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Аннотация
Цель статьи: Синтезированы палладий- и медьсодержащие нанокомпозиты с различной емкостью по металличе-
скому компоненту, химически осажденному в макропористую сульфокатионообменную матрицу.
Экспериментальная часть: Выявлено, что в сверхпредельном режиме электрохимической поляризации восстанов-
ление растворенного в воде кислорода на палладийсодержащем нанокомпозите протекает по каталитическому 
механизму. При этом, помимо целевого процесса катодного восстановления О2, происходит образование адсорби-
рованного водорода, вступающего в каталитическую реакцию с кислородом, что способствует дополнительному 
снижению концентрации О2. Найдено, что в сверхпредельном режиме поляризации Рd-содержащего нанокомпозита 
концентрация кислорода снижается значительнее по сравнению с предельным режимом.
Выводы: Удельное количество поглощенного кислорода возрастает с понижением содержания осажденного метал-
ла, что связано с высокой способностью к адсорбции атомарного водорода слабоассоциированными наночастица-
ми палладия. При использовании меди вместо палладия эффективность деоксигенации воды снижается.
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1. Введение
Современная физическая химия проявляет 

особое внимание к системам, содержащим ча-
стицы нанометрового размера, поскольку такие 
системы обладают огромной удельной поверх-
ностью и, как следствие, высокой избыточной 
энергией, способствующей интенсификации 
промышленно значимых химических или элек-
трохимических процессов. Однако однознач-
ная связь между скоростью реакций, размером 
и природой частиц до сих пор не установлена 
вследствие одновременного проявления цело-
го ряда специфических адсорбционных, струк-
турных, перколяционных эффектов.

Особое внимание уделяется нанокомпозит-
ным материалам «металл-ионообменник», пре-
жде всего, из-за их более высокой стабильности 
по сравнению с одиночными наночастицами [1-
5], а также уникальных физических, химических, 
биологических свойств, которые возникают бла-
годаря наличию в композиционном материале 
частиц размером менее ста нанометров. Внедре-
ние металла в поры и на поверхности матрицы 
ионообменника, который является продуктом 
полимеризации или поликонденсации непре-
дельных органических соединений, обеспечи-
вается присутствием кислoтных (-SO3H, -COOH, 
-OH, -PO3H2 и др.) или основных (-N(CH3)3, -NH3, 
=NH2 и др.) функциональных групп в его струк-
туре. Металл может быть внедрен в ионообмен-
ник в виде металлических частиц (как прави-
ло, нанометрового размера) или входить в его 
матрицу в составе оксидов и малорастворимых 
гидроксидов. Образующиеся гибридные нано-
структуры включают в себя реакционные про-
странства и частицы составных компонентов 
размером порядка нанометров. Варьируя ма-
териал полимерной матрицы и метод синтеза, 
можно получить нанокомпозит с необходимы-
ми контролируемыми структурными свойства-
ми. Объем пор матрицы задает ограничения на 
размеры агломератов наночастиц, в то же вре-
мя пористое пространство зависит от степени 
сшивки полимера. В каждой отдельной поре, в 
принципе, могут находиться несколько наноча-
стиц. Минимальный критический размер заро-
дыша зависит от начальной концентрации ато-
мов в поре и сниженного из-за эффекта воздей-
ствия стенок пор потенциального энергетиче-
ского барьера нуклеации [6].

Размер частиц оказывает существенное вли-
яние на физико-химические особенности нано-
композитов. Увеличение дисперсности содержа-

щихся в них частиц не только приводит к зна-
чительному росту удельной поверхности, но и 
обеспечивает размерный эффект первого рода, 
который заключается в зависимости химиче-
ской и каталитической активности от размеров 
кластера наночастиц. Кроме того, зачастую воз-
никает энергетическая зависимость от размеров 
наночастиц, дополнительно реализуются струк-
турные изменения на поверхности нанокласте-
ров (изменение кривизны, выход на поверхность 
кристаллографических дефектов) [7–10]. Неод-
нозначность роли размерного эффекта в кине-
тике электрохимических процессов выявлена, к 
примеру, в работе [11] при исследовании реак-
ции электровосстановления кислорода на элек-
тродах с осажденной на углерод платиной. Ока-
залось, что в метанолсодержащем электролите 
массовая активность катализатора непрерывно 
увеличивалась при уменьшении размеров нано-
частиц платины с 4.6 до 2.3 нм. Однако в элек-
тролите без метанола активность тех же катали-
заторов не зависела от размера наночастиц ме-
талла при их диаметре менее 3.5 нм.

