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Abstract 
The available data refute the widespread postulate of thermodynamics, according to which labile states are physically 
unrealizable, unobservable and, thus, devoid of practical interest, since the transition to a stable state does not require 
overcoming a potential barrier, and a random fluctuation leads to an accelerated shift of the system from the initial state. 
The cases when a system remains in a labile state for an indefinite period of time are well known. The corresponding states 
are not only observable, but can be used to create functional materials.
The article analyses low-temperature phase equilibria and spinodal behavior in a number of binary systems containing 
solid solutions with a fluorite structure, such as CaF2-SrF2, CaF2-BaF2, BaF2-RF3 (R = La, Nd), SrF2-LaF3, ZrO2-Y2O3. The 
investigation of low temperature phase formation in the BaF2-LaF3 system allowed to reveal the decomposition of the solid 
solution Ba1-xLaxF2+x with a binodal curve. In the SrF2-LaF3 system the equilibrium solubility curve of lanthanum fluoride 
in strontium fluoride is expressed at the inflection point on the solvus curve with a practically horizontal tangent, which 
corresponds to the bifurcation point – the practical coincidence of the critical point of the nonequilibrium binodal/spinodal 
with the solvus curve. The Ba1-xCaxF2 continuous solid solution obtained by the mechanochemical method and possessing 
high fluorine-ion conductivity, remains in a labile state for an indefinitely long period of time. Upon heating, it disintegrates 
with an exothermic effect at 420-450 °C. In all other fluoride systems, single crystals grown from the melt retain the 
functional characteristics of photonics materials for years and have no signs of degradation. 
Obviously, the technological stability of crystalline samples of the listed solid solutions is determined by the extremely 
low values of the cation diffusion coefficients. The systems are “falling”, but too slowly to detect it. The fine architecture 
of materials in a labile state is of considerable interest. 
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1. Introduction
It is known that a system is in equilibrium if 

it has a minimum of free energy and a maximum 
of entropy. A stable thermodynamic equilibrium 
should comply with following inequalities 
according to thermodynamics [1-3]: 

CP > CV > 0 		  (1)

(thermal stability),

cT > cS > 0 		  (2)

(mechanical stability), 

(∂2G/∂x2)P,T = (∂μ/∂x)P,T > 0 	 (3)

(resistance to diffusion). 
In these inequalities P – pressure, T – 

temperature, V – volume, C – heat capacity, 
S  – entropy, G – isobaric-isothermal potential, 
c  =  (∂P/∂V) - compressibility, μ – chemical 
potential, x - concentration. 

Thermodynamics distinguishes three types 
of equilibria: stable, metastable, and labile. 
Metastable equilibria are locally stable (satisfy 
inequalities 1–3), but may be unstable with 
respect to the appearance of other phases. For 
the transition into the stable state, the system 
must overcome a potential barrier. Labile states 
are locally unstable (one of the inequalities 1–3 
is impaired), and the transition to a stable (or 
metastable) state does not require overcoming a 
potential barrier. 

As for labile equilibria, the thermodynamic 
literature accepts as a postulate that labile 
states are not physically realizable, at least not 
observable, and thus are devoid of practical 
interest, since the transition to a stable state does 
not require overcoming a potential barrier, and a 
random fluctuation leads to an accelerated shift 
of the system from the initial state.

“If within a certain interval of parameter 
values any of the inequalities (stability criteria) 
is not satisfied, then this interval cannot be 
associated with any really existing states. …Such 
states… are completely unstable (labile) and, 
therefore, physically impossible (in any case, 
unobservable).” [4, p. 74].

“Unstable states are practically unrealizable, 
since the slightest fluctuations shift the system 
out of the equilibrium state. Therefore, the use of 
stability conditions allows to identify real systems 

and exclude systems that are devoid of practical 
interest.” [5, p. 44]. 

“Unstable equilibrium is not physically 
realizable. This statement is often questioned 
based on phenomenological reasoning, but it 
can be proven by statistical thermodynamics 
methods.” [6, p. 83].

