УДК 541.123.3

ТОПОЛОГИЧЕСКАЯ СХЕМА ФАЗОВЫХ РАВНОВЕСИЙ В СИСТЕМЕ Sn—As—Ge

© 2016 Е. Ю. Проскурина, Г. В. Семенова, Т. П. Сушкова

Воронежский государственный университет, Университетская пл., 1, 3940018 Воронеж, Россия e-mail: semen157@chem.vsu.ru

Поступила в редакцию 20.04.2016 г.

Аннотация: По результатам рентгенофазового и дифференциального термического анализа построены *T-х* диаграммы политермических разрезов Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} и SnAs—Ge_{0.4}As_{0.6} системы Sn—As—Ge. Установлено, что четырехфазные перитектические превращения L + As \leftrightarrow SnAs + GeAs₂ и L + GeAs₂ \leftrightarrow GeAs + SnAs peanusyются при температурах 843 и 838 К соответственно. Представлена топологическая схема фазовых равновесий в тройной системе Sn—As—Ge.

Ключевые слова: фазовая диаграмма, тройная система, арсенид олова, арсенид германия.

введение

Открытие графена стимулировало значительный интерес к двумерным (2D) материалам. С этой точки зрения, перспективным представляется использование полупроводниковых соединений класса А^{IV}В^V, характеризующихся слоистой структурой со слабыми связями между слоями. Наличие летучих компонентов создает определенные трудности при синтезе этих соединений, поэтому в [1] предпринята попытка получения образцов GeP в присутствии висмута или олова. В последнем случае формировались легированные оловом материалы, обладающие интересными полупроводниковыми свойствами. Развитие этого направления сдерживается практическим отсутствием сведений о фазовых равновесиях в тройных системах А^{IV}----В^V—Sn. В связи с этим изучение фазовой диаграммы системы Sn—As—Ge является актуальной задачей, поскольку синтез многокомпонентных сплавов базируется на информации о фазовых равновесиях.

В работах [2—4] были изучены фазовые равновесия в трехкомпонентной системе Sn—As—Ge в области малого содержания летучего компонента (менее 50 мол.% мышьяка). Экспериментальное исследование политермических разрезов Sn₄As₃—GeAs, Sn—GeAs, Ge–SnAs позволило установить, что в системе Sn—As—Ge реализуются два равновесия перитектического характера: L + SnAs \leftrightarrow Sn₄As₃ + GeAs (*T*=834 K); L + GeAs \leftrightarrow Ge + Sn₄As₃ (*T*=821 K). Цель настоящей работы состояла в установлении характера фазовых равновесий в системе Sn—As—Ge в концентрационной области более 50 мол. % мышьяка и построении топологической схемы фазовых равновесий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методами рентгенофазового и дифференциального термического анализа были исследованы политермические сечения внутри концентрационного треугольника As—SnAs—GeAs. Политермический разрез $Sn_{0.39}As_{0.61}$ —Ge $_{0.28}As_{0.72}$ проходит через точку двойной эвтектики (GeAs $_2$ + As) в бинарной системе Ge–As и эвтектическую точку (SnAs + As) в системе Sn—As. Второй разрез SnAs—Ge $_{0.4}As_{0.6}$ исходит из фигуративной точки моноарсенида олова и точки двойной эвтектики (GeAs $_2$ + GeAs) в системе Ge–As.

Трехкомпонентные сплавы, составы которых соответствуют политермическим сечениям SnAs— Ge_{0.4}As_{0.6} и Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72}, готовили из олова марки OBЧ-000, поликристаллического зонноочищенного германия ГОСТ 16154—80 и мышьяка OCЧ-9-5, очищенного вакуумной сублимацией. Взвешивание осуществляли на весах AR2140 с погрешностью $\pm 1\cdot 10^{-3}$ г. Синтез проводили в толстостенных кварцевых ампулах, вакуумированных до остаточного давления 5·10⁻⁴ гПа. Температуру контролировали хромель-алюмелевой термопарой, в качестве измерительного прибора использовали контактный термометр TK-5.11. Сплавы подвергали гомогенизирующему отжигу в течение 150 ч при температуре 800 К.