Размер частиц является термодинамической 
переменной, которая наряду с другими параме-
трами системы характеризует ее состояние [12]. 
Наноструктуры имеют поверхностную энергию 
выше на порядки, чем у средне- и низкодисперс-
ных фаз. При уменьшении размера частиц соот-
ношение долей поверхностных и внутрифазо-
вых областей возрастает. Если для бесконечно 
протяженных фаз внутренняя энергия, энтро-
пия или объем при постоянных значениях дав-
ления и температуры линейно зависят от массы 
и количества вещества, то для площади поверх-
ности дисперсных частиц S такая зависимость 
будет степенной:

S n2/3ª ,		  (1)

где n – число молей вещества. Как следствие, ни 
одна из термодинамических функций уже не 
зависит линейно от массы. При этом химические 
параметры частиц различного размера сущест-
венно отличаются от удельных значений. Если 
кристалл имеет объем V и поверхность S, постро-
енную из различных граней с площадями Si и 
ребрами длиной lk, тогда энергия Гиббса:

G g V S lV
i i k k= + +Â Âs t ,	 (2)

где gV – удельное, на единицу объема, значение 
G, σi – удельное на 1 см2 значение G для i-граней, 
τk – такая же величина на единицу длины k-х 
ребер.
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В частном случае сферической наночасти-
цы радиусом r избыточный химический потен-
циал по отношению к потенциалу континуу-
ма определяется уравнением Гиббса–Томсона 
(Кельвина):

Dm m m
s

r r
mV g
r

= - =• ,		  (3)

где σ – обратимая работа образования единицы 
поверхности (для жидкости это – поверхностное 
натяжение); Vm – мольный объем вещества, g – 
геометрический фактор, для сферических ча-
стиц, равный 2.

Вторичный размерный эффект возникает 
при определенном размере наночастиц, когда 
происходит флуктуационное перераспределе-
ние зарядов между ансамблями частиц, что мо-
жет привести к увеличению каталитической ак-
тивности материала [13]. Однако не при любых 
условиях снижение размера частиц влечет за со-
бой такой рост. В [14] показан экстремальный ха-
рактер зависимости каталитической активности 
платины на углеродной подложке от размера на-
ночастиц в реакции восстановления кислорода. 
Для объяснения этого явления была сформули-
рована концепция поверхностных эффектов, ко-
торая предполагает, что при уменьшении разме-
ра частиц поверхностная энергия увеличивается, 
и происходят изменения в электронной структу-
ре поверхности. Это может привести к измене-
нию активности каталитической поверхности, 
например, к изменению донорно-акцепторных 
свойств поверхности и электронной структу-
ры металла на поверхности. Однако размерные 
эффекты могут быть cкомпенсированы други-
ми факторами, такими как изменение формы 
и структуры частиц, состава исходных матери-
алов, степени дисперсности частиц на подлож-
ке и прочих. Кроме того, каталитическая актив-
ность может меняться при изменении условий 
протекания реакции. Очевидно, что изучение 
размерных эффектов и других факторов, влияю-
щих на каталитическую активность наночастиц, 
является важным для разработки эффективных 
катализаторов различных реакций.

Для нанокомпозитов характерно проявле-
ние перколяционных эффектов, то есть скачко-
образного изменения физико-химической ха-
рактеристики при линейном изменении коли-
чества одного из составных компонентов. Так, 
в [15] выявлен рост скорости массопереноса на 
комплексном металл-полимере, легированным 
золотом, на пороге перколяции электронной 

проводимости из-за уменьшения межчастич-
ного расстояния. После 5 циклов химическо-
го осаждения наночастиц серебра на мембра-
ну МФ-4СК омическое сопротивление модифи-
цированной мембраны резко падает [16]. В слу-
чае сульфокатионообменника КУ-23 скорость 
восстановления кислорода резко возрастает 
при содержании меди ~ 5 мэкв/см3 [17]. Авто-
ры объясняют скачок переходом от единичных 
наночастиц к их единой системе с обобществ-
ленными электронами. Ионная проводимость 
аналогично подвержена перколяционным эф-
фектам [18], что выражается в росте сорбции 
подвижных ионов ввиду большой дефектно-
сти поверхности.