“We obtain a curve on which thermodynamic 
inequalities are impaired (for a homogeneous 
body); it limits the region in which the body under 
no circumstances can exist as homogeneous.” [7, 
p. 285].

It should be noted that J. W. Gibbs, who 
actually formulated these stability criteria, 
expressed them much more cautiously: “A phase 
which is unstable with respect to continuous 
changes is evidently incapable of permanent 
existence on a large scale except in consequence 
of passive resistances to change” [1, p. 109]. 

The purpose of this study is the demonstration 
of the fallaciousness of these statements [4–7]. 
Systems in labile states are not only observable 
but also very useful from a practical point of view 
in materials science. 

2. Problem statement
The set of points at which the stability 

conditions are impaired is called spinodal. The 
spinodal dimension (point, line or surface) can 
be different depending on the dimension of the 
corresponding phase diagram. 

In general, determination of the position 
of spinodals requires the consideration of the 
thermodynamic model of the system. We will 
limit ourselves to considering the chemical 
spinodal, namely, considering the decomposition 
of solid solutions, i.e., the impairment of the 
stability of the system in relation to diffusion. 
According to the third law of thermodynamics, 
as the temperature decreases, phases of variable 
composition must undergo decomposition 
or ordering. We will limit ourselves to binary 
systems, which does not affect the generality of 
the conclusions. 

At the same time, the position of the binodal, 
which is determined quite simply, allows to 
estimate the position of the spinodal with a high 
degree of reliability. In the immiscibility of solid 
solutions, the critical point, the binodal dome 
point К also belong to the spinodal, see Fig. 1. At 



774

this point, both the binodal and the spinodal have 
a common horizontal tangent, i.e. (∂T/∂x)P = 0. 

There is a simple thermodynamic model, 
namely the regular solution model, applicable 
only to systems with isostructural components, 
but allows to qualitatively navigate in more 
complex cases. In the regular solution model for 
a binary system, the spinodal equation is written 
as follows [3]:

T = 4Tcx(1 – x),		  (4),

where Tc – the absolute temperature of the criti-
cal point, which is realized at a composition 
containing 50 mol. % of components (Fig. 2a). At 
T → 0 K, the spinodal curve goes to the origin of 

coordinates, but, unlike the binodal, does not 
have a vertical tangent at this point (Fig. 2). It 
should be noted that in the monograph by 
Prigogine and Defey the position of the spinodal 
is depicted with an error [3, Fig. 16.16]. Taking 
into account elastic stresses during the decom-
position of solid solutions leads to a shift in the 
position of binodals and spinodals in the compo-
sition-temperature coordinates [8–10].

The immiscibility, i.e. the appearance of both 
the binodal and the spinodal associated with it, 
in the metastable region of existence of a solid 
solution or glass is of great interest [11, 12]. 

Experimental methods for determination 
of the position of spinodals are limited and 
generally effective only for relatively fast 
kinetics of phase transformations [13, 14]. The 
change in the microstructure of alloys can be 
used as a method for determining the spinodal 
[12]. The study [15] also deserves attention (the 
experimentally obtained region of solid solution 
immiscibility exactly corresponds to the spinodal 
equation).

3. Examples
The CaF2-SrF2 system. The phase diagram 

is presented in Fig. 3 [16]. There is a continuous 
series of solid solution between isostructural 
components. The position of the critical point of 
decomposition of the solid solution is outlined 
based on the data of the study of the CaF2-SrF2-
MnF2 ternary system [17]. At room temperature, 

Fig. 1. Binodal and spinodal (dash-dotted line) during 
immiscibility of a solid solution in a binary system in 
the vicinity of the critical immiscibility point К

                                               a                                         b                                         c
Fig. 2. Position of binodals and spinodals (dash-dotted line) in binary systems in the regular solution model. 
L – melt, a – stratifying solid solution

Condensed Matter and Interphases / Конденсированные среды и межфазные границы  	 2024;26(4): 772–781

P. P. Fedorov	 Labile states are the basis of functional materials



775

only solid solutions containing up to 10 mol. % 
of the second component, while intermediate 
compositions containing 10-90% CaF2, are in a 
labile state.

