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Abstract

Objectives: Germanium-antimony tellurides are of considerable practical interest as thermoelectrics with low thermal
conductivity, topological insulators and phase memory materials. In this paper, the results of a study of phase equilibria
in the region of GeTe-Sb,Te,-Te compositions of the Ge-Sb-Te system using the DTA, X-ray diffraction and SEM methods
are we presents.

Experimental: The studied samples were synthesized using a special technique that allows them to be obtained in a state
as close to equilibrium as possible.

Conclusions: A diagram of solid-phase equilibria at 300 K, a projection of the liquidus surface and some polythermal sections
of the phase diagram are constructed. The fields of primary crystallization of phases are outlined, non- and monovariant
equilibria are determined. According to the obtained picture of phase equilibria, the curves of monovariant equilibria
originating from the peritectic and eutectic points of the boundary system GeTe-Sb, Te, undergo transformations at certain
transition points. In the region of compositions rich in tellurium, a number of invariant transition reactions occur,
corresponding to the joint crystallization of two-phase mixtures of telluride phases and elemental tellurium.
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1. Introduction

Ternary compounds of the AV-BV-Te
systems (A'V-Ge, Sn, Pb; BV-Sb, Bi) with layered
tetradymite-like structures have long been in the
focus of researchers as thermoelectric materials
with anomalously low thermal conductivity [1-
6]. The discovery at the beginning of our century
of a new quantum state of matter - a topological
insulator [7, 8] gave a new powerful impetus to
the study of these compounds and phases based
on them. It turned out that compounds of the
homologous series AVTe-mBVY,Te (A"VBY,Te,,
AVBY,Te , AVBY Te , etc.) and solid solutions
based on them are 3D topological insulators and
are very promising for use in various areas of
high technology, including spintronics, quantum
computers, scanning devices used in security
systems and medicine, etc. [9-17].

Recently, the special attention of researchers
has been attracted by compounds and alloys of
the GeTe-Sb,Te, system with a reversible phase
transition between the crystalline and amorphous
states caused by very short (only a few tens of
nanoseconds) laser radiation. These alloys, called
phase memory materials, are already used as
memory materials in rewritable optical disks and
have great potential for creating a non-volatile
alternative based on them to traditional flash
memory [18-24].

At the initial of research stage on the
development of new complex inorganic materials,
particularly chalcogenide materials, it is essential
to have reliable data on phase equilibria in the
corresponding systems [25-29]. In the review
article [26], based on a critical analysis of the
available literature, it was shown that the data
on the phase diagrams of most AVTe-BY, Te, type
systems are contradictory and need to be clarified.
Taking this into account, we have undertaken
repeated detailed studies of phase equilibria in
some AVTe-BY,Te, type systems using a specially
developed technique for synthesizing equilibrium
samples, as well as the thermodynamic properties
of intermediate phases [30-37].

Numerous works [38-46] are devoted to the
study of phase equilibria in the Ge—Sb-Te system,
some of which are summarized in [43]. According
to the data of [38], in the GeTe-Sb,Te, quasi-
binary system, ternary compounds Ge,Sb,Te,,
GeSb,Te,, GeSb,Te, are formed, melting with
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decomposition according to peritectic reactions
at 903,888,and 875 K, respectively, as well as wide
regions of solid solutions based on both initial
compounds. The results of the study of phase
equilibria in the GeTe- Sb,Te,-Te compositions
region are presented in [39], and in [40, 41] in
the Ge-GeTe-Sb,Te,~Sb compositions region.
The results of the thermodynamic study of some
ternary compounds of the GeTe- Sb,Te, system
by the calorimetric method are presented in [42].

The papers [44,45], published at the beginning
of our century, present the results of repeated
studies of solid-phase equilibria in the Ge-Sb-
Te system and crystal structures of germanium-
antimony tellurides. The authors of [44] presented
a compilation phase diagram of the GeTe- Sb,Te,
system, constructed based on the data of [38] with
the addition of compositions of other known and
suspected ternary compounds without specifying
the nature and temperatures of their melting
(Fig. 1a). Taking into account the compilation
nature of this diagram, a new detailed study of this
system was undertaken in [46]. It was shown that
it is characterized by the presence of six ternary
compounds: Ge,Sb,Te , Ge,Sb,Te, Ge,Sb,Te,,
GeSb,Te,, GeSb,Te , and GeSb,Te, . The first two
melt with decomposition by a solid-phase reaction,
and the rest - by peritectic reactions at 863, 854,
848, and 843 K, respectively (Fig. 1). In addition, in
[46] the refined parameters of the crystal lattices of
all the indicated compounds are presented.