Исследование полученных образцов проводили на установке ДТА с программируемым нагревом печи, используя ПИД–регуляторы ОВЕН ТРМ-151 и ТРМ-202. Сигнал, полученный с предварительно отградуированных хромель-алюмелевых термопар, оцифровывался и обрабатывался при помощи компьютерной программы «MasterSCADA». Термографирование проводили со скоростью 5 К/мин, максимальная температура нагревания составляла 1073 К. Погрешность определения температуры фазовых переходов методом ДТА не превышала ±2 К.

Фазовый анализ осуществляли методом рентгеновской дифрактометрии на приборе ARL Х'TRA в геометрии Θ—Θ с фокусировкой по Бреггу—Брентано. В качестве источника использовали Си К_α излучение, шаг съемки 0.04°, время выдержки 3.0 секунды. Для расшифровки полученных дифрактограмм использовали базу данных ICDD PDF2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены результаты рентгенофазового анализа некоторых сплавов разреза SnAs—Ge_{0.4}As_{0.6}, из которых видно, что для всех составов в твердом состоянии фиксируются три фазы: ди- и моноарсенид германия и арсенид олова SnAs.

Рис. 1. Дифрктограммы сплавов политермического разреза SnAs— $Ge_{0.4}As_{0.6}$: a = 0.15; $\delta = 0.75$ мол. д. SnAs. Цифрами обозначены фазы: I = SnAs; $2 = GeAs_{.5}$; $3 = GeAs_{.5}$

При исследовании методом дифференциального термического анализа установлено наличие трех эндотермических эффектов, причем первый эндотермический эффект для всех образцов сечения осуществлялся при температуре 838 К. В работе [2] сообщалось, что при такой же температуре была зафиксирована температурная горизонталь на фазовой диаграмме SnAs—GeAs. Совокупность полученных в настоящей работе результатов и данных рентгенофазового и дифференциального термического анализа, представленных в [2], можно интерпретировать существованием при температуре 838 К нонвариантного перитектического превращения с участием трех твердых фаз L+GeAs₂ \leftrightarrow GeAs + SnAs.

При исследовании политермического сечения $Sn_{0.39}As_{0.61}$ —Ge_{0.28}As_{0.72} установлено, что все образцы представляют собой гетерофазную смесь мышьяка, диарсенида германия и моноарсенида олова (рис. 2*a*, *б*), хотя рефлексы мышьяка немногочисленны, что объясняется высокой летучестью компонента.

Рис. 2. Дифрктограммы сплавов политермического разреза Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72}: *a* — 0.50; *б* — 0.70 мол. д. Sn_{0.39}As_{0.61}. Цифрами обозначены: 1 — SnAs; 2 — GeAs₂; 3 — As

По данным метода дифференциально-термического анализа кривые нагревания сплавов политермического разреза $Sn_{0.39}As_{0.61}$ — $Ge_{0.28}As_{0.72}$ характеризуются наличием трех эндоэффектов, причем температура первого эндотермического эффекта одинакова для всех сплавов и равна 843 К. Реализация такой же температуры на сечении SnAs— GeAs₂ позволяет сделать вывод о существовании еще одного перитектического нонвариантного равновесия L+As \leftrightarrow SnAs + GeAs₂.

Для правильной интерпретации результатов дифференциально-термического анализа и построения на основе этих данных фазовых диаграмм разрезов Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} и SnAs—Ge_{0.4}As_{0.6}, необходимо проанализировать фазовые равновесия в тройной системе Sn—As—Ge в данной концентрационной области.

Сплавы политермического разреза $Sn_{0.39}As_{0.61}$ — Ge_{0.28}As_{0.72} лежат в области первичной кристаллизации мышьяка L \leftrightarrow As (рис. 3). Вторичная кристаллизация для сплавов, составы которых принадлежат отрезку *ab*, связана с линией трехфазного равновесия e₆P₁, вдоль которой осуществляется процесс L \leftrightarrow As + SnAs. Процесс заканчивается в т. P₁, где осуществляется нонвариантное равновесие L + As \leftrightarrow GeAs₂ + SnAs. Поскольку процесс является перитектическим, т. P₁ лежит вне треугольника, соединяющего фигуративные точки твердых фаз. Согласно нашим данным температура нонвариантного превращения составляет 843 К.