Nevertheless, the corresponding compositions 
can be grown in the form of single crystals and are 
recommended as optical materials, transparent in 
a wide range of the spectrum from UV to IR [18, 
19], as well as matrices for doping with active 
rare earth ions [20-24]. There are no questions 
about the technological stability of the relevant 
materials. Continuous solid solutions of Ca1-xSrxF2 
is obtained even when using low-temperature 
synthesis methods, including co-precipitation 
from aqueous solutions [25]. 

Another example is the CaF2 - BaF2 system. 
Preliminary studies have shown that the 

picture of phase equilibria in the system is more 
complex than described in [26]. The system 
contains intermediate phases stable within a 
narrow temperature range.

Limited solid solutions based on the 
components are formed in the system. Both the 
growth of single crystals from the melt [27] and 

low-temperature co-precipitation [25] allow 
the synthesis of only limited solid solutions. 
However, the Ba1-xCaxF2 continuous solid solution 
was obtained by mechanochemical synthesis 
[28]. The corresponding samples can exist for 
an indefinitely long period of time. However, 
after heating, the system transformed into an 
equilibrium state. The decomposition of the solid 
solution accompanied by the release of heat and 
an exothermic effect on thermograms at 420–
450 °C occurs [29]. 

In general, the behavior of spinodals in 
complex cases remains unclear. Each specific case 
requires careful analysis.

The phase diagram of the BaF2-LaF3 system 
is shown in Fig. 4. At the phase diagram, using 
a special technique focused on the use of low-
temperature phase formation, the immiscibility 
region of the Ba1-xLaxF2+x heterovalent solid 
solution was identified (phase F) [30]. The 
indicated position of the spinodal (Fig. 4b) shows 
that at room temperature the Ba1-xLaxF2 x solid 
solution is in a labile state in the approximate 
concentration range of 0.03  <  х  <  0.45. This 

Fig. 3. Phase diagram of the CaF2-SrF2 
system [16]

Fig. 4. Phase diagram of the BaF2-LaF3 system [30] (a), and the pro-
posed region of spinodal decomposition of the solid solution 
(dash-dotted line, b). 1-3 – data from Sobolev and Tkachenko [30]
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qualitatively corresponds to the results of the 
synthesis of solid solutions by co-precipitation 
of f luorides from aqueous solutions [32]. 
However, the practical stability of the Ba1-

xLaxF2+х single crystals, grown from the melt is 
obvious. In particular, a composition containing 
30 mol. % LaF3 is a promising multifunctional 
material [33]. 

The next example is the SrF2–LaF3 system 
(Fig. 5) [34]. The low-temperature studies have 
shown that the homogeneity region of the 
Sr1-xRxF2+x fluorite solid solution below 400 °C 
rapidly decreases and almost reaches zero, which 
corresponds to the requirements of the third law 
of thermodynamics [35, 36] (Fig. 5). How can the 
spinodal be located for such a decomposition of 
the Sr1-xLaxF2+x solid solution? 

In this case, the solvus curve has an inflection 
point with a practically horizontal tangent. 
According to the van der Waals equation for 
coexisting phases in a binary system at constant 
pressure [35, 37]:

(∂Т/∂x)P = ∆x(∂2G/∂x2)P,T/[∆x(∂S/∂x)P,T -∆S].	 (5)

In this equation, the derivatives of the 
isobaric-isothermal potential G and entropy 
S for the concentration x of any component 
in the considered solid solution are used. The 
∆x and ∆S values are equal to the difference 
in concentrations and entropies of coexisting 
phases. From this equation it follows that the 
horizontal tangent to the equilibrium curve of 
two phases (∂T/∂x)P = 0 can occur if ∆x = 0 or 
(∂2G/∂x2)P,T = 0. The first condition corresponds 
to the equality of the compositions of two phases 
that are in equilibrium and does not correspond to 
the considered case. The second variant remains. 

