
592

	 ISSN 1606-867Х (Print)
	 ISSN 2687-0711 (Online)

Конденсированные среды и межфазные границы
https://journals.vsu.ru/kcmf/

Оригинальные статьи
Научная статья
УДК 544.653.3
Научная специальность ВАК – 1.4.6. Электрохимия
https://doi.org/10.17308/kcmf.2025.27/13297

Моделирование нестационарного электрохимического процесса 
на шероховатых электродах в условиях смешанного  
транспортно-кинетического контроля 

Ф. А. Вдовенков, А. Н. Колосов, Г. А. Кузьменко, О. А. Козадеров * 
ФГБОУ ВО «Воронежский государственный университет»,  
Университетская пл., 1, Воронеж 394018, Российская Федерация

Аннотация
Цель статьи: В данной работе устанавливается влияние шероховатости поверхности электрода на скорость неста-
ционарного электрохимического процесса в условиях смешанного транспортно-кинетического контроля. Постро-
ена математическая модель электрохимического процесса, протекающего на электроде с шероховатой поверхностью 
и характеризующегося различным соотношением константы скорости стадии переноса заряда и коэффициента 
нестационарной объемной диффузии.
Экспериментальная часть: С применением численного метода конечно-элементного моделирования получены 
хроноамперограммы нестационарного электрохимического процесса в условиях смешанного транспортно-кине-
тического контроля на электродах с различными профилями поверхностей, заданных гармоническими и фрак-
тальными функциями. Рассчитаны транзиенты функции шероховатости и определены границы переходной обла-
сти, в пределах которой она изменяется от значения, равного фактору шероховатости поверхности, до единицы. 
Найдено, что форма хроноамперограммы сложным образом зависит как от геометрических характеристик шеро-
ховатой поверхности, так и от соотношения диффузионно-кинетических параметров процесса. При относительно 
малых временах скорость брутто-процесса равна скорости переноса заряда при данном потенциале и пропорци-
ональна фактору шероховатости. При относительно больших временах хроноамперограмма переходит в кривую 
спада тока диффузионно-контролируемого процесса, при этом влияние шероховатости является уже нелинейным 
и проявляется только при относительно малых временах процесса: в этих условиях толщина диффузионного слоя 
намного меньше размера неровностей, и скорость процесса на шероховатом электроде пропорциональна истинной 
площади поверхности и фактору шероховатости.
Выводы: Положение переходной области зависит от значения константы скорости стадии переноса заряда: в случае 
замедленной кинетической стадии переход проявляется при все больших временах и постепенно уширяется, при 
этом зависит от формы неровности.
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1. Введение 
Морфологическая нерегулярность, или гео-

метрическая неоднородность поверхности элек-
трода - один из важнейших факторов, влияющих 
на кинетику электрохимических процессов. Фор-
ма, размер и распределение неровностей по меж-
фазной границе электрод/раствор имеет как пра-
ктическое, так и фундаментальное значение. На-
пример, в микроэлектронике они сильно влияют 
на эффективность и режимы реализации TSV-
технологии (through silicon vias), когда требует-
ся осуществить равномерное электроосаждение 
меди на электрод сложной макрогеометрической 
конфигурации [1, 2]. Как в теоретической, так и 
в прикладной электрохимии важную роль игра-
ет, прежде всего, микрогеометрия поверхности, 
или шероховатость электрода [3]. Наиболее слож-
ным образом эффект шероховатости проявляется 
в случае третичного распределения тока, когда в 
электрохимической системе формируются гради-
енты концентрации, и стадия массопереноса вно-
сит существенный вклад в скорость многостадий-
ного гетерогенного электродного процесса. При 
изучении кинетики таких процессов на твёрдых 
электродах необходимо принимать во внимание, 
что их фактор шероховатости всегда отличается 
от единицы, поскольку независимо от предвари-
тельной обработки их поверхность является ше-
роховатой. Фактор шероховатости fr представляет 
собой отношение истинной площади S, которая 
равна сумме площадей всех неровностей, к гео-
метрической (видимой) площади Sg соответству-
ющей проекции границы электрода [4]:

fr = S/Sg. 		  (1)

Как следствие, экстенсивные параметры 
электродной реакции, коррозионных процес-
сов, двойного электрического слоя и адсорбции 
пропорциональны площади границы раздела 
электрод/раствор. При этом влияние шерохова-
тости на такие параметры зачастую оказывает-
ся весьма существенным. Так, в двойнослойных 
явлениях шероховатость электрода приводит к 
значительному увеличению накопленного за-
ряда [5] и существенно снижает межфазное со-
противление [6], вследствие чего сильно шеро-
ховатые электроды являются перспективными 
для использования в технологии суперконден-
саторов [7], где увеличение плотности энергии 
имеет решающее значение. Для снижения эф-
фективности коррозионного процесса, напро-
тив, важным является снижение шероховатости 
поверхности электрода [8–11].

