were chosen for comparison from germanium ternary compounds.

Fig. 5. The solid-phase equilibrium diagram of the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₅ system at 300 K. Red circles show alloy compositions for XRD in Fig. 6

The solid-phase equilibria in the GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₅ system at 300 K...

Fig. 6. Powder XRD patterns of alloys #1 and #2 in Fig. 5

4. Conclusions

In this work, based on the results of XRD of equilibrium alloys, a solid-phase equilibrium diagram of the GeTe-SnTe-Bi, Te, system in the composition range of GeBi₂Te₄-SnBi₂Te₄-Bi₂Te₃ at 300 K was constructed. It was established that this subsystem is characterized by the formation of continuous series of substitution solid solutions with the general formula $Ge_{1-x}Sn_xBi_2Te_4$, $Ge_{1-x}Sn_xBi_4Te_7$ and $Ge_{1-x}Sn_xBi_6Te_{10}$ with a layered tetradymite-type structure and a wide homogeneity region based on Bi, Te,. The lattice parameters of the above-mentioned series of solid solutions were refined based on powder diffraction patterns using the Rietveld method. It is shown that their concentration dependences are in good agreement with Vegard's law. The solid solutions obtained in this work are of practical interest from the point of view of developing new topological insulators and thermoelectric materials with adjustable properties.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Contribution of the authors

The authors contributed equally to this article.

References

- 1. Aliev Z. S., Amiraslanov I. R., Nasonova D. I., ... Chulkov E. V. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi₂Te₃ system: synthesis and crystal structure. *Journal of Alloys and Compounds*. 2019;789: 443–450. https://doi.org/10.1016/j.jallcom.2019.03.030
- 2. Orujlu E. N., Seidzade A. E., Babanly D. M., Amiraslanov I. R., Babanly M. B. New insights into phase equilibria of the SnTe-Bi₂Te₃ pseudo-binary system: synthesis and crystal structure of new tetradymite-type compound Sn₃Bi₂Te₆. *Journal of Solid State Chemistry*. 2024;330:124494. https://doi.org/10.1016/j.jssc.2023.124494
- 3. Seidzade A. E., Orujlu E. N., Doert T., Amiraslanov I. R., Aliev Z. S., Babanly M. B. An updated phase diagram of the SnTe-Sb₂Te₃ system and the crystal structure of the new compound SnSb₄Te₇. *Journal of Phase Equilibria and Diffusion*. 2021;42: 373–8. https://doi.org/10.1007/s11669-021-00888-8
- 4. Alakbarova T. M., Meyer H.-J., Orujlu E. N., Amiraslanov I. R., Babanly M. B. Phase equilibria of the GeTe-Bi₂Te₃ quasi-binary system in the range 0–50 mol% Bi₂Te₃. *Phase Transitions*. 2021;94: 366–75. https://doi.org/10.1080/0141 1594.2021.1937625
- 5. Alakbarova T. M., Meyer H.-J., Orujlu E. N., Babanly M. B. A refined phase diagram of the $GeTe-Bi_2Te_3$ system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases. 2022;24: 11–18. https://doi.org/10.17308/kcmf.2022.24/9050
- 6. Huang D., Xia D., Ye T., Fujita T. New experimental studies on the phase relationship of the Bi–Pb–Te system. *Materials & Design*. 2022;224: 111384. https://doi.org/10.1016/j.matdes.2022.111384
- 7. Omoto T., Kanaya H., Ishibashi H., Kubota Y., Kifune K., Kosuga A. Formation phases and electrical properties of Ge-Bi-Te compounds with homologous structures. *Journal of Electronic Materials*. 2015;45: 1478–83. https://doi.org/10.1007/s11664-015-4083-z
- 8. Gojayeva I. M., Babanly V. I., Aghazade A. I., Orujlu E. N. Experimental reinvestigation of the PbTe–Bi₂Te₃ pseudo-binary system. *Azerbaijan Chemical Journal*. 2022;0: 47–53. https://doi.org/10.32737/0005-2531-2022-2-47-53
- 9. Heremans J. P., Cava R. J., Samarth N. Tetradymites as thermoelectrics and topological insulators. *Nature Review Materials*. 2017;2: 17049. https://doi.org/10.1038/natrevmats.2017.49
- 10. Banik A., Roychowdhury S., Biswas K. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. *Chemical Communications*. 2018;54: 6573–6590. https://doi.org/10.1039/c8cc02230e
- 11. Lukyanova L. N., Usov O. A., Volkov M. P., Makarenko I. V. Topological thermoelectric materials based on bismuth telluride. *Nanotechnologly Reports*. 2021;16: 282–293. https://doi.org/10.1134/s2635167621030125
- 12. Xu N., Xu Y., Zhu J. Topological insulators for thermoelectrics. *Npj Quantum Materials*. 2017;2(1). https://doi.org/10.1038/s41535-017-0054-3
- 13. Yang T., Yang Y., Wang X., Zhang G., Cheng Z. Topological thermoelectrics: new opportunities and challenges. *Materials Today Chemistry*. 2023;30: 101488. https://doi.org/10.1016/j.mtchem.2023.101488

