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Abstract 
This study is important due to the lack of reliable data about the properties of high temperature materials for energy 
production and aerospace engineering. The purpose of this article was to evaluate the thermodynamic stability of RE 
magnesium hexaaluminates REMgAl11O19 (RE = La, Pr, Nd, Sm) with a magnetoplumbite structure, which are promising 
components for thermal barrier coatings. For this, we calculated the values of the Gibbs energy of the decomposition 
reactions of RE magnesium hexaaluminates into simple oxides and aluminum-magnesium spinel MgAl2O4 and REAlO3 
phases in the temperature range of 298–1,800 K. For calculations, we used data on the thermodynamic properties of 
hexaaluminates calculated from the values of heat capacity measured by differential scanning calorimetry in the range of 
300-1,800 K and from values of thermodynamic properties of simple oxides, MgAl2O4, and REAlO3 provided in previous 
research. There is hardly any information about the thermodynamic properties of RE magnesium hexaaluminates, which 
are promising thermal barrier materials. The purpose of the article is to provide a thermodynamic evaluation of the 
probability of decomposition reactions of hexaaluminates in the high temperature region. 
Previously published data on the high temperature heat capacity of compounds with the composition of REMgAl11O19 
(RE = La, Pr, Nd, Sm) were used to calculate temperature dependences of entropy and changes in enthalpy, which were used 
to evaluate the Gibbs energy of the decomposition reactions of hexaaluminates into constituent oxides. 
The temperature dependences of the Gibbs energy of the four possible decomposition reactions of hexaaluminates allowed 
drawing conclusions about thermodynamic stability in the high temperature region. 
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1. Introduction
The improved efficiency of modern power 

turbine plants and aircraft engines largely depends 
on the development of new materials that allow 
significantly increasing the temperature of gases 
in the working area. Parts from nickel-cobalt 
alloys used for the manufacture of critical parts 
(for example, turbine blades) can be effectively 
operated, even with cooling, at temperatures that 
do not exceed 1,000–1,200 °C [1]. Oxide coatings 
of metal parts in combination with the cooling of 
inner surfaces allow increasing the temperature 
of working gases by hundreds of degrees due to 
a large temperature gradient in the oxide layer 
[2, 3]. Coatings designed to protect against the 
effects of high temperature are known as thermal 
barrier coatings. Another important function of 
oxide coatings is protection against chemical 
exposure to substances in gaseous and condensed 
states, which are formed during fuel combustion 
and in the form of suspended particles enter the 
turbine together with pumping-in air [4].

Until recently, thermal barrier coatings were 
mainly made of yttria stabilized zirconia, YSZ 
[5]. This substance has some disadvantages, i.e. 
temperature restrictions for its application (about 
1,200 °C) associated with the presence of a phase 
transition [6] and a significant diffusion of oxygen 
at high temperatures leading to the oxidation 
of the surfaces of metal parts. Therefore, a 
number of high-temperature complex RE oxides 
have been proposed for application: zirconates 
RE2Zr2O7 [7], hafnates RE2Hf2O7 and RE2O3 2HfO2 
[8], tantalates RETaO4 and RE3TaO7 [9, 10], 
niobates RE3NbO7 [11], etc. These materials meet 
the key requirements for thermal barrier coatings: 
they have high melting temperatures, no phase 
transitions in a wide range of temperatures, have 
low thermal conductivity, a specified coefficient 
of thermal expansion, and mechanical properties. 
Currently, there has been a lot of interest in 
RE magnesium hexaaluminates [12] due to 
their lower thermal conductivity and potential 
chemical resistance to CMAS oxides (CaO, MgO, 
Al2O3, and SiO2) at high temperatures [13].

One of the ways to evaluate if a particular oxide 
of thermal barrier coatings can be used under the 
conditions of high temperatures and the corrosive 
effect of gases and substances in the condensed 
state (in particular, melts) is the thermodynamic 

evaluation of the probability of decomposition 
reactions of complex oxides into more simple 
oxides, as well as reactions of interaction with 
the substances in the environment in the high 
temperature region. For this, it is necessary to 
determine the Gibbs energy of these reactions.

The triple phase diagram of RE2O3-MgO-Al 2O3 
published in [14] is characterized by the presence 
of 4 eutectics and a number of phases (La2O3, MgO, 
Al2O3, MgO·Al2O3, La2O3·Al2O3, 2La2O3·11Al2O3) 
(Fig. 1). It can be noted that it does not have 
the LaMgAl11O19 phase with a magnetoblumbite 
structure. It can be assumed that in addition to 
REAlO3 perovskites, the quasibinary diagram 
of RE2O3-Al2O3 for other rare-earth elements, 
starting with terbium, will have other compounds: 
aluminum garnets RE3Al5O12 and RE4Al2O9 with a 
monoclinic structure.

