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Аннотация
Цель статьи: В связи с переходом к зеленой энергетике поиск, синтез, исследование альтернативных источников 
и материалов для них имеют большую перспективу. Одним из методов получения таких перспективных материа-
лов является изучение фазовых диаграмм между изоструктурными соединениями. В связи с этим методами фи-
зико-химического анализа (ДТА, РФА, измерения микротвердости и плотности) изучены фазовые равновесия в 
системах PbGa2S4–SmGa2S4 и PbGa2Se4–SmGa2Se4 и построены их диаграммы состояния. 
Выводы: Установлено, что указанные системы квазибинарные и характеризуются образованием непрерывных 
областей твердых растворов типа замещения. Твердые растворы Pb1-xSmxGa2S4 и Pb1-xSmxGa2Se4 кристаллизуются в 
орторомбической сингонии и относятся к структурному типу EuGa2S4. Параметры элементарных ячеек их изменя-
ются в пределах: Pb1-xSmxGa2S4 а = 20.745÷20.706; b = 20.464÷20.380; с = 12.236÷12.156; Pb1-xSmxGa2Se4 a = 21.722÷21.782; 
b = 21.202÷21.35; с = 12.3047÷12.390 Å; пр. гр. Fddd, z = 32. Изучены некоторые физико-химические свойства твердых 
растворов Pb1–xSmxGa2S4 и Pb1-xSmxGa2Se4.
Ключевые слова: система, твердый раствор, элементарная ячейка, параметр решетки, фазовая диаграмма
Для цитирования: Алиев О. М., Аждарова Д. С., Агаева Р. М., Рагимова В. М. Фазовые равновесия и некоторые 
свойства твердых растворов систем PbGa2S4–SmGa2S4 и PbGa2Se4–SmGa2Se4. Конденсированные среды и межфазные 
границы. 2025;27(4): 565–572.  https://doi.org/10.17308/kcmf.2025.27/13293
For citation: Aliev O. M., Azhdarova D. S., Agayeva R. M., Ragimova V. M. Phase equilibria and some properties of solid 
solutions of PbGa2S4–SmGa2S4 and PbGa2Se4–SmGa2Se4 systems. Condensed Matter and Interphases. 2025;27(4): 565–572. 
https://doi.org/10.17308/kcmf.2025.27/13293

  Oзбек Мисирхан Алиев, e-mail: ozbek.aliyev41@gmail.com
© Алиев О. М., Аждарова Д. С., Агаева Р. М., Рагимова В. М., 2025

Контент доступен под лицензией Creative Commons Attribution 4.0 License. 

Конденсированные среды и межфазные границы. 2025;27(4): 565–572



566

1. Введение
Современный научно-технический про-

гресс во многом обязан применением функци-
ональных материалов, имеющие уникальные 
свойства. Все это требует систематического по-
иска, синтеза, дизайна и всестороннего иссле-
дования их фундаментальных свойств. В этом 
аспекте изучение фазовых диаграмм между 
изоструктурными соединениями, образую-
щие непрерывные ряды твердых растворов, 
дает возможность управлять функциональны-
ми свойствами полученного материала [1–7].

В настоящее время исследование альтер-
нативных энергетических источников во всем 
мире является самым приоритетным направ-
лением научных исследований. Решение это-
го вопроса во многом связано с созданием но-
вых эффективных преобразователей энергии, 
особенно, термоэлектрических и фотовольта-
ичных материалов [8–15].

Исходные соединения (PbGa2S4, SmGa2S4, 
PbGa2Se4, SmGa2Se4) довольно подробно из-
учены [16–25]. По данным [17] соединение 
PbGa2S4 образуется по перитектической ре-
акции ж + PbS ↔ PbGa2S4 и плавится инкон-
груэнтно при 1203 К, кристаллизуется в ром-
бической сингонии с параметрами элемен-
тарной ячейки: а = 20.44; b = 20.64; с = 12.09 Å, 
пр. гр. Fddd, z = 32, d = 4.94 г/см3 и относится 
к структурному типу EuGa2S4. По данным ра-
боты [13] PbGa2S4 плавится конгруэнтно при 
1163 K с параметрами решетки: а = 20.706; 
b = 20.380; с = 12.156 Å. Анализ литературных 
данных [13, 16–18] показал, что кроме одной 
работы [18], все остальные авторы утвержда-
ют, что соединение PbGa2S4 плавится конгру-
энтно. Поэтому в настоящем исследовании мы 
основывались на результаты последних работ 
[13]. Результаты синтезированного и исследо-
ванного нами соединения PbGa2S4 подтверди-
ли конгруэнтный характер его плавления, что 
совпадает с [16, 17]. PbGa2S4 является широко-
зонным полупроводником и характеризуется 
полифункциональными свойствами: лазер-
ными [13], парамагнитными [26], оптически 
активными свойствами [27–29]. PbGa2Se4 так-
же плавится конгруэнтно при 1050 К [19–21] 
и относится к структурному типу ЕuGa2S4  (а = 
21.72; b = 21.20; с = 12.30). 