The solid-phase equilibria in the GeBi₃Te₄-SnBi₃Te₄-Bi₅Te₇ system at 300 K...

- 14. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. *Russian Journal of Inorganic Chemistry*. 2017;62: 1703–1729. https://doi.org/10.1134/S0036023617130034
- 15. Hasan M. Z., Kane C. L. Colloquium: topological insulators. *Review of Modern Physics*. 2010;82: 3045–3067. https://doi.org/10.1103/revmodphys.82.3045
- 16. Qi X.-L., Zhang S.-C. Topological insulators and superconductors. *Review of Modern Physics*. 2011;83: 1057–1110. https://doi.org/10.1103/revmodphys.83.1057
- 17. Zhang H., Liu C.-X., Qi X.-L., Dai X., Fang Z., Zhang S.-C. Topological insulators in $BiSe_3$, Bi_2Te_3 and Sb_2Te_3 with a single Dirac cone on the surface. *Nature Physics*. 2009;5: 438–442. https://doi.org/10.1038/nphys1270
- 18. Rachel S. Interacting topological insulators: a review. *Reports on Progress in Physics*. 2018;81: 116501. https://doi.org/10.1088/1361-6633/aad6a6
- 19. McGuire M. A., Zhang H., May A. F., ... Yan J. Superconductivity by alloying the topological insulator SnBi₂Te₄. *Physical Review Materials*. 2023;7. https://doi.org/10.1103/physrevmaterials.7.034802
- 20. Saxena A., Karn N. K., Sharma M. M., Awana V. P. S. Detailed structural and topological analysis of SnBi₂Te₄ single crystal. *Journal of Physics and Chemistry of Solids*. 2023;174: 111169. https://doi.org/10.1016/j.jpcs.2022.111169
- 21. Wang L-L. Highly tunable band inversion in AB_2X_4 (A=Ge, Sn, Pb; B=As, Sb, Bi; X=Se, Te) compounds. *Physical Review Materials*. 2022;6. https://doi.org/10.1103/physrevmaterials.6.094201
- 22. Marcinkova A., Wang J. K., Slavonic C., ... Morosan E. Topological metal behavior in $GeBi_2Te_4$ single crystals. *Physical Review B.* 2013;88. https://doi.org/10.1103/physrevb.88.165128
- 23. Klimovskikh I. I., Otrokov M. M., Estyunin D., ... Chulkov E. V. Tunable 3D/2D magnetism in the (MnBi₂Te₄) (Bi₂Te₃)m topological insulators family. *Npj Quantum Materials*. 2020;5. https://doi.org/10.1038/s41535-020-00255-9
- 24. Kuroda K., Miyahara H., Ye M., ... Kimura A. Experimental verification as a 3D topological insulator. *Physical Review Letters*. 2012;108. https://doi.org/10.1103/physrevlett.108.206803
- 25. Orujlu E. Phase equilibria in the $\mathrm{SnBi_2Te_4}$ – $\mathrm{MnBi_2Te_4}$ system and characterization of the $\mathrm{Sn_{1-x}Mn_xBi_2Te_4}$ solid solutions. *Physics and Chemistry of Solid State.* 2020;21: 113–116. https://doi.org/10.15330/pcss.21.1.113-116
- 26. Pan L., Li J., Berardan D., Dragoe N. Transport properties of the SnBi₂Te₄-PbBi₂Te₄ solid solution. *Journal of Solid State Chemistry*. 2015;225: 168–173. https://doi.org/10.1016/j.jssc.2014.12.016
- 27. Frolov A. S., Usachov D. Yu., Tarasov A. V., ... Yashina L. V. Magnetic Dirac semimetal state of (Mn,Ge)Bi $_2$ Te $_4$. Communications Physics. 2024;7. https://doi.org/10.1038/s42005-024-01675-w