Рис. 3. Пути кристаллизации сплавов политермических разрезов Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} и SnAs—Ge_{0.4}As_{0.6}

Для области составов, принадлежащих отрезку bc, после первичной кристаллизации мышьяка фигуративная точка жидкости попадает на кривую e_sP_1 , а значит, после процесса $L \leftrightarrow As$ будет следо-

вать L \leftrightarrow GeAs₂ + As. Закончится кристаллизации в т. P₁ L + As \leftrightarrow GeAs₂ + SnAs. Представленные рассуждения позволяют интерпретировать данные дифференциально-термического анализа и построить *T*-*x* диаграмму политермического сечения Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} (рис. 4).

Рис. 4. *T*-*x* диаграмма политермического разреза Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72}

Первичная кристаллизация сплавов, составы которых отвечают политермическому сечению SnAs—Ge_{0.4}As_{0.6}, различна. Сплавы с большим содержанием моноарсенида олова (от фигуративной точки чистого SnAs до точки *е* пересечения разреза с кривой P₁P₂) характеризуются следующей последовательностью процессов:

1. L \leftrightarrow SnAs (первичная кристаллизация);

2. L \leftrightarrow GeAs₂ + SnAs (вторичная кристаллизация);

3. L+GeAs₂ ↔ GeAs + SnAs (третичная кристаллизация).

Более сложным представляется процесс кристаллизация сплавов, составы которых отвечают концентрационной области *eg*. Для них вначале идет кристаллизация диарсенида германия, но характер вторичной кристаллизации может быть различным. Прямая, соединяющие фигуративную точку GeAs₂ с точкой P₂, делит отрезок *eg* на две части.

Для всех сплавов, составы которых отвечают интервалу fg, первичная кристаллизация переходит в эвтектическую кристаллизацию L \leftrightarrow GeAs + GeAs₂. Процесс заканчивается в точке четырехфазного равновесия L + GeAs₂ \leftrightarrow GeAs + SnAs (т. Р₂). Аналогичен характер процессов первичной и третичной кристаллизации и для сплавов концентрационной области *ef*, однако вторичная кристаллизация для них соответствует схеме L \leftrightarrow GeAs₂ + SnAs. На рис. 5 представлена *T*-*x* диаграмма политермического сечения SnAs—Ge_{0.4}As_{0.6}.

Фазовые превращения и последовательные (при понижении температуры) процессы кристаллизации в системе Sn—As—Ge иллюстрирует приведенная на рис. 6 топологическая схема фазовых равновесий [5]. Основная идея топологической схемы заключается в уменьшении трехмерной диаграммы тройной системы до одномерной схемы, которая, дает четкое представление о фазовых равновесиях в системе. Это уменьшение производится ограничением только нонвариантными и моновариантными превращениями, пренебрежением информации о концентрации фаз и сохранением только температурной оси.

Рис. 5. *T*-*x* диаграмма политермического разреза SnAs— $Ge_{0.4}As_{0.6}$

Рис. 6. Топологическая схема фазовых равновесий в системе Sn-As-Ge

ЗАКЛЮЧЕНИЕ

В трехкомпонентной системе Sn—As—Ge установлено наличие четырехфазных перитектических равновесий L + As \leftrightarrow SnAs + GeAs₂ и L + GeAs₂ \leftrightarrow GeAs + SnAs, осуществляемых при температурах 843 и 838 К соответственно. По данным рентгенофазового и дифференциально-термического анализа построены *T*-*x* диаграммы политермических сечений Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} и SnAs— Ge_{0.4}As_{0.6}. Анализ фазовых равновесий в системе Sn—As—Ge с учетом полученных данных позволил построить топологическую схему диаграммы состояния данной системы.

СПИСОК ЛИТЕРАТУРЫ

1. Lee K., Synnestvedt S., Bellard M., Kovnir K. // J. Solid State Chem., 2015, vol. 224, pp. 62-70.

2. Kononova E. Yu., Sinyova S. I., Semenova G. V., Sushkova T. P. // J. Therm Anal Calorim., 2014, vol. 117, № 3, pp.1171—1177.

3. Семенова Г. В., Кононова Е. Ю., Сушкова Т. П. // Журн. неорг. химии, 2014, т. 59, № 12, с. 1764—1768.