There is little information about the experi
mental determination of the thermodynamic 
properties of hexaaluminates with a magneto
plumbite structure. For example, such data are 
only available for heat capacity. In [15], the heat 
capacity of LaMgAl11O19 was determined by means 
of thermoanalytical analysis. The resulting data 
was presented in the form of a small graph. In 
[16], to determine the thermal conductivity of 
REMgAl11O19 (RE = La, Pr, Nd, Sm, Eu, Gd), the 
authors used the values of specific heat capacity 
which were calculated by the Neumann–Kopp 

Fig. 1. Phase diagram of La2O3-MgO-Al2O3 from [14]
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rule. The resulting data was also presented 
graphically. The most reliable data were obtained 
by measuring the heat capacity of LaMgAl11O19 
and SmMgAl11O19 by differential scanning 
calorimetry in the high temperature range [17, 18, 
19, 20]. These data were presented as the Maier-
Kelley equation Cp(T) = A + B×T – C/T2.

The values of entropy and the changes in 
enthalpy can be calculated from the known ratios 
of the heat capacity data:

S T
C
T
dT

T
p∞ - = Ú( ).

.

298 15
298 15

	 (1)

and 
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2. Evaluation of the Gibbs energy
To evaluate the thermodynamic stability of 

hexaaluminates REMgAl11O19 (RE = La, Pr, Nd, Sm) 
in the high temperature region, it is necessary to 
calculate the Gibbs energy of possible reactions 
for oxides, for which there is data on enthalpies of 
formation at 298.15 K and on changes in enthalpy 
and entropy in the high temperature region:

REMgAl11O19 = 0.5 RE2O3 + MgO + 5.5 Al2O3	 (I),

REMgAl11O19 = 0.5 RE2O3 + MgAl2O4 + 4.5 Al2O3	(II),

REMgAl11O19 = REAlO3 + MgO + 5 Al2O3	 (III),

REMgAl11O19 = REAlO3 + MgAl2O4 + 4 Al2O3	 (IV).

We chose the decomposition reactions into 
simple oxides, aluminum-magnesium spinel, and 
REAlO3 aluminates with a perovskite structure 
because they are present in the triple phase 
diagram given in [14]. Evaluation by reaction:

REMgAl11O19 = REAl11O18 + MgO 	 (V)

was impossible due to insufficient data for 
REAl11O18. 

For the four above listed reactions, the 
temperature dependences of the Gibbs energy, 
which were calculated as the difference between 
the values for the reaction products and the 
starting substances, can be presented as follows:

Reaction (I):

∆r(I)G°(T) = [0.5∆fG°(RE2O3, T) + ∆fG°(MgO, T) + 
+ 5.5∆fG°(Al2O3, T)] – ∆fG°(REMgAl11O19, T).	 (3)

Reaction (II):
∆r(II)G°(T) = [0.5∆fG°(RE2O3, T) + ∆fG°(MgAl2O4, T) + 
+ 4.5∆fG°(Al2O3, T)] – ∆fG°(REMgAl11O19, T).	 (4)

Reaction (III):
∆r(III)G°(T) = [∆fG°(REAlO3, T) + ∆fG°(MgO, T) + 
5×∆fG°(Al2O3, T)] – ∆fG°(REMgAl11O19, T).	 (5)

Reaction (IV):
∆r(IV)G°(T) = [∆fG°(REAlO3, T) + ∆fG°( MgAl2O4, T) + 
+ 4∆fG°(Al2O3, T)] – ∆fG°(REMgAl11O19, T).	 (6)

The Gibbs energy of reactions (I-IV) can 
be expressed as the sum of two components: 
enthalpy and entropy.

Reaction (I):
∆r(I)G°(T) = {[0.5∆fH°(RE2O3, T) + ∆fH°(MgO, T) + 
+ 5.5∆fH°(Al2O3, T)]– ∆fH°(REMgAl11O19, T)} – 
– T{[0.5S°(RE2O3, T) + S°(MgO, T) +  
+ 5.5S°(Al2O3, T)]– S°(REMgAl11O19, T)}.	 (7)

Reaction (II):
∆r(II)G°(T) = {[0.5∆fH°(RE2O3, T) +  
+ ∆fH°(MgAl2O4, T) + 4.5∆fH°(Al2O3, T)] – 
– ∆fH°(REMgAl11O19, T)} – T{[0.5S°(RE2O3, T) + 
+ S°(MgAl2O4, T) + 4.5S°(Al2O3, T)] –  
– S°(REMgAl11O19, T)}.		  (8)