Thus, the presence of a horizontal tangent 
to the solvus curve corresponds to the boundary 
condition of stability with respect to diffusion. In 
[34], the approach of a diffuse phase transition in 
the Sr1-xLaxF2+x solid solution from above to the 
solvus curve was proposed. However, this was not 
confirmed by the recording of DSC curves. Thus, 
the approach from below the binodal curve of 
metastable immiscibility of the Sr1-xLaxF2+x solid 
solution in a way that the critical point practically 
coincides with the solvus curve, presented in 
Fig. 6c, remains. Such a critical state of phase 
equilibria, changing the topology of the phase 

diagram, is a bifurcation of the phase diagram 
[38, 39]. At the К critical point three lines with 
a horizontal tangent exist, namely: the solvus 
curve of the solid solution, the binodal of the 
metastable decomposition of this solid solution, 
and the spinodal corresponding to this binodal 
converge (Fig. 5). 

Position of the SrF2-LaF3 system in the series 
shown in Fig. 6, practically corresponds to the 
bifurcation point (Fig. 6c). while the position of 
the BaF2-LaF3 system corresponds to Fig. 6d. Since 
the nature of phase equilibria in the vicinity of 
bifurcation points is subject to fluctuations [40], 
it is possible that variant (6d) is also implemented 
for the SrF2-LaF3 system with a slight excess of the 
critical immiscibility point of the solid solution 
over the solvus curve. 

Approximate position of the spinodal in the 
SrF2-LaF3 system is shown in Fig. 5. Again, there are 
no problems with the stability of Sr1-xLaxF2+x single 
crystals, grown from the melt. This also applies to a 
single crystal of the Sr0.70La0.30F2.30 composition, the 

Fig. 5. Phase diagram of the SrF2-LaF3 system [34] and 
the probable position of the binodal (dotted line) and 
spinodal (dash-dotted line) in the region of metastable 
stability of the Sr1-xLaxF2+x solid solution
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most refractory inorganic fluoride with a melting 
temperature of 1570 °C [33]. 

The BaF2-RF3 (R = Pr, Nd) systems studied in 
the low-temperature region [41] are characterized 
by inflection points on the solvus curves. This 
indicates the presence of metastable low-
temperature immiscibility of solid solutions. 
Probably, the corresponding phase diagrams 
occupy position (b) in the sequence diagram 
shown in Fig. 6, with metastable immiscibility of 
the fluorite solid solution (and the corresponding 
spinodal) at a lower temperature. The assumption 
of the presence of low-temperature spinodal 
decomposition of the Ba1-xRxF2+x solid solutions 
is confirmed by the results of attempts to 
synthesize the corresponding solid solutions 
by co-precipitation from aqueous solutions 
[32]: as a result of the synthesis, a mixture of 
practically pure barium fluoride and a fluorite 
phase containing about 40 mol. % RF3 was formed.

Finally, we will discuss systems of zirconium 
dioxide with oxides of rare earth elements, which 
are sources of optical materials – cubic zirconia 
(fianite) [42, 43]. Continuation of the curves of 
the limiting solubility of solid solutions based 
on the high-temperature ZrO2 modification into 
the region of low temperatures [44], taking into 
account the requirement of the presence of a 
vertical tangent at a temperature approaching 
absolute zero [45], inevitably requires the 
presence of an inflection point on the metastable 
solvus curve, see Fig. 8. Based on the above 
description, this also indicates metastable 
immiscibility of the Zr1-xRxO2-0.5x solid solutions, 

which, however, occurs at very low temperatures, 
possibly below room temperature. 