- 28. Wang S., Xing T., Hu P., ... Chen, L. Optimized carrier concentration and enhanced thermoelectric properties in $GeSb_{4-x}Bi_xTe_7$ materials. *Applied Physics Letters*. 2022;121. https://doi.org/10.1063/5.0123298
- 29. Qian T., Yao Y.-T., Hu C., ... Ni N. Magnetic dilution effect and topological phase transitions in $(Mn_{1-x}Pb_x)Bi_2Te_4$. *Physical Review B.* 2022;106. https://doi.org/10.1103/physrevb.106.045121
- 30. Tokumoto Y., Sugimoto K., Hattori Y., Edagawa K. Electronic transport properties of $Pb(Bi_{1-x}Sb_x)_2(Te_{1-y}Se_y)_4$ topological insulator. *Journal of Applied Physics*. 2022;131. https://doi.org/10.1063/5.0077002
- 31. Aghazade A. I. Phase relations and characterization of solid solutions in the $\mathrm{SnBi}_2\mathrm{Te}_4$ –PbBi $_2\mathrm{Te}_4$ and $\mathrm{SnBi}_4\mathrm{Te}_7$ –PbBi $_4\mathrm{Te}_7$ systems. *Azerbaijan Chemical Journal*. 2022;0(3): 75–80. https://doi.org/10.32737/0005-2531-2022-3-75-80
- 32. Aghazade A. I., Orujlu E. N., Salimov Z. E., Mammadov A. N., Babanly M. B. Experimental investigation of the solid phase equilibria at 300 K in the SnBi $_2$ Te $_4$ -PbBi $_2$ Te $_4$ -Bi $_2$ Te $_3$ system. *Physics and Chemistry of Solid State*. 2023;24: 453–459. https://doi.org/10.15330/pcss.24.3.453-459

Information about the authors

Elnur R. Nabiyev, PhD student, Ganja State University (Ganja, Azerbaijan).

https://orcid.org/0009-0006-1907-3957 azechemist@gmail.com

Elnur N. Orujlu, PhD in Chemistry, Head of "Nanomaterials and nanotechnologies" science-research laboratory, Azerbajan State Oil and Industry University (Baku, Azerbajan).

https://orcid.org/0000-0001-8955-7910 elnur.oruclu@yahoo.com

Aytan I. Aghazade, PhD student, Researcher at the Institute of Catalysis and Inorganic Chemistry (Baku, Azerbaijan).

https://orcid.org/0000-0002-6072-1075 aytenagazade94@gmail.com

Alakbar A. Hasanov, Dr. Sci. (Tech.), Professor, Azerbajan State Oil and Industry University (Baku, Azerbaijan).

https://orcid.org/0000-0001-7505-4925 alakbar48-48@mail.ru

Mahammad B. Babanly, Dr. Sci. (Chem.), Professor, Associate Member of the Azerbaijan National Academy of Sciences, Deputy-director of the Institute of Catalysis and Inorganic Chemistry (Baku, Azerbaijan).

https://orcid.org/0000-0001-5962-3710 babanlymb@gmail.com

Received 19.08.2024; approved after reviewing 10.09.2024; accepted for publication 16.09.2024; published online 25.12.2024.

Translated by the author