Reaction (III):
∆r(III)G°(T) = {[∆fH°(REAlO3, T) + ∆fH°(MgO, T) + 
+ 5∆fH°(Al2O3, T)]– ∆fH°(REMgAl11O19, T)} – 
– T{[S°(REAlO3, T) + S°(MgO, T) + 5S°(Al2O3, T)] – 
– S°(REMgAl11O19, T)}.		  (9)

Reaction (IV):
∆r(IV)G°(T) = {[∆fH°(REAlO3, T) + ∆fH°( MgAl2O4, T) + 
+ 4∆fH°(Al2O3, T)] – ∆fH°(REMgAl11O19, T)} – 
– T{[S°(REAlO3, T) + S°( MgAl2O4, T) +  
+ 4S°(Al2O3, T)] – S°(REMgAl11O19, T)}.	 (10)

To calculate the enthalpy component over a 
wide range of temperatures, we needed data on 
the enthalpies of the corresponding reactions 
at 298.15 K and the temperature dependences 
of the changes in enthalpy and entropy for each 
participant in the reaction.

The thermodynamic values necessary for the 
calculation were taken from the original articles 
[17–24] and reference books [25–27]. We found 
values of enthalpy of formation for LaAlO3 and 
PrAlO3 perovskites in [28], however, we failed to 
find data on the temperature dependence of heat 
capacity. Therefore, calculations were only made 
for neodymium and samarium compounds. We 
obtained the estimated enthalpies of formation 
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of hexaaluminates REMgAl11O19 (RE = La, Pr, Nd, 
Sm) with a magnetoplumbite structure by drop 
calorimetry [29]. The results of calculations of 
enthalpies and Gibbs energies of type (I–IV) 
reactions in the temperature range of 298.15–
1,800 K are shown in Fig. 2–5.

From Fig. 2, it follows that the values of 
the Gibbs energy of a type (I) reaction for the 
lanthanum, praseodymium, and neodymium 
compounds had positive values in the studied 

temperature range, while in the case of the 
samarium compound the sign changed to 
negative, which may indicate its thermodynamic 
instability in the region below 1,400 K. However, it 
should be noted that taking into account the error 
of determination (about ± 10 kJ/mol), this value 
can shift to the region of lower temperatures (up 
to 800 K). There was a general downward trend 
in thermodynamic stability from lanthanum to 
samarium.

                                                    а                                                                                                 b
Fig. 2. Temperature dependences of enthalpy (a) and Gibbs energy (b) of reaction (I) for: 1 – LaMgAl11O19, 2 – 
PrMgAl11O19, 3 – NdMgAl11O19, 4 – SmMgAl11O19

                                                    а                                                                                                 b
Fig. 3. Temperature dependences of enthalpy (a) and Gibbs energy (b) of reaction (I) for: 1 – LaMgAl11O19, 2 – 
PrMgAl11O19, 3 – NdMgAl11O19, 4 – SmMgAl11O19
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The values of the Gibbs energy of a type (II) 
reaction for LaMgAl11O19 became negative when 
the temperature exceeded 1,100 K, which indicates 
the probability of the reaction. Judging by the 
temperature dependences of the Gibbs energy 
for PrMgAl11O19, NdMgAl11O19, and SmMgAl11O19 
shown in Fig. 3 and their negative values, a type 
(II) reaction for these compounds is possible over 
the entire range of high temperatures.

Judging by the sign of the Gibbs energy of the 
reaction which involved a decomposition into 
magnesium and aluminum oxides and REAlO3 
perovskites (RE = Nd, Sm), this process is very 
probable.

Very negative values of the Gibbs energy 
indicated that a type (IV) reaction for obtaining 
magnesium-neodymium and magnesium-
samarium hexaaluminates from perovskites, 

                                                    а                                                                                                 b
Fig. 4. Temperature dependences of enthalpy (a) and Gibbs energy (b) of reaction (III) for: 3 – NdMgAl11O19, 
4 – SmMgAl11O19

                                                    а                                                                                                 b
Fig. 5. Temperature dependences of enthalpy (a) and Gibbs energy (b) (IV) for: 3 – NdMgAl11O19, 4 – SmMgAl11O19
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spinel, and aluminum oxide should not occur. 
A significant difference in the type of the Gibbs 
energy and enthalpy dependencies of type 
(III) and (IV) reactions can be explained by the 
influence of the entropy factor.

3. Conclusions
Analysis of the thermodynamic stability of 

RE magnesium hexaaluminates REMgAl11O19 
based on the calculation of the Gibbs energy 
of the decomposition reactions into simple 
oxides, aluminum-magnesium spinel, and 
REAlO3 perovskites allowed determining the 
probability of these reactions over a wide range of 
temperatures. It was shown that there is influence 
of enthalpy and entropy factors on the type of 
temperature dependence of the Gibbs energy of 
decomposition reactions of hexaaluminates into 
simpler oxides.
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