Наиболее распространенной и значимой в 
прикладном аспекте является реакция электро-
восстановления кислорода, а потому она доста-
точно активно исследуется. Восстановление кис-
лорода находит широкое применение в топлив-
ных элементах [19] и электрокатализе [20]. Кис-
лород выступает в качестве деполяризатора при 
коррозии металлов [21]. Глубокое обескислоро-
живание воды требуется и для нужд микроэлек-
троники, где ультрачистая вода используется на 
этапе промывки кремниевых пластин при про-
изводстве интегральных схем. Для предотвра-
щения образования оксидного слоя на поверх-
ности пластины уровень содержания О2 не дол-
жен превышать 1 мкг/л [22]. Таким образом, ре-
акция восстановления кислорода, несомненно, 
играет огромную роль во многих промышленно 
значимых процессах. Проблема организации пи-
тьевого водоснабжения населения крупных го-
родов обусловлена, в том числе, наличием в воде 
растворенного кислорода. Будучи сильным кор-
розионным агентом и взаимодействуя с матери-
алами трубопроводов, О2 вызывает изменение 
их состава и структуры, что приводит к ухудше-
нию качества подаваемой населению питьевой 
воды и нарушению гигиенических нормативов, 
изложенных в СанПиН [23, 24]. Следует отметить, 
что в настоящее время официальные данные 
Федеральной службы по надзору в сфере защи-
ты прав потребителей и благополучия человека 
свидетельствуют об улучшении качества питье-
вой воды водопроводов [25, 26]. На территории 
Российской Федерации наблюдается снижение 
доли проб воды, не соответствующих гигиени-
ческим нормативам по санитарно-химическим 
показателям, с 17.2 до 15.5 %, по микробиоло-
гическим – с 3.6 до 1.9 % в 2022 г. по сравнению 
с 2013 г. По микробиологическим показателям 
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удельный вес проб, не соответствующих требо-
ваниям, установился на уровне 2021 г. и соста-
вил 0.9 %. Однако эта информация основана на 
результатах исследования воды перед поступле-
нием в распределительную сеть, что не исклю-
чает снижения ее качества в результате прохо-
ждения по трубопроводам.

Наиболее перспективными для глубокой де-
оксигенации воды представляются гибридные 
каталитические нанокомпозитные системы, в 
которых восстановление кислорода организова-
но путем как химического взаимодействия рас-
творенного О2 с газообразным водородом [3, 27, 
28], так и его электровосстановления, когда оба 
процесса протекают на наночастицах металлов, 
стабилизированных в ионообменной матрице 
[29-31]. Очевидно, что в зависимости от при-
роды металлического и ионообменного компо-
нентов нанокомпозита, а также от условий элек-
трохимической поляризации вклады в общий 
процесс каждой из парциальных реакций будут 
различными. Для сопоставления с медьсодержа-
щим нанокомпозитом исследовали палладий-
содержащий, на котором, как известно, наилуч-
шим образом протекает каталитическая реакция 
между адсорбированным водородом и кислоро-
дом. При этом недостаточно решенными оста-
ются вопросы как о механизме редокс-сорбции 
молекулярного кислорода из воды в сверхпре-
дельных режимах поляризации, так и о вкладах 
парциальных стадий процесса.

Цель работы: изучение процесса окисли-
тельно-восстановительной сорбции кислорода 
на палладий- и более доступных медьсодержа-
щих ионообменных нанокомпозитах в режиме 
сверхпредельной поляризации.

2. Экспериментальная часть
Для синтеза нанокомпозитов (НК) использо-

вали макропористую сильнокислотную ионооб-
менную матрицу КУ-23 15/100 (табл. 1). Для нее 
характерно наличие сульфогрупп на поверхно-
сти и в объеме полимера и преобладание ма-
кропор с достаточно широким распределени-
ем по размеру.

Полимерная цепь ионообменной матрицы 
имеет следующий вид:

где n, m, p – число составных звеньев в составе 
полимера. Выбранная ионообменная пористая 
матрица обладает достаточной механической 
прочностью, устойчива к кислотно-основным 
воздействиям, не подвергается термическому 
разложению в достаточно широком температур-
ном интервале.

Химическому осаждению металла в ионо-
обменную матрицу предшествовала ее предва-
рительная подготовка [33]. Ионообменник по-
мещали на сутки в 2 М NaCl, затем проводили 
его кислотно-основное кондиционирование, 
заключающееся в последовательном динами-
ческом пропускании через колонну для синте-
за растворов HCl и NaOH в объемном соотноше-
нии раствор : ионообменник 3:1 с уменьшением 
концентрации (1.0 М; 0.5 М; 0.25 М). После каж-
дого пропускания кислоты/щелочи ионообмен-
ник отмывали большим количеством дистилли-
рованной воды. Иономером АНИОН-4100 (ООО 
НПП «Инфраспак-Аналит», Россия) регистриро-
вали выравнивание pH раствора на выходе из ко-
лонки и рН дистиллированной воды.