Соединение SmGa2S4 плавится конгруэнтно 
при температуре 1750 К [23–25], кристаллизует-
ся в орторомбической сингонии с параметрами 
решетки: а = 20.745; b = 20.464; с = 12.236 Å, пр. 

гр. Fddd, z = 32, Нµ = 2800, d = 4.28 г/см3. SmGa2S4 
полупроводник с шириной запрещенной зоны 
∆Е = 2.20 эВ [23, 24]. В отличие от SmGa2S4 сое-
динение SmGa2Se4 плавится инконгруэнтно при 
1200 К и относится к структурному типу ЕuGa2S4 
(а = 21.700; b = 21.23; с = 12.39 Å), Нµ = 2700; d = 
6.02 г/см3, ∆Е = 1.40 эВ [1, 25].

Поскольку тио- и селеногаллаты свинца и 
самария обладают лазерными, оптическими и 
люминесцентными свойствами, изучение хи-
мического взаимодействия между ними об-
ещает получение материалов с полифункци-
ональными свойствами.

Цель настоящей работы состоит в изуче-
нии фазового равновесия в системах PbGa2S4–
SmGa2S4, PbGa2Se4–SmGa2Se4 и в исследовании 
физико-химических свойств твердых раство-
ров Pb1–xSmxS4(Se4).

2. Экспериментальная часть
Сплавы получили расплавлением тройных 

сульфидов или селенидов свинца и самария 
(PbGa2S4, PbGa2Se4, SmGa2S4, SmGa2Se4) в вакуу-
мированных кварцевых ампулах при темпера-
туре 1300-1400 К. Исходные тройные сульфи-
ды и селениды свинца и самария синтезиро-
вали сплавлением особо чистых элементарных 
компонентов. Расплавленные сплавы выдер-
живали при максимальной температуре (1300–
1400 К) 30–40 минут и после этого охлаждали до 
1000 К и выдерживали при этом режиме в тече-
ние 1200 часов для гомогенизации. В результате 
были получены плотные сплавы желтого цвета, 
пригодные для физико-химического анализа.

Сплавы (образцы массой 0.1–0.3 г) ис-
следовались посредством дифференциаль-
но-термического анализа (ДТА) на установ-
ке Netzsch STA 449 F3 (платин– платин/роди-
евые термопары, в интервале температур от 
комнатной до ~ 1450 К со скоростью нагре-
вания 10 К·мин–1), рентгенофазового анализа 
(РФА, D2 PILSENER фирмы Bruker, CuKα излу-
чение), измерения микротвердости (на уста-
новке РМТ-3) и определения плотности (опре-
деляли пикнометрическим методом, наполни-
телем служил толуол). Погрешность ДТА, РФА, 
микротвердости и плотности составляла: ± 3 К, 
± 0.001 Å, ±3 МПа, ± 0.3 г/см3 соответственно.

3. Результаты и их обсуждение
Диаграмма состояния системы PbGa2S4–

SmGa2S4, построенная по данным физико-хи-
мического анализа, приведена на рис. 1а.
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Как видно из рис. 1а, система PbGa2S4–
SmGa2S4 характеризуется полным совместным 
растворением компонентов в жидком и твер-
дом состояниях и относится к фазовым диа-
граммам первого типа по Розебому [30]. Экс-
тремальная точка на кривых ликвидуса и со-
лидуса отсутствует, температура их монотон-
но изменяется между температурами плавле-
ния исходных тройных сульфидов (PbGa2S4 и 
SmGa2S4).

Максимальная разница температур меж-
ду точками на линиях ликвидуса и солидуса 
составляет 25 К (см. рис. 1а). Поэтому в этой 
системе можно было ожидать общую экстре-
мальную точку (min или max) на кривых лик-
видуса и солидуса. С другой стороны, следу-
ет отметить, что диаграммы состояния пер-
вого типа по Розебому обычно реализуются в 
тех системах, в которых и в жидких, и в твер-
дых состояниях термодинамические функ-
ции смешиваемости составляют очень низкие 
или очень близкие друг к другу значения. На 
рис. 1б и 1в представлены зависимости ми-

кротвердости и плотности от состава систе-
мы PbGa2S4–SmGa2S4. 

Рентгенофазовый анализ образцов, ото-
жженных при 1000 К после термической об-
работки показывает, что все образцы системы 
PbGa2S4–SmGa2S4, в том числе исходные сулфи-
ды, имеют дифракционные линии, характер-
ные орторомбической сингонии (рис. 2). Это 
показывает, что при 1000 К в системе PbGa2S4–
SmGa2S4 между исходными соединениями 
образуются непрерывные ряды твердых рас-
творов ромбической структуры. На рис. 3 при-
ведена зависимость параметров решетки от 
состава, которая имеет линейный характер, 
что действительно подтверждает образова-
ние непрерывного ряда твердых растворов. 
На основе компьютерной программы TOPAZ-3 
определены структурный тип и вычислены па-
раметры элементарных ячеек твердых раство-
ров Pb1-xSmxGa2S4, которые приведены в табл. 1.  