New data obtained in [46] for the key section
GeTe- Sb,Te, of the ternary system Ge-Sb-Te in-
dicate the need to revise its complete T-x-y dia-
gram and determine the primary crystallization
fields of all identified ternary compounds.

Taking into account the above, we have
undertaken a re-examination of phase equilibria
in the Ge-Sb-Te system. In this paper, a new
refined picture of phase equilibria of the indicated
system in the GeTe -Sb,Te -Te compositions
range is presented, including the liquidus surface
projection, the isothermal section at 300 K, and
some polythermal sections of the phase diagram.

2. Experimental
2.1. Synthesis

The alloys for the study were prepared in
2 stages. At the first stage, the initial binary
tellurides GeTe and Sb,Te, were synthesized
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Fig. 1. Phase diagram of the GeTe-Sb,Te+ system [46]. a) Compilation phase diagram according to [44, 45]

and identified by DTA and X-ray diffraction
techniques. The synthesis was carried out by
melting high-purity elemental components in
quartz ampoules evacuated to a residual pressure
of ~10-2 Pa. At the second stage, intermediate
alloys of the GeTe-Sb,Te,-Te system were
obtained by fusing the obtained tellurides, as well
as elemental tellurium in various stoichiometric
ratios, also under vacuum conditions.

At the second stage of synthesis, the results
of works [46-48] were taken into account,
which showed that even long-term (up to
3000 h) thermal annealing of bulk samples of
layered tetradymite-like phases obtained by the
traditional method of alloying does not lead
to reaching the equilibrium state. According
to the authors of the mentioned works, this
is due to weak diffusion between the layers in
the layered structure of the phases. Taking into
account the results of these works, the alloys
after alloying were quenched by throwing them
into ice water with subsequent homogenizing
annealing. Quenching was carried out in the
temperature range of 900-1050 K depending on
the composition, and homogenizing annealing
was carried out at 620 K for 1000 h. Then the
alloys were cooled in the switched-off furnace
mode.

2.2. Methods

Differential thermal analysis (DTA), X-ray
diffraction analysis (XRD), and scanning electron
microscopy (SEM) were used for the alloys
investigations.

Thermal heating curves were recorded on a
differential scanning calorimeter DSC NETZSCH
404 F1 Pegasus system and on a multichannel
DTA setup assembled based on an electronic data
recorder “TC-08 Thermocouple Data Logger”.
Powder diffraction patterns were obtained on a
Bruker D8 diffractometer with CuK  radiation,
and SEM images were collected on a Tescan Vega
3 SBH scanning electron microscope.

3. Results and discussion

Analysis of the set of obtained experimental
results of annealed samples along different
sections of the GeTe-Sb,Te,-Te concentration
triangle using literature data on the cucremam
GeTe-Te [49, 50], Sb,Te,.-Te [50] and GeTe-
Sb,Te, [46] boundary systems allowed to obtain
a mutually consistent picture of phase equilibria
in the studied system (Fig. 2-8, Table). In the
text, figures and table we have adopted the
following designations of phases: a.- and o’-solid
solutions based on high-temperature (HT) and
low-temperature (RT) modifications of GeTe,
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Fig. 2. Solid-phase equilibria diagram of the GeTe-Sb,Te,-Te system at 300 K

p-solid solutions based on Sb,Te,, I-VI - ternary
compounds Ge,Sb,Te , Ge,Sb,Te,, Ge,Sb,Te,,
GeSb,Te,, GeSb,Te, and GeSb,Te,, respectively
(Fig. 2).

3.1. Solid-phase equilibria diagram

Fig. 2 shows an isothermal section of the
phase diagram at 300 K. As can be seen, it is
characterized by the presence of stable tie-lines
between elemental tellurium and all crystalline
phases of the GeTe-Sb,Te, side system. The two-
phase regions o’+Te and f+Te occupy a significant
part of the area of the concentration triangle.
Other possible two-phase regions are practically
degenerated into tie-lines between ternary
compounds and elemental tellurium, which is
due to the insignificance of their homogeneity
regions.

All phase regions in Fig. 2 are confirmed by
X-ray diffraction and SEM methods. As can be
seen from Fig. 3, the powder diffraction patterns of
alloys, which are on the tie-lines in composition,
consist of reflection lines of the corresponding
ternary compounds and elemental tellurium,
and the diffraction patterns of alloys from the
Ge,Sb,Te -Ge,Sb,Te.-Te and GeSb,Te,-GeSb,Te. -
Te three-phase regions contain diffraction
reflections of the corresponding three phases.