Синтез нанокомпозита состоял из двух ста-
дий: насыщения матрицы ионами металла и 
последующего их химического восстановле-
ния. Для насыщения катионообменника иона-
ми меди (II) через насыпной слой ионообмен-
ника пропускали 6 % раствор сульфата меди (II) 
в воде из расчета 10 объемов раствора на 1 объ-
ем смолы с объемной скоростью 5·10–4 м3/ч. На 
данном этапе происходил ионный обмен кати-
онов металла и водорода ионогенных центров 
сульфогрупп ионообменника. Затем необменно 
сорбированный электролит вымывали из кати-
онообменника обескислороженной аргоном ди-
стиллированной водой. Химическое восстанов-
ление металла проводили 0.35 М раствором ди-
тионита натрия Na2S2O4 в 0.63М NaOH в объем-
ной пропорции раствор восстановителя/ионо-

Таблица 1. Основные физико-химические 
характеристики ионообменника [32]

Катионообменник КУ-23 15/100

Полимерная основа Сшитый 
 полистирол

Ионообменная (редокс) емкость 
гранульного объема, мэкв/см3 1.25

Характерный диаметр пор, нм 10–100

Удельный объем пор, см3/г 0.40–0.60

Диаметр гранул, мм 0.40–1.25
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обменник, равной 10:1. Затем отмывали медь-
содержащий нанокомпозит от восстановителя, 
нейтрализуя щелочь солянокислым раствором с 
последующим пропусканием обескислорожен-
ной дистиллированной воды. При необходимо-
сти для перевода нанокомпозита в Na+-форму 
через колонну для синтеза пропускали раствор 
сульфата натрия и отмывали дистиллированной 
водой, обескислороженной с помощью часового 
барботирования ее аргоном. Циклы ионообмен-
ного насыщения и восстановления осажденно-
го в ионообменную матрицу металла повторя-
ли несколько раз до получения нанокомпозита 
с необходимой емкостью по металлу.

В случае палладийсодержащих нанокомпо-
зитов раствором насыщения являлся 6%-ный 
раствор хлорида палладия (II), который пропу-
скали снизу вверх при четных циклах осажде-
ния палладия и сверху вниз при нечетных ци-
клах со скорость 5 м/ч. Количество расходуе-
мого раствора находилось в соотношении 5:1 к 
объему смолы, время пропускания 30-40 минут. 
После отмывки обескислороженной водой про-
пускался раствор восстановителя – боргидрида 
натрия в щелочной среде со скорость 5 м/ч в те-
чение часа. Отмывка дистиллированной водой 
проводилась сверху вниз со скоростью 10 м/ч. 
Количество объема пропускаемой воды к объ-
ему смолы 10:1, время пропускания 1 час. Син-
тез палладийсодержащего композита сопрово-
ждался бурным выделением газа.

Для определения редокс-емкости НК по меди 
воспользовались титриметрическим методом, 
для чего 1 см3 исследуемого образца вносили в 
термостойкий стакан, находящийся на водяной 
бане, последовательно добавляли в него 10%-ную 
азотную кислоту порциями по 10 мл. Образую-
щиеся при растворении катионы меди переходи-
ли в раствор, который затем переносили в мер-
ную колбу до тех пор, пока весь металл компо-
зита не растворится, что фиксировали визуально 
по отсутствию изменения цвета азотнокислого 
раствора. Получившийся раствор, содержащий 
ионы меди, доводили до метки в мерной колбе и 
определяли редокс-емкость. Емкость по металлу 
определяли путем перевода всего металлическо-
го образца в раствор объемом 100 см3 с помощью 
азотной кислоты. Затем из полученного раство-
ра отбирали аликвоту 10 см3, которая дополни-
тельно разбавлялась 20 см3 дистиллированной 
водой и обрабатывалась аммиачным буферным 
раствором (20 г/л NH4Cl + 100 см3 NH3) до получе-
ния щелочной среды и приобретения раствором 

синей окраски. Концентрация ионов меди опре-
делялась комплексонометрическим титровани-
ем с использованием 0.1 моль-экв/см3 трилона Б 
и мурексида в качестве индикатора до измене-
ния цвета раствора на малиновый.