В табл. 1 приведены также результаты ДТА 
после термической обработки при 1000 К. На 
основании этих результатов, а также учиты-

Рис. 1. Т-х фазовая диаграмма системы PbGa2S4‒SmGa2S4 (а), зависимость микротвердости (б) и плотно-
сти (в) от состава
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Рис. 2. Дифрактограммы сплавов системы PbGa2S4–SmGa2S4 

Рис. 3. Зависимость параметров решетки от состава твердых растворов системы PbGa2S4–SmGa2S4
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вая результаты РФА, построена Т-х фазовая 
диаграмма системы PbGa2S4–SmGa2S4 (рис. 1а).

Таким образом, в жидких и твердых рас-
творах отклонение от идеальности в замеще-
ние свинца самарием очень низкая.

Как видно из рис. 4а, система PbGa2Se4–
SmGa2Se4 является частично квазибинар-
ной. Вследствие инконгруэнтного плавле-
ния SmGa2Se4 в сплавах вблизи этого соеди-

нения квазибинарность системы нарушает-
ся. Поэтому в интервале концентрации 60–
100 мол. % SmGa2Se4 при высокой температу-
ре наблюдается образование трехфазной об-
ласти, однако при низкой температуре обра-
зуются непрерывные ряды твердых раство-
ров типа ЕuGa2S4. В интервале концентрации 
0–40  мол.  % PbGa2Se4 из жидкости первич-
но выпадают кристаллы α-твердых раство-

Таблица 1. Результаты ДТА, РФА, микротвердости и плотности сплавов системы PbGa2S4–SmGa2S4 

Состав,  
мол. %

SmGa2S4

Термич.
эффекты, К

Параметры решетки, Å
Пр. гр. Z Нµ, 

МПа
dпик,  
г/см3a b c

PbGa2S4 1163 20.706 20.380 12.156 Fddd 32 2650 4.94
10 1205, 1225 20.708 20.378 12.164 Fddd 32 2700 4.85
20 1230, 1260 20.712 20.384 12.180 Fddd 32 2750 4.70
40 1320, 1350 20.716 20.420 12.198 Fddd 32 2760 4.56
50 1390, 1410 20.728 20.425 12.218 Fddd 32 2780 4.48
60 1455, 1480 20.732 20.440 12.220 Fddd 32 2790 4.36
80 1575, 1610 20.736 20.460 12.226 Fddd 32 2800 –
90 1666, 1680 20.740 20.462 12.234 Fddd 32 2800 4.30

SmGa2S4 1750 20.745 20.464 12.236 Fddd 32 2800 4.28

Рис. 4. Т-х фазовая диаграмма системы PbGa2Se4–SmGa2Se4 (а), зависимость микротвердости (б) и плот-
ности (в) от состава
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ров. В области же с большей концентрацией 
SmGa2Se4 кристаллизуется соединение SmSe. 
Как результат моновариантной перитекти-
ческой реакции ж + SmSe ↔ α в этой области 
ниже температуры 1200 К должна образовать-
ся трехфазная область ж + SmSe + α. Однако это 
поле экспериментально не зафиксировано из-
за узкого температурного интервала и отме-
чено пунктиром.

Ликвидусу системы PbGa2Se4–SmGa2Se4 со-
ответствуют два поля, отвечающие первичной 
кристаллизации соединения SmSe и α-фазы.

Результаты РФА, зависимости параметров 
решетки от состава (рис. 5), а также измере-
ние микротвердости и плотности (рис. 4б, в) 
согласуются с фазовой диаграммой системы 
PbGa2Se4–SmGa2Se4.

В системе PbGa2Se4–SmGa2Se4 исходные со-
единения и все сплавы имеют аналогичные 
дифракционные картины с небольшим сме-
щением рефлексов. Изменение параметров 
орторомбической решетки твердых растворов 
Pb1–xSmxGa2Se4 в зависимости от состава, а так-
же результаты ДТА сплавов приведены в табл. 2.

4. Заключение
Методами физико-химического анализа 

впервые изучены фазовые равновесия в сис-

темах PbGa2S4–SmGa2S4 и PbGa2Se4–SmGa2Se4 и 
построены их диаграммы состояния. Установ-
лено, что система PbGa2S4–SmGa2S4 является 
квазибинарной и характеризуется образова-
нием непрерывного ряда твердых растворов. 
Система PbGa2Se4–SmGa2Se4 является частич-
но квазибинарной, при низкой температуре 
(в субсолидусе) исходные компоненты полно-
стью растворяются друг в друге. Установлено, 
что твердые растворы кристаллизуются в ор-
торомбической сингонии и относятся к струк-
турному типу EuGa2S4.
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Рис. 5. Зависимость параметров решетки от состава твердых растворов системы PbGa2Se4 – SmGa2Se4
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