10°
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The SEM patterns were also in accordance
with the solid-phase equilibria diagram. As
an example, Fig. 4 shows the SEM patterns of
two alloys (samples 5 and 6 in Fig. 2), which
clearly show the interface between the p+Te and
GeSb, Te, +p+Te phase regions.

3.2. Liquidus surface

Fig. 5 shows the projection of the liquidus
surface of the GeTe-Sb,Te -Te system. As can
be seen, it consists of the fields of primary
crystallization of seven phases: a- and B-solid
solutions, ternary compounds Ge,Sb,Te,,
GeSb,Te,, GeSb,Te., GeSb,Te, , and elemental
tellurium. All liquidus surfaces of telluride phases
have the form of stripes from the GeTe-Sb,Te,
side system towards the tellurium angle of the
concentration triangle.

The primary crystallization fields of phases
are delimited by a series of curves of monovariant
equilibria, which originate from various points of
nonvariant equilibria of the boundary systems.
The indicated curves, intersecting near the
tellurium angle of the concentration triangle,
form a series of points with nonvariant transition
(U,-U)) and eutectic (E) equilibria. The types
and temperatures of all non- and monovariant
equilibria are given in Table.
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Table. Non- and monovariant equilibria in the
GeTe-Sb,Te,-Te system

Points
and . Equilibrium T,K
curves in
Fig. 5
p, L+ o <> Ge,Sb,Te, 910
P, L +Ge,Sb,Te, <> GeSb,Te, | 900
P L + GeSb, Te, <> GeSb, Te, 892
b, L + GeSb,Te, <> GeSb Te 883
e L < GeSb,Te  +f 873
\ Lo o +Te 6553
e, L<>B+Te 695
U, L+ B <> GeSb,Te , + Te 688
U, |L+GeSbTe <> GeSb,Te +Te| 677
U, L+ GeSb,Te <> GeSb,Te, + Te | 665
U, |L+GeSb,Te,«> Ge,Sb,Te, +Te| 651
E L o' +Ge,Sb,Te, + Te 640
p K, L + o, <> Ge,Sb,Te, 910-825
DK, | L+Ge,SbTe, <> GeSbTe, |900-830
P.K, | L+GeSb,Te,<>GeSb,Te, |892-840
p.K, L + GeSb,Te <> GeSb,Te, , | 883-850
e K Lo GeSb,Te  + 873-855
KU, L+B <> GeSb,Te 855-688
K,U, L+ GeSb Te  «> GeSb,Te, | 850-677
K. U, L + GeSb,Te, <> GeSb,Te, | 840-665
KU, | L+GeSb,Te,<>Ge,ShTe. |830-651
K.E Lo a,(o,) + Ge,Sb,Te, | 835-640
e, Lesp+Te 695-688
[SRSA L <> GeSb Te  +Te 688-677
U,U, L <> GeSb,Te, +Te 677-665
UU, L <> GeSb, Te, + Te 665-651
UE L <> Ge,Sb,Te, + Te 651-640
e,E Lo a,+Te 653-640

According to Fig. 5, the curves emanating
from the peritectic (P,-P,) and eutectic (e,) points
of the GeTe-Sb,Te, boundary system undergo
transformations at certain transition points K -
K..These transformations can be explained based
on phase diagrams of the boundary components
of the studied system. Thus, in the side system
GeTe- Sb,Te,, the temperatures of the peritectic
(P,-P,) and eutectic (e,) equilibria decrease in the
direction from germanium telluride to Sb,Te,,
i.e. from left to right in Fig. 5. At the same time,
in the side system GeTe-Te, the temperature
of the eutectic e, (653 K) is significantly lower
than that of the eutectic e, (695 K) in the other
boundary system Sb,Te,-Te, i.e. in this part of the
phase diagram, the temperatures of the invariant
equilibria decrease in the opposite direction. The
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Fig. 3. Powder diffraction patterns of alloys 1-4, shown
in Fig. 2
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Fig. 4. SEM patterns of alloys 5 and 6, shown in Fig. 2
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Fig. 5. Projection of the liquidus surface of the GeTe-Sb,Te,-Te system. Primary crystallization fields: 1 - a;

2 - Ge,Sb,Te; 3 - GeSb,Te,; 4 — GeSb,Te_; 5 - GeSb,Te

experimental DTA data obtained by us showed
that the temperatures of nonvariant transition
equilibria (U -U,) also decrease in the direction
from the eutectic e, to the ternary eutectic
point E (640 K) (Fig. 5, Table). Similar opposite