4. Architecture of spinodal decomposition
Single-phase materials located in the spinodal 

decomposition zone must undergo a directed 
evolution, consisting of decomposition into 

Fig. 6. Change in the phase diagram of a binary system due to an increase in the critical temperature of solid 
solution immiscibility (“sunrise-sunset” bifurcation) [38]. Dotted line – metastable equilibria, dash-dotted 
line – spinodals

Fig. 7. Phase diagram of the BaF2-NdF3 system [41]. 
1–3 – data [31]

Condensed Matter and Interphases / Конденсированные среды и межфазные границы  	 2024;26(4): 772–781

P. P. Fedorov	 Labile states are the basis of functional materials



778

two phases, and this process must occur with 
acceleration. The differences in the coexisting 
phases and the characteristic size of each of 
them continuously increase. The structure of 
the resulting aggregate has a complex topology 
and is the subject of numerous computational 
and experimental studies, see, for example, 
[12, 46-51]. In mathematical modelling, the 
Cahn-Hilliard equation is usually used. The 
corresponding materials have a set of topological, 
mechanical and physicochemical properties 
that determine the interest in such objects. 
Such terms as two-framework structures [12], 
spinodoid metamaterials [49, 50], spinodal 
architected materials [51], multifunctional 
spinodal nanoarchitectures [45], self-assembled 
nanolabyrinthine materials [48], cellular materials 
with spinodal topologies [47] are used for 
these materials. These materials are stressed 
nanocomposites. Surprisingly, the topology 
of spinodal decomposition resembles the 
architecture of chalcedons [52].

However, we are primarily interested in single-
phase materials in the spinodal decomposition 
zone. It should be noted that the answer to 

the question: is the material homogeneous? – 
mainly depends on the used research methods. 
In optically transparent single crystals of the 
Ba1-xRxF2+x solid solutions, discussed above, 
heterogeneities of the order of ~20 nm in size 
were revealed by electron microscopy [33, 53]. 
However, the quality of single crystals allows laser 
generation to be obtained even after long-term 
storage. An example of an optical quality single 
crystal after storage for about 40 years is shown 
in Fig. 9. It should be noted that the expected 
size of the inhomogeneity is approximately an 
order of magnitude smaller than the wavelength 
of light. In this case, according to the X-ray 
diffraction method, such samples are single-
phase, with well-defined unit cell parameters, 
linearly dependent on the composition. At the 
same time, when these crystals were studied using 
the Raman light scattering method, they look 
more like two-phase systems. This issue requires 
further investigation.

Fig. 9. Single crystal of Ba0.71Nd0.29F2.29. – optical filter 
for a wavelength of 2.5 µm. The faceting is artificial. 
Grown by T. Turkina [54]. Photographed January 22, 
2024

Electron microscopy did not  reveal 
inhomogeneities similar to those described for 
single crystals of the Ba1-xRxF2+x solid solutions 
in single crystals of cubic zirconia with a 
concentration of about 10 mol. % Y2O3. 

 5. Conclusions
Thus, the conducted analysis of phase 

diagrams shows that solid solutions with a 
fluorite structure, such as M1-xRxF2 x (M = Ca, Sr, 
or Ba) fluorides and Zr1-xRxO2-0.5x (R = rare earth), 
are labile at normal temperature and pressure, 
but they do not show degradation corresponding 
to spinodal decomposition. The same applies 
to functional materials created on their basis: 

Fig. 8. Phase diagram of the ZrO2-Y2O3 system [42]
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their technological stability is much higher than 
thermodynamic stability [55]. Obviously, this is 
determined by the extremely low values of the 
diffusion coefficients of cations. The systems are 
“falling”, but too slowly to be noticed. 

Fig. 9, which records the preservation 
of functional material in a labile state for 
approximately 40 years, convincingly refutes 
Gukhman’s assertion [4]. Obsidian (volcanic 
glass), existing in a thermodynamically non-
equilibrium state, was a functional material 
of Paleolithic cultures for thousands of years. 
Some manifestations of volcanic glass retain its 
original amorphous (apparently labile) form for 
200 million years [56]. 
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