Для корректного сопоставления экстенсив-
ных электрохимических параметров различных 
систем и процессов между собой они должны 
быть, вообще говоря, нормированы на площадь 
границы раздела электрод/раствор. Однако про-
цедура такой нормировки не является тривиаль-
ной, особенно в случае нестационарных электро-
химических измерений, и далеко не всегда сво-
дится к простому делению на площадь истинной 
поверхности электрода S > Sg, а нормировка на 
площадь видимой поверхности вообще приме-
нима только в случае жидких электродов, так как 
лишь они являются идеально гладкими, поэто-
му для них S = Sg. В работах [12–14] нами теоре-
тически обоснован и разработан алгоритм учета 
эффекта нефрактальной, фрактальной и стати-
стически нерегулярной шероховатости в кине-
тике диффузионно-контролируемых процессов. 
В рамках ряда теоретических моделей, описы-
вающих электродный процесс, когда замедлен-
ной стадией является диффузионный массопе-
ренос, а стадия переноса заряда является очень 
быстрой, показано, что определяющую роль при 
этом играет соотношение толщины диффузион-
ного слоя и среднего размера неровностей ше-
роховатой поверхности. Следует отметить, что 
большинство имеющихся в литературе теоре-
тических моделей в нестационарных системах 
с шероховатыми электродами развиты именно 
для обратимых электродных процессов, лими-
тирующей стадией которых является диффузи-
онный массоперенос [15–17].

Однако зачастую кинетика электродных про-
цессов не является сугубо диффузионной и/или 
эффект шероховатости не сводится лишь к гео-
метрическому увеличению площади электрохи-
мически активной поверхности. Например, ис-
пользование шероховатых электродов-датчи-
ков позволяет обеспечить более высокую чув-
ствительность электрохимических сенсоров не 
только из-за роста площади [18, 19], но и актив-
ности поверхности, которая в случае шерохова-
той оказывается обычно выше из-за роста чи-
сла активных центров [20] либо определенных 
функциональных групп [21]. Особую роль игра-
ет такое двойственное влияние шероховатости в 
кинетике электрокаталитических процессов, по-
скольку корректная оценка свойств электрока-
тализатора требует разделения двух эффектов: 
1) повышения уровня его активности в той или 
иной электродной реакции, и 2) экстенсивного 
роста силы тока за счет увеличения истинной 
площади поверхности электрода. В противном 
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случае оценка электрокаталитической активно-
сти может приводить к некорректным резуль-
татам, поскольку плотность тока после норми-
ровки на истинную площадь поверхности может 
оказаться неизменной по сравнению с гладким 
электродом [22]. Поэтому актуальной является 
задача по выделению сугубо геометрического 
эффекта шероховатости при изучении электро-
химических процессов, протекающих в режиме 
смешанного транспортно-кинетического контр-
оля, когда сопоставимы скорости кинетической 
и диффузионной стадий.

Спектр практически значимых электрохи-
мических процессов, протекающих в таком ре-
жиме, достаточно широк, и для многих из них 
выявлено заметное влияние шероховатости на 
кинетику процесса. Так, морфологически чувст-
вительным является сложный многостадийный 
процесс катодного восстановления CO2, для ко-
торого в работах [23, 24] установлено повыше-
ние эффективности электрохимического прев-
ращения углекислого газа в муравьиную кислоту 
при увеличении шероховатости электрода. Од-
нако процедура корректного учета геометриче-
ской шероховатости для таких процессов с при-
менением нестационарных электрохимических 
методов (хроноамперо-, хронопотенцио-, хроно-
вольтамперометрии) не разработана, поскольку 
не решены соответствующие диффузионно-ки-
нетические задачи при различном соотношении 
константы скорости и коэффициента диффузии, 
определяющем вклады кинетической и диффу-
зионной стадий в общую скорость электрохи-
мического процесса, протекающего на поверх-
ности шероховатого электрода.

Цель работы: установить влияние шерохо-
ватости поверхности электрода на скорость не-
стационарного электрохимического процесса в 
условиях смешанного транспортно-кинетиче-
ского контроля в потенциостатических услови-
ях поляризации.