Титриметрическое определение палладия в 
растворе начинали с приготовления аналита – 
стандартных растворов палладия и ЭДТА, ти-
транта – стандартного раствора цинка, индика-
тора раствора «эриохромового черного Т». При-
готовление стандартного раствора палладия: 
1.5 г чистого палладия растворяли в нескольких 
миллилитрах царской водки. Оксиды азота уда-
ляли выпариванием с соляной кислотой. Сухой 
остаток растворяли в 0.2 М соляной кислоте и 
доводили этим же раствором до объема 500 мл. 
Приготовление стандартного раствора цинка: 
высушивали 1.8 г оксида цинка при 100 °С в те-
чение 2 часов, растворяли в минимальном объ-
еме азотной кислоты (1:1) и доводили до объе-
ма 1 л. Приготовление стандартного раствора 
ЭДТА: 5.5 г натриевой соли ЭДТА растворяли в 
литре дистиллированной воды. Титр раствора 
устанавливали комплексонометрическим ти-
трованием со стандартным раствором цинка и 
«эриохромовым черным Т» в качестве индика-
тора. Приготовление раствора индикатора: 0.1 г 
«эриохромового черного Т» растворяли в 50 мл 
дистиллированной воды, в которую добавляли 
несколько капель 1 М раствора едкого кали. Ход 
анализа: к стандартному раствору хлорида пал-
ладия (II) добавляли небольшой избыток стан-
дартного раствора ЭДТА. Добавляя 0.1 М раствор 
едкого кали, устанавливали pH 10 ±1. Прилива-
ли 5 капель раствора «эриохромового черного 
Т» и титровали стандартным раствором цинка 
до наступления точки эквивалентности, кото-
рую определяли по изменению окраски от си-
ней или зеленой до ярко-розовой.

Окислительно-восстановительную емкость 
осажденного металла eMe0 , моль-экв/см3 в образ-
це вычисляли по формуле: 

0
T T p-pa

Me ,
C V V

V V
e =

обр ал

		  (4)

где Ст – концентрация титранта, моль-экв/см3; 
Vт, Vр-ра, Vобр, Vал – объемы соответственно ти-
транта, общего раствора, образца гранул НК, 
взятого на анализ и аликвоты, взятой для титро-
вания. Все объемы взяты в одинаковых едини-
цах, например, см3.

Для выбора значения поляризующего тока 
использовали подход, изложенный в [29]. В его 
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основе находятся представления о внешнедиф-
фузионном переносе кислорода и плотности 
предельного диффузионного тока по кислоро-
ду. Сила максимально допустимого тока на весь 
зернистый слой, т. е. предельного тока Ilim, равна:

I
I

Al
Al

lim

com
=

+1
,		  (5)

где Icom – ток, необходимый для восстановления 
всего поступающего в колонну кислорода:

I nFSuccom = 0 ,		  (6)

S – площадь сечения зернистого слоя (1.2 см); 
u – скорость протока (0.23 см/с); l – высота зер-
нистого слоя (1 см), С0 – концентрация кислоро-
да в воде на входе в зернистый слой НК (7.7 мг/л).

Значение константы А найдем по формуле:

A
i

nFuR c
=

3 0

0 0

c lim( )
 ,		  (7)

где χ – коэффициент наполнения колонки со-
рбентом, ilim(0) – плотность предельного диффу-
зионного тока на поверхности гранулы НК, R0 – 
радиус гранулы НК. Вычисленные параметры 
представлены в табл. 2.

Таблица 2. Расчетные параметры эксперимента

ilim(0), А/м2 [29] А, см–1 Icom, мА Ilim, мА

1.03 0.24 25.6 5.0

Гранулированные нанокомпозитные матери-
алы загружались в катодное отделение сорбци-
онно-мембранной электрохимической ячейки, 
схема которой представлена на рис. 1. Трехка-
мерный электролизер содержит катодное отде-
ление, разделенное от двух анодных мембранами 
МК-40. Насыпной катод представлял собой тон-
кую медную проволоку, окруженную слоем НК. 
Аноды были выполнены из платиновой проволо-
ки, скрученной в спираль. В анодные камеры за-
гружали соответствующий ионообменник, не со-
держащий внутри частиц осажденного металла.

Для обеспечения переноса протонов из ано-
да к катоду использовали катионообменную 
мембрану МК-40. Высота тонкого зернистого 
слоя нанокомпозита равнялась l = 1 см, а пло-
щадь сечения слоя нанокомпозита составляла 
S = 1.2 cм2. Вода протекала через электролизер 
со скоростью u = 0.23 cм/с, в качестве внешнего 
источника тока использовался АКИП-1111 (Рос-
сия). Для измерения концентрации окислителя 
использовался кислородомер АКПМ-01 (ООО 
«Альфа-Бассенс», Россия), защищенный от внеш-

него электромагнитного излучения металличе-
ским сетчатым экраном. Входную концентрацию 
кислорода поддерживали постоянной путем не-
прерывной подачи атмосферного воздуха в ем-
кость с дистиллированной водой перед входом 
в реактор. После тонкого зернистого слоя нано-
композита был установлен фильтр, который вы-
полнял функции сорбции и мембранной филь-
трации. Значение водородного показателя воды 
на выходе из электролизера измеряли с помо-
щью иономера АНИОН-4100 производства ООО 
НПП «Инфраспак-Аналит», Россия.