4. Семенова Г. В., Кононова Е. Ю., Сушкова Т. П. // Вестник ВГУ. Серия: Химия. Биология. Фармация, 2015, № 1, с. 49—53.

5. Lukas H. L., Henig E. T., Petzow G. // Z. Metallkd, 1986, vol. 77, p. 360.

THE TOPOLOGICAL SCHEME OF PHASE EQUILIBRIA IN THE SYSTEM Sn—As—Ge

© 2016 E. Yu. Proskurina, G. V. Semenova, T. P. Sushkova

Voronezh State University, Universitetskaya pl., 1, 3940018 Voronezh, Russia e-mail: semen157@chem.vsu.ru

Received 20.04.2016

Abstract. The purpose of this study is to determine the character of the phase equilibrium in the Sn-As-Ge system in concentration area more than 50th mol.% of arsenic and creation of the topological scheme of phase equilibriums. Methods of the X-ray diffraction and differential-thermal analysis have been investigated the polythermal sections in a concentration triangle of As-SnAs-GeAs. In the three-component Sn-As-Ge system has been found the existence of the four-phase peritectic equilibriums of L + As \leftrightarrow SnAs + GeAs₂ and L + GeAs₂ \leftrightarrow GeAs + SnAs which are carried out at temperatures 843 and 838 K respectively. According to the results of X-ray diffraction and differential-thermal analysis *T*-*x* diagrams of polythermal sections Sn_{0.39}As_{0.61}—Ge_{0.28}As_{0.72} and SnAs—Ge_{0.4}As_{0.66} have been constructed. The analysis of phase equilibriums in the Sn-As-Ge system based on obtained data has allowed to construct the topological scheme of the diagrams of the condition of this system.

Keywords: phase diagram, ternary system, tin arsenide, germanium arsenide.

REFERENCES

1. Lee K., Synnestvedt S., Bellard M., Kovnir K. J. Solid State Chem., 2015, vol. 224, pp. 62—70. DOI:10.1016/j.jssc.2014.04.021

2. Kononova E. Yu., Sinyova S. I., Semenova G. V., Sushkova T. P. *J. Therm Anal Calorim.*, 2014, vol. 117, no. 3, pp. 1171—1177. DOI: 10.1007/s10973—014— 3883—3 3. Semenova G. V., Kononova E. Yu., Sushkova T. P. *Zh. Neorgan. Himii* [Russian Journal of Inorganic Chemistry], 2014, vol. 59, no. 12, pp. 1764—1768.

4. Semenova G. V., Kononova E. Yu., Sushkova T. P. *Vestnik VGU. Serija: Himija. Biologija. Farmacija*, 2015, no. 1, pp. 49—53. Available at: http://www.vestnik.vsu.ru/program/view/view.asp?sec=chembio&year=2015&num= 01&f name=2015—01—08

5. Lukas H. L., Henig E. T., Petzow G. Z. Metallkd, 1986, vol. 77, p. 360.

Проскурина Елена Юрьевна — ассистент кафедры общей и неорганической химии, Воронежский государственный университет; тел.: +7(473) 2208610, e-mail: Helko7@yandex.ru.

Семенова Галина Владимировна — д. х. н., профессор кафедры общей и неорганической химии, Воронежский государственный университет; тел.: +7(473) 2208610, e-mail: semen157@chem.vsu.ru

Сушкова Татьяна Павловна — к. х. н., доцент кафедры общей и неорганической химии, Воронежский государственный университет; тел.: +7(473) 2208610, e-mail: sushtp@yandex.ru. *Proskurina Elena Yu.* — Assistant Lecturer, Department ofG and Inorganic Chemistry, Voronezh State University; ph.: +7(473) 2208610, e-mail: Helko7@yandex.ru.

Semenova Galina V. — Dr. Sci. (Chem.), Professor, Department of General and Inorganic Chemistry, Voronezh State University; ph.: +7(473) 2208610, e-mail: semen157@ chem.vsu.ru

Sushkova Tatiana P. — Cand. Sci. (Chem.), Assistant Professor, Department of General and Inorganic Chemistry, Voronezh State University; ph.: +7(473) 2208610, e-mail: sushtp@yandex.ru