Задачи работы:
1. Рассчитать хроноамперограммы электро-

химического процесса, протекающего в режи-
ме смешанной кинетики на идеально гладкой 
плоской поверхности электрода, а также на по-
верхности с гармоническими и фрактальными 
профилями с заданным фактором шероховато-
сти при различном соотношении коэффициен-
та диффузии и константы скорости кинетиче-
ской стадии.

2. Рассчитать функции шероховатости для 
исследуемых профилей поверхности электрода и 

различных соотношений коэффициента диффу-
зии и константы скорости кинетической стадии.

3. Сопоставлением функций шероховатости, 
полученных для различных профилей поверхно-
сти, выявить роль формы неровностей поверх-
ности гармонического или фрактального типа, 
фактора шероховатости поверхности, а также 
соотношения вкладов диффузионной и электро-
химической стадий, в потенциостатическом то-
ковом транзиенте электрохимического процес-
са, протекающего в режиме смешанного транс-
портно-кинетического контроля.

2. Постановка диффузионно-кинетической 
задачи и метод вычислительного 
эксперимента

Основной задачей моделирования являлся 
поиск пространственно-временного концент-
рационного профиля электрохимически актив-
ного диффузанта Ox – участника двухстадийно-
го электродного процесса:

v s sOx Ox ne Red-æææææÆ + ææææææÆперенос зарядадиффузия
D k

,	(2)

протекающего в режиме смешанного транспорт-
но-кинетического контроля на шероховатой 
(fr  =  const) границе раздела электрод/раствор. 
Стадии нестационарного диффузионного мас-
сопереноса и переноса заряда количественно 
характеризуются определенными значениями 
коэффициента диффузии D (см2/с) и константы 
скорости переноса заряда k (см/с) соответствен-
но. По соотношению этих параметров, точнее, 
по значению безразмерного комплексного па-
раметра k t D2  в случае идеально гладкого пло-
ского электрода можно судить о вкладе той или 
иной стадии в кинетику процесса. Соответству-
ющая зависимость скорости процесса (1) от 
времени, выраженная в токовых единицах (хро-
ноамперограмма), для потенциостатических 
условий электродной поляризации, т. е. при 
постоянном перенапряжении η = const, описы-
вается следующим выражением [25]:

i t nFkc k t D kt D( ) = ◊ ( ) ◊ ( )flat

v exp erfc / /2 1 2 1 2 .	 (3)

Здесь F – число Фарадея (96485 Кл/моль), cv – 
объемная (исходная) концентрация Ox в 
растворе электролита. В предельном случае, 
когда константа скорости стадии переноса заря-
да (и пропорциональный ей ток обмена) очень 
велика, т. е. параметр k t D2 1 , на второй ста-
дии электродного процесса (2) быстро устанав-
ливается равновесие, поэтому скорость в целом 
определяется диффузионным массопереносом, 
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а хроноамперограмма описывается уравнением 
Коттрелла [25]:

i t
nFD c

t
( ) =

( )Cottrell

v1 2

1 2

/

/p
.		  (3а)

Напротив, если замедленной является ки-
нетическая стадия, что выполняется при весь-
ма малых значениях параметра k t D2 1 , то 
скорость электродного процесса не меняется во 
времени, а определяется заданным значением 
перенапряжения:

i nFk ch h( ) = ( ) v .		  (3б)

В настоящей работе рассчитывали хроноам-
перограммы процесса (2) в широком интервале 
значений k t D2  для электродов с шероховатой 
поверхностью. При этом шероховатую межфаз-
ную границу представляли в виде двумерного 
поверхностного гофра трех различных типов: 
нефрактального, фрактального и статистически 
нерегулярного. Нефрактальные поверхностные 
профили (синусоидальный, пилообразный, тра-
пециидальный, систему одиночных выступов) 
моделировали различными гармоническими 
функциями с характеристичной длиной волны λ, 
равной расстоянию между соседними неровно-
стями [13]. Фрактальные поверхностные профи-
ли моделировали с использованием диапазонно 
ограниченной непрерывной модифицирован-
ной одномерной функции Вейерштрасса [3, 14, 
26, 27]. Статистически нерегулярный профиль 
поверхности, моделируемый в работе с приме-
нением случайной фрактальной функции Вей-
ерштрасса-Мандельброта [14, 28, 29], наиболее 
точно отражает реальную поверхность твердого 
электрода. Особенностью как фрактальной, так 
и статистически нерегулярной поверхностей яв-
ляется дисперсия характеристичных длин волн 
неровностей в диапазоне от минимальной λmin 
до максимальной λmax, присущая подавляющему 
большинству твердых поверхностей. Методика 
математического моделирования исследован-
ных профилей поверхностей подробно описа-
на в работах [13, 14].

В качестве модельной электрохимической 
системы рассматривается раствор электроли-
та с объемной концентрацией диффузанта cV, 
подвергающегося электрохимическому прев-
ращению по схеме (2) в условиях потенциоста-
тической катодной поляризации. Концентрация 
диффузанта в таком случае подчиняется диффе-
ренциальному уравнению второго закона Фика:

∂
∂

= —c
t

D c2 		  (4)

с начальным условием

c c
t= =

0
v 		  (5)

и первым граничным условием

c c
zÆ• = v .		  (6)

Предполагали, что стадия переноса заряда 
является необратимой (

�
�
�

k k ), т. е. окисление 
Red не оказывает влияния на общую скорость 
процесса. В таком случае справедливо второе 
граничное условие, записанное в следующей 
форме:

D
c
n

kc
S

S
∂
∂

=


,		  (7)

которое представляет собой условие непрерыв-
ности потока на межфазной границе (S) и подра-
зумевает равенство скорости переноса заряда 
u = kcS  и плотности диффузионного потока 

j t D
c
nS S

( ) = ∂
∂


 вдоль нормали к поверхности (


n ). 

Плотность потока  j t
S( )  рассчитывали числен-

ным методом конечных элементов [30] на еди-
ницу геометрической площади поверхности 
электрода с использованием программной 
платформы COMSOL Multiphysics [31–34] для 
следующих значений параметров процесса: 
о бъ ё м н а я  к о н ц е н т р а ц и я  д и ф ф у з а н т а 
cv = 1 моль/м3; число электронов n = 1; темпера-
тура 298 К; коэффициент диффузии: 10–6 см2/с; 
перенапряжение: –0,1 В; расстояние между со-
седними неровностями (характеристичная дли-
на волны профиля) шероховатого электрода 
λ = 10–3 м. Значение константы скорости пере-
носа заряда варьировали в широком интервале 
от 10–8 до 1 см/с. Расчет плотности тока вели по 
формуле:

i t nF j t
S

( ) .rough = ( ) 		  (8)

Анализ влияния морфологической неодно-
родности поверхности электрода на смешан-
ную кинетику электрохимического процесса 
(2) проводили с использованием функции ше-
роховатости:

j =
( )
( )

i t
i t

rough

flat

.		  (9)

Здесь i t( )
flat  – плотность тока, рассчитанная по 

формуле (3), i t( )rough  – плотность тока, найденная 
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в Comsol Multiphysics численным моделирова-
нием. Очевидно, что если i t i t( ) = ( )

rough flat , то 
функция шероховатости равна фактору шерохо-
ватости fr, который определяется по формуле (1). 
Транзиент плотности тока i t( )rough  численно 
рассчитывали при различном значении размер-
но-кинетического комплекса:

k
k
DD = l ,		  (10)

по значению которого можно судить о соотно-
шении вкладов диффузионной и кинетической 
стадий в скорость брутто-процесса в случае 
шероховатых электродов. Транзиент функции 
шероховатости представлен в безразмерных 
координатах j l- Dt 2 , что позволяет опреде-
лить, во сколько раз в данный момент времени 
скорость процесса (2) на морфологически неод-
нородном электроде из-за наличия на нем не-
ровностей, выше по сравнению с идеально 
гладким плоским электродом. Использование 
функции шероховатости и безразмерных пара-
метров системы (kD, Dt l2 , k t D2 ) позволяет 
оценить роль шероховатости в кинетике элек-
трохимических процессов, протекающих в ре-
жиме смешанного транспортно-кинетического 
контроля, при различном соотношении вкладов 
стадий диффузионного массопереноса и пере-
носа заряда в общую скорость процесса. Отно-
сительный вклад той или иной стадии опреде-
ляется значением размерно-кинетического 

комплекса kD, при предельных значениях кото-
рого реализуется диффузионный (kD >>1) либо 
кинетический (kD <<1) контроль. В настоящей 
работе моделирование проведено в широком 
интервале значений kD от 10–3 до 105.

На предварительном этапе, на примере иде-
ально гладкого плоского электрода проведена 
проверка адекватности результатов численно-
го моделирования путем сравнения с известным 
точным решением, описываемым математиче-
ской функцией (3), полученной в [25] аналити-
ческим методом интегральных преобразований 
Лапласа. На рис. 1 представлены логарифмиче-
ские безразмерные Y,τ-хроноамперограммы (

Y
i

nFkc
= v , t l= Dt 2 ) для электрохимическо-

го процесса, протекающего в режиме смешан-
ного транспортно-кинетического контроля на 
идеально гладком плоском электроде, получен-
ные по уравнению (3) (сплошные линии), а так-
же рассчитанные методом конечных элементов 
в программе COMSOL Multiphysics (маркеры). 
Как и следовало ожидать, расчетные хроноам-
перограммы, перестроенные в билогарифмиче-
ских координатах, имеют два линейных участ-
ка. Первый участок параллелен оси абсцисс и 
отвечает замедленной стадии переноса заряда 
и формуле (3б). Второй участок имеет наклон 
d lg Y/d lg τ = –1/2, что отвечает замедленной ста-
дии диффузии и уравнению Коттрелла (3а). Рас-
чёт показал, что результаты, полученные дву-
мя методами: аналитически и численно, – пол-
ностью совпадают, что позволяет использовать 
данный подход для более сложных систем с ше-
роховатой границей раздела электрод/раствор.

3. Результаты и обсуждение
Гармоническая шероховатость. Типичные 

хронограммы функции шероховатости для 
электродов, поверхность которых моделирует-
ся гармоническими функциями, представле-
ны на рис. 2. Оказалось, что при относительно 
больших значениях размерно-кинетического 
комплекса kD ≥ 1 кривая совпадает с аналогич-
ной зависимостью, полученной ранее для про-
цессов, контролируемых стадией нестационар-
ного диффузионного массопереноса [13]. Такая 
ситуация реализуется при высоких значениях 
константы скорости стадии переноса заряда и/
или низких значениях коэффициента диффу-
зии. Форма хронограммы при этом является 
достаточно показательной: при значениях без-
размерного времени Dt l2  < 10–3 функция ше-

Рис. 1. Хроноамперограммы нестационарного 
электрохимического процесса (1) на плоском элек-
троде, полученные численным и аналитическим 
методами для режима смешанного транспортно-
кинетического контроля
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роховатости ϕ равна фактору шероховатости fr 
(формула (1)). Это означает, что плотность тока 
на шероховатом электроде в fr раз выше, чем на 
плоском электроде, т. е. i t i t f( ) = ( ) ◊rough flat r

, а по-
тому в данном случае для корректной оценки 
скорости процесса необходима дополнитель-
ная нормировка экспериментального значения 
плотности тока на фактор шероховатости. Если 
же Dt l2  > 1, то функция шероховатости равна 
единице, следовательно, i t i t( ) = ( )

rough flat , и учет 
шероховатости не требуется.

В другом предельном случае, когда значение 
размерно-кинетического комплекса kD очень 
мало (кривая 1 на рис. 2), в течение всего пери-
ода нестационарных измерений функция шеро-
ховатости равна фактору шероховатости. Как и 
следовало ожидать, если кинетика процесса яв-
ляется сугубо электрохимической (kD << 1), плот-
ность тока всегда должна быть нормирована на 
фактор шероховатости.

Положение и форма хронограмм функции 
шероховатости при промежуточных значениях 
размерно-кинетического комплекса kD, т. е. для 
смешанно-кинетического режима, зависит от со-
отношения константы скорости переноса заря-
да и коэффициента диффузии, следовательно, от 
вклада той или иной стадии в скорость электро-
химического процесса. При увеличении констан-
ты скорости k, т. е. при ускорении кинетической 
стадии на хронограмме функции шероховато-
сти появляется переходная область, положение 
и протяженность которой зависит от размерно-
кинетического комплекса kD: при его снижении 
переходная область проявляется, во-первых, 
при всё больших временах, а во-вторых, посте-
пенно уширяется. Данный эффект подтвержда-
ется и при анализе аналогичных зависимостей 

функции шероховатости от времени, найденных 
для разных факторов гармонической шерохова-
тости (рис. 3). При этом видно, что чем выше fr, 
тем больше значение функции шероховатости 
при малых временах. В свою очередь, при сни-
жении kD область постоянства функции шерохо-
ватости заметно уширяется.

Поскольку функция шероховатости пред-
ставляет собой отношение токов на шерохова-
том и плоском электродах, описанные эффекты 
находят отражение в форме хроноамперограмм, 
которые приведены на рис. 4 для различных зна-
чений размерно-кинетического комплекса kD в 

Рис. 2. Хронограммы функции шероховатости для 
нестационарного электрохимического процесса, 
протекающего в режиме смешанного транспортно-
кинетического контроля на электроде с синусои-
дальной поверхностью (fr = 3) при различных 
значениях размерно-кинетического комплекса 
kD = 10-5 (1), 10-4 (2), 10-3 (3), 10-2 (4), 10-1 (5), ≥1 (6)

Рис. 3. Транзиенты функции шероховатости, рассчитанные для синусоидального профиля поверхности 
при различных значениях фактора шероховатости fr = 1.1 (1), 1.5 (2), 2.0 (3), 3.0. (4) и размерно-кинети-
ческого комплекса kD = 105 (а), 10 (б), 10-3 (в)
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сравнении с аналогичными кривыми для иде-
ально гладкого плоского электрода.

Видно, что если kD >> 1 (диффузионная кине-
тика, рис. 4а), то хроноамперограмма во всем ди-
апазоне времен представляет собой кривую спа-
да тока, частично (при малых и больших време-
нах) спрямляющуюся в двойных логарифмиче-
ских координатах в наклоном d lg i/d lg t = –1/2, 
что отвечает уравнению Коттрелла (3а). При этом 
в области малых времен токи на шероховатом 
электроде в fr раз выше, чем на плоском, а при 
больших временах кривые для обоих электро-
дов, напротив, совпадают.

Если же kD << 1 (электрохимическая кинетика, 
рис. 4в), то практически во всем интервале вре-
мен процесс протекает в режиме кинетическо-
го контроля, поэтому плотность тока принима-
ет постоянное значение, отвечающее заданному 
перенапряжению. При этом отношение токов на 
шероховатом и плоском электродах равно фак-
тору шероховатости в течение всего периода не-
стационарных измерений.

В промежуточной области значений размер-
но-кинетического комплекса kD хроноамперо-
грамма принимает наиболее сложный и нетри-
виальный вид. При малых временах хроноампе-
рограммы как на шероховатом, так и на плоском 
электродах являются нелинейными в двойных 
логарифмических координатах, поскольку реа-
лизуется режим смешанного транспортно-кине-
тического контроля. Участок относительного по-
стоянства i, когда вклад стадии переноса заряда 
в кинетику процесса достаточно велик, сменя-
ется спадом тока, вызванным нарастанием кон-
центрационной поляризации. Отношение токов 
на шероховатом и плоском электродах в данном 

временном интервале равно фактору шерохова-
тости. Со временем билогарифмические кривые 
шероховатого и плоского электродов постепенно 
сходятся, поскольку вклад кинетической стадии 
снижается. При больших временах обе хроноам-
перограммы совпадают и линеаризуются в соот-
ветствии с уравнением Коттрелла (3а): контроль 
полностью переходит к стадии диффузионного 
массопереноса.

Таким образом, при изучении кинетики про-
цессов, характеризующихся сопоставимыми 
скоростями диффузионной и кинетической ста-
дий на твердых шероховатых электродах, нуж-
но принимать во внимание сложное, нелиней-
ное и нестационарное влияние шероховатости 
электрода на плотность тока, регистрируемого 
в ходе эксперимента. Как следствие, процедура 
нормировки на фактор шероховатости не всегда 
сводится к простому делению на фактор шеро-
ховатости, а при определенных условиях вооб-
ще не является необходимой. Корректный учет 
эффекта шероховатости в таких случаях требует 
предварительной оценки значения kD, а значит, 
тока обмена, коэффициента диффузии и сред-
него размера неровностей.

Потенциостатический отклик шероховато-
го электрода, на поверхности которого проте-
кает процесс (2), может быть интерпретирован 
с привлечением данных о распределении кон-
центрации вблизи шероховатой границы раз-
дела электрод/раствор. На рис. 5 и 6 показаны 
концентрационные профили электроактивно-
го диффузанта Ox, рассчитанные для значения 
размерно-кинетического комплекса kD = 10 в ин-
тервале времен t от 30 до 104 с, т. е. в широком 
диапазоне значений комплексного диффузион-

Рис. 4. Хроноамперограммы нестационарного электрохимического процесса, протекающего в режиме 
смешанного транспортно-кинетического контроля на электроде с синусоидальной поверхностью (fr = 
3) при различных значениях размерно-кинетического комплекса kD = 105 (а), 10 (б), 10-3 (в). Пунктир – 
хроноамперограммы для идеального гладкого плоского электрода
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Рис. 5. Концентрационное поле диффузанта, формирующееся вблизи синусоидальной и пилообразной 
поверхности (fr = 3) в ходе нестационарного потенциостатического процесса в режиме смешанного 
транспортно-кинетического контроля при различных временах. Размерно-кинетический комплекс 
kD = 10
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Рис. 6. Концентрационное поле диффузанта, формирующееся вблизи одиночных выступов и трапеце-
идальной поверхности (fr = 3) в ходе нестационарного потенциостатического процесса в режиме сме-
шанного транспортно-кинетического контроля при различных временах. Размерно-кинетический 
комплекс kD = 10

Конденсированные среды и межфазные границы / Condensed Matter and Interphases	 2025;27(4): 592–605

Ф. А. Вдовенков и др.	 Моделирование нестационарного электрохимического процесса на шероховатых...



601

но-кинетического параметра k t D2  от 0.3 до 102. 
Видно, что только при малых временах диффу-
зионный фронт полностью повторяет профиль 
поверхности, а со временем чувствительность 
к неровностям нивелируется, а диффузионный 
фронт сглаживается. Как следствие, лишь при 
k t D2 1<  плотность диффузионного потока, а 
значит, и плотность тока, должны быть норми-
рованы на фактор шероховатости. Очевидно, что 
такая ситуация может быть реализована и в до-
статочно широком интервале времен, но толь-
ко если константа скорости переноса заряда на-
столько мала, что электродный процесс (2) пра-
ктически полностью контролируется электрохи-
мической стадией, как и наблюдается на рис. 4в.

Сравнительный анализ показал, что разли-
чие транзиентов функций шероховатости раз-
ного гармонического типа является достаточ-
но заметным (рис. 7), хотя и снижается с умень-
шением размерно-кинетического комплекса kD. 
При kD << 1 хронограммы совпадают, что свиде-
тельствует о том, что в условиях сугубо электро-
химического контроля определяющую роль иг-
рает не форма микронеровностей, а макрогео-
метрическая величина – фактор шероховатости. 
Учитывая, что реальный профиль поверхности 
твердого электрода обычно представляет собой 
набор гармоник различного размера и формы, 
было проведено моделирование эффекта шеро-
ховатости с применением фрактальной и стати-
стически нерегулярной функций. Дело в том, что 
их использование позволяет максимально реа-
листично описать морфологию границы раздела 
электрод/раствор [14], поскольку профили, по-
строенные по данным математическим функци-
ям, представляют собой комбинацию различных 

неровностей, средний латеральный размер кото-
рых лежит в заданном интервале от λmin до λmax.

Фрактальная и статистически нерегулярная 
шероховатость. На рис. 8 показаны хронограм-
мы функции шероховатости для нестационарно-
го электрохимического процесса, протекающе-
го в режиме смешанного транспортно-кинети-
ческого контроля на модельных поверхностях, 
заданных фрактальной функцией Вейерштрасса 
и статистически шероховатой функцией Вейер-
штраса–Мальденброта. Как и в случае процесса 
на поверхностях гармонического типа, при от-
носительно малых значениях kD на кривых спа-
да тока формируется горизонтальный участок, 
в пределах которого функция ϕ = fr. Протяжён-
ность данного участка растёт с уменьшением kD, 
т. е. при уменьшении константы скорости ста-
дии переноса заряда и/или увеличении коэффи-
циента диффузии.

Отличительной особенностью хронограмм 
функций шероховатости для фрактальной и ста-
тистически нерегулярной поверхности являет-
ся значительное уширение переходной области 
по сравнению с шероховатыми электродами с 
поверхностью гармонического типа. Данный 
эффект, по-видимому, обусловлен наличием на 
поверхности неровностей различного размера. 
Действительно, среднее расстояние между со-
седними неровностями в случае как фракталь-
ной, так и статистически нерегулярной поверх-
ности лежит в интервале λmin < λ < λmax [14], в то 
время как гармонические профили характери-
зуются отсутствием распределения неровностей 
по их размеру (λ = const).

Данный эффект можно объяснить, анализи-
руя концентрационные профили электрохими-
чески активного диффузанта вблизи фракталь-

Рис. 7. Транзиенты функции шероховатости, рассчитанные для различных гармонических профилей 
поверхности: синусоидального (1), пилообразного (2), трапецеидального (3), системы одиночных вы-
ступов (4) с фактором шероховатости fr = 3 для значений размерно-кинетического комплекса kD = 105 (а), 
10 (б), 10-3 (в)
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ной и статистически нерегулярной поверхности 
электрода, рассчитанные для kD = 10 в интерва-
ле времен t от 0.5 до 5·104 с, т. е. в широком диа-
пазоне значений диффузионно-кинетического 
параметра k t D2  (рис. 9). Видно, что при малых 
временах диффузионный фронт полностью по-
вторяет профиль поверхности с минимальной 
длиной волны (λmin). Однако со временем чув-
ствительность к таким неровностям снижается, 
в связи с чем диффузионный фронт постепенно 
сглаживается, принимая форму более длинно-
волновой гармоники, пока в определенный мо-
мент не совпадет по форме с профилем с мак-
симальной длиной волны (λmax), после чего до-
статочно быстро становится плоским.

Описанные изменения формы диффузи-
онного фронта приводят к постепенному сни-
жению его площади, а следовательно, потока и 
функции шероховатости во времени. В отличие 
от λ, полученных для поверхностей, заданных 
гармоническими функциями, переходный уча-
сток в случае профилей Вейерштрасса и Вейер-
штрасса–Мандельброта характеризуется значи-
тельным уширением не только при низких kD, от-
вечающих сугубо электрохимической кинетике 
процесса (2), но и при значениях размерно-кине-
тического комплекса, справедливых для диффу-
зионного контроля. Кроме того, снижение кон-
станты скорости стадии переноса заряда при-
водит к существенному смещению переходного 
участка в область больших времен.

Таким образом, эффект шероховатости в ки-
нетике электрохимических процессов, для кото-

рых характерен смешанный транспортно-кине-
тический контроль, оказывается намного более 
сложным, нежели в случаях сугубо диффузи-
онной или электрохимической кинетики. Ха-
рактеристическим критерием для корректной 
оценки влияния шероховатости на кинетику та-
ких процессов является, прежде всего, размер-

но-кинетический комплекс k
k
DD = l . Наиболее 

простым является учет эффекта шероховатости, 
когда kD 1, т. е. стадия переноса заряда явля-
ется лимитирующей. В таком случае плотность 
тока обязательно должна быть нормирована на 
фактор шероховатости поверхности электрода. 
В случае же, если электрохимическая стадия и 
стадия диффузионного массопереноса протека-
ют с сопоставимыми скоростями kD ≥( )1 , либо 
диффузия замедлена по сравнению с переносом 
заряда kD 1( ) , учет шероховатости сводится к 
делению плотности тока на фактор шерохова-
тости только при весьма малых временах, ина-
че требуется оценка функции шероховатости в 
данный момент времени.

4. Заключение
1. Методом численного конечно-элементно-

го моделирования рассчитаны концентрацион-
ные профили электроактивного диффузанта и 
получены  хроноамперограммы электрохими-
ческого процесса, протекающего в режиме сме-
шанного транспортно-кинетического контроля 
на шероховатых поверхностях, описываемых 
различными гармоническими и фрактальны-

Рис. 8. Транзиенты функции шероховатости (fr = 3.0), рассчитанные для фрактальной (а) и статистиче-
ски нерегулярной (б) поверхности при различных значениях размерно-кинетического комплекса 
kD = 10–3 (1), 10–2 (2), 10–1 (3), 1 (4), 101 (5), 102 (6), ≥103 (7)
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Рис. 9. Концентрационное поле диффузанта, формирующееся вблизи фрактальной и статистически 
шероховатой поверхности (fr = 3) в ходе нестационарного потенциостатического процесса в режиме 
смешанного транспортно-кинетического контроля при различных временах. Размерно-кинетический 
комплекс kD = 10
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ми функциями с заданным фактором шерохо-
ватости при различном соотношении констан-
тах скорости кинетической стадии электрохи-
мического процесса.

2. Форма хроноамперограммы электрохими-
ческого процесса в смешанном диффузионно-
кинетическом режиме зависит как от характе-
ристик шероховатой поверхности (фактор шеро-
ховатости, средний размер неровностей), так и 
от соотношения константы скорости стадии пе-
реноса заряда и коэффициента диффузии. При 
малых временах скорость брутто-процесса равна 
скорости переноса заряда при данном потенци-
але. При больших временах хроноамперограмма 
совпадает с кривой диффузионно-контролиру-
емого процесса, что объясняется переходом от 
кинетического к диффузионному режиму элек-
трохимического процесса.

3. Влияние шероховатости проявляется только 
при относительно малых временах процесса, при-
чем если толщина диффузионного слоя намно-
го меньше размера неровностей, то отношение 
скоростей процесса на шероховатом и идеально 
гладком электродах равно фактору шероховато-
сти. При больших временах диффузионный фронт 
сглаживается настолько, что учитывать шерохова-
тость в расчетах скорости процесса нет необходи-
мости. В промежуточном интервале времен влия-
ние шероховатости на скорость процесса является 
нелинейным. При снижении константы скорости, 
т.е. замедлении кинетической стадии переходная 
область проявляется при все больших временах и 
постепенно уширяется, при этом почти не зави-
сит от формы неровности. Как следствие, в дан-
ных условиях учет эффекта шероховатости явля-
ется обязательным и сводится к нормировке плот-
ности тока на фактор шероховатости.
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