3. Результаты и обсуждение
В результате процедур насыщения ионооб-

менника противоионами осаждаемого метал-
ла, последующего восстановления их щелочным 
раствором восстановителя и переведения в ис-
ходную ионную форму получены металл-ионо-
обменные нанокомпозиты с различной емко-
стью по металлическому компоненту. Химиче-
ское осаждение меди в макропористый сульфо-
катионообменник дитионитoм натрия в щелоч-
ной среде происходит по схеме:

2R-SO H +Cu (R-SO ) Cu +2H3
- + 2+

3
-
2

2+ +� 	 (8)

( )R-SO Cu Na S O NaOH

R SO Na Cu Na SO H
3
-
2

2
2 2 4

3 2
0

2 3

4

2 2

+

- +

+ + Æ

Æ -È
Î

˘
˚ ◊ + + 22O

	 (9)

Рис. 1. Схема трехкамерного сорбционно-мем-
бранного электролизера для обескислороживания 
проточной воды. K – токоподвод из медной прово-
локи, Cu R-SO3

0 ◊ -  – насыпной слой нанокомпозита; 
A – аноды из платиновой проволоки, R-SO3

-  – на-
сыпные слои сульфокатионообменника; 
MК‑40 (H+) – катионообменная мембрана
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(R -SO Na ) Cu + 2H

(R -SO H ) Cu + 2Na  
3
- +

2
0 +

3
- +

2
0 +

Æ

Æ
	 (10)

Химическое осаждение палладия в сульфока-
тионообменник бoргидридoм натрия в щелоч-
ной среде происходит по схеме:

2R-SO H +PdCl R-SO Pd +2HCl3
- +

3
-

2 2

2Æ ( ) + 	 (11)

( )

( )

R SO Pd NaBH H O

R SO Na Pd B OH H

- + + Æ

Æ -È
Î

˘
˚ ◊ + +

- +

- +
3 2

2
4 2

3 2
0

3 2

2 6

2 7
	 (12)

Значения емкости по металлу полученных 
нанокомпозитов приведены в табл. 3.

Для поляризации в сверхпредельном режиме 
был выбран ток I = 50 мА, т. е. превышение пре-
дельного тока составило I/Ilim = 10. Ток включали на 
4 часа после того, как происходило установление 
концентрации кислорода в течение часа, и после 
5 часов эксперимента ток отключали. Измерения 
концентрации кислорода продолжали еще в те-
чение 5 часов. В течение этого времени концент-
рация кислорода в воде на выходе из зернистого 
слоя НК достигала исходного значения на входе.

Расчет количества удаленного из воды рас-
творенного кислорода (моль) проведен по раз-
нице количества кислорода, растворенного в 
воде, на входе в зернистый слой нанокомпози-
та и на выходе:

2 0
2

(O ) ( )
M (O )r

u t
Q c c

◊= - сред ,	 (13)

где c0 – концентрация растворенного в воде 
кислорода на входе (мг/л), cсред – среднее 

значение остаточной (выходной) концентрации 
в трех дублирующих экспериментах, t – время 
эксперимента, u – объемный расход воды 
(0.8 л/ч), Мr(O2)–молярная масса кислорода.

Результаты расчетов представлены в табл. 3. 
Видно, что в ходе деоксигенации воды в выбран-
ном сверхпредельном режиме электрохимиче-
ской поляризации выделяется значительное 
количество газа. Растворенный в воде кисло-
род удаляется различными путями: 1) прямым 
электровосстановлением, 2) каталитическим 
взаимодействием с электрохимически получен-
ным адсорбированным атомарным водородом 
или химическим окислением электрохимически 
восстановленных наночастиц активного метал-
ла из оксидов и 3) физическим удалением выде-
лившимся водородом. При этом все эти стадии 
имеют место под действием катодной поляри-
зации. После отключения тока происходит про-
цесс постепенного выравнивания концентрации 
кислорода до исходного уровня за счет конечно-
го времени смешения проточной воды в изме-
рительном сосуде.

Кислород может электрохимически взаимо-
действовать с ионами водорода, что приводит 
к протеканию основной реакции с образовани-
ем воды. При pH < 7, что справедливо для водо-
родной ионной формы нанокомпозита, реакция 
восстановления кислорода может быть представ-
лена в виде [34]:

O H H O22 4 4 2+ + Æ+ -e  (E0 = 1.23 В),	 (14)

а в нейтральной и щелочной среде – согласно 
уравнению:

Таблица 3. Емкость по металлу, объем выделившегося газа и количество удаленного из воды 
кислорода для нанокомпозитов Pd0·КУ-23(H+) и Cu0·КУ-23(H+). Условия эксперимента: высота 
зернистого слоя l = 1 см, скорость протока воды u = 0.23 cм/с, I = 50 мА, I/Ilim = 10

Нанокомпозиты, 
число циклов 

осаждения 
металла

eMr0 ,  
ммоль-экв/см3 

(ммоль/см3)
V(H2,O2), см3

Q (H2,O2) 
в газовой 

смеси, 
ммоль

∑Q(O2), 
удаленно-

го из 
воды, 
ммоль

Q(O2), 
удаленного 
под током 

(этап 2), 
ммоль

Q(O2), 
удаленного 

без тока 
(этап 3), 
ммоль

Pd0·КУ-23 (H+), 1 0.76±0.23 
(0.38±0.12) 22.3±1.0 0.91 0.72 0.49 0.23

Pd0·КУ-23 (H+), 3 3.22±0.23 
(1.61±0.12) 27.7±2.0 1.13 0.78 0.50 0.28

Pd0·КУ-23 (H+), 5 5.02±0.14 
(2.51±0.07) 30.0±2.0 1.23 0.74 0.44 0.30

Cu0·КУ-23 (H+), 10 9.68±0.07 
(4.84±0.04) 58.3±3.0 2.39 0.79 0.44 0.35

КУ-23 (H+), 0 0 45.0±1.2 1.84 0.44 0.41 0.03
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O H O OH22 2 4 4+ + Æ- -e  (E0 = 0.40 В).	 (15)

В ходе сверхпредельной поляризации на по-
верхности палладия становится возможным об-
разование адсорбированного водорода, за счет 
каталитической активности которого осуществ-
ляется реакция восстановления кислорода с 
образованием воды [27]:

2H 2 2HIe+ -+ ææÆ адс 		  (16)

Pd

2 2
O 4 H 2H O+ ææÆадс

		  (17)

На медьсодержащих нанокомпозитах за счет 
взаимодействия с кислородом возможно обра-
зование оксидов меди: Cu2O и CuO. Химическая 
активность нанокомпозита сохраняется за счет 
электровосстановления меди из оксидов [29]:

Здесь H
+

, Cu
+

, Cu
2+

 – противоионы.
Возможно физическое вытеснение раство-

ренного в воде кислорода инертным газом, в ка-
честве которого может выступать выделяющий-
ся молекулярный водород.

Эксперимент можно разделить на 3 этапа. 
Первый длительностью 1 ч – установление ста-
ционарности, второй (2–5 ч) – время электрохи-

мических реакций и третий (5–10 ч) – каталити-
ческое для палладийсодержащего НК, либо хи-
мическое для медьсодержащего НК восстановле-
ние кислорода. Из рис. 2 видно снижение отно-
сительной концентрации кислорода до ~ 0.3 на 
Pd0·КУ-23 (H+), что связано с высокой способно-
стью палладия к наводороживанию и активной 
каталитической реакцией между кислородом и 
молекулярным водородом на поверхности Pd. В 
процессе поляризации нанокомпозита Pd0·КУ-23 
(H+) значение pH воды находилось в диапазоне 
6.4 ч 7.0. По сравнению с палладиевыми нано-
композитами для Cu0·КУ-23 (H+) концентрация 
С/С0 растворенного в воде кислорода снижает-
ся ~ до 0.4 (рис. 3). В ходе эксперимента проис-
ходит рост pH от 6.5 до 6.7.

Выходы по току для выделения молекуляр-
ного водорода и эффективность удаления кисло-
рода приведены в табл. 4. Они показывают соот-
ношение долей электрохимических процессов. 
Введен безразмерный коэффициент эффектив-
ности нанокомпозитов для деоксигенации воды:

f
Q O
VHK

deox
Me

( )
= Â 2

0ne
,		  (19)

в котором количество удаленного кислорода 
(ммоль) нормировано на стехиометрический 
коэффициент n металла (Pd, Cu) в реакции с 
кислородом (2), емкость по металлу (ммоль/см3) 
и объем зернистого слоя нанокомпозита VHK. 
Коэффициент эффективности деоксигенации 

Рис. 2. Относительная концентрация С/C0 растворенного кислорода (а) и pH воды (б) на выходе из тонкого 
зернистого слоя нанокомпозита Pd0·КУ-23(H+) в сверхпредельном режиме поляризации. Условия экспери-
мента: высота зернистого слоя l = 1 cм, 1 цикл осаждения металла. С0 – исходная концентрация кислорода 
(7.9 мг/л), pH0 – водородный показатель исходной воды. Ионные формы в катодной и анодной камерах 
КУ-23(H+), I = 50 мА, I/Ilim = 10, предельный ток Ilim =5.0 мА, tвкл, tоткл – время включения и отключения тока
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воды существенно снижается с ростом числа 
посадок осажденного палладия (табл. 4).

Таким образом, увеличение количества пал-
ладия, внедренного в НК, не повышает эффек-
тивность редокс-сорбционного процесса. Растет 
лишь количество выделившегося газообразного 

водорода. Удельное количество восстановленно-
го кислорода при этом планомерно снижается с 
ростом емкости по палладию. По соответствую-
щим зависимостям на рис. 4 можно сделать вы-
вод, что для интенсификации процесса деокси-
генации воды не требуется повышать количеств 
металла в нанокомпозите. Напротив, увеличе-
ние удельного содержания восстановленного 
кислорода будет происходить при малом количе-
стве наночастиц металла, которые не объедине-
ны в агрегаты, а потому их поверхность характе-
ризуются наибольшим доступом для адсорбции.

4. Выводы
Синтезированы палладий- и медьсодержа-

щие нанокомпозиты с различной емкостью по 
металлическому компоненту, осажденному в ма-
кропористую сульфокатионообменную матрицу.

В сверхпредельном режиме поляризации на 
паладийсодержащих нанокомпозитах концент-

Рис. 3. Относительная концентрация С/C0 раство-
ренного кислорода в воде на выходе из тонкого 
зернистого слоя нанокомпозитов. Условия экспе-
римента: высота зернистого слоя l = 1 cм, скорость 
протока воды u = 0.23 cм/с, I = 50 мА, I/Ilim = 10, 
Ilim =5.0 мА. С0 – исходная концентрация кислорода 
(7.4 – 8.0 мг/л), tвкл, tоткл – время включения и отклю-
чения тока. Кривые: 1 – КУ-23 (H+); 2 – Pd0·КУ-23 
(H+), 1 цикл осаждения; 3 – Pd0·КУ-23 (H+), 3 цикла 
осаждения; 4 – Pd0·КУ-23 (H+), 5 циклов осаждения; 
5 – Cu0·КУ-23 (H+), 10 циклов осаждения

Таблица 4. Выход по току по кислороду и 
водороду и коэффициент эффективности 
нанокомпозитов для деоксигенации воды. 
Сила поляризующего тока I = 50 мА, I/Ilim = 10

Нанокомпозиты, 
число циклов 

осаждения металла
hT(H2), %

hT(O2), 
% fdeox, %

Pd0·КУ-23 (H+), 1 58.0 42.0 78.9
Pd0·КУ-23 (H+), 3 63.0 37.0 20.2
Pd0·КУ-23 (H+), 5 67.7 32.3 12.3

Cu0·КУ-23 (H+), 10 73.0 27.0 6.8
КУ-23 (H+), 0 70.0 30.5 –

Рис. 4. Гистограммы распределения количества удаленного кислорода ∑Q(O2) (а) и коэффициента эф-
фективности нанокомпозитов для деоксигенации воды fdeox от емкости по металлу (б): 1 – КУ-23(H+), 
2–4 - Pd0·КУ-23(H+); 5 – Cu0·КУ-23(H+). Условия эксперимента: высота зернистого слоя l = 1 см, 1, 3, 5 и 
10 циклов осаждения металла, скорость протока воды u = 0.23 cм/с, сила поляризующего тока I = 50 мА, 
I/Ilim = 10, Ilim = 5 мА
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рация кислорода, растворенного в проходящей 
через зернистый слой воде, снижается значи-
тельнее по сравнению с предельным режимом. 
Помимо электровосстановления кислорода про-
исходит образование адсорбированного водо-
рода, вступающего в каталитическую реакцию 
с растворенным кислородом, а также физиче-
ское вытеснение кислорода газообразным водо-
родом, что приводит к дополнительному сниже-
нию концентрации кислорода.

Удельное количество поглощенного кисло-
рода возрастает при снижении содержания оса-
жденного металла, что связано с уменьшением 
размера агрегатов наночастиц. С некоторым 
снижением эффективности возможно исполь-
зование меди вместо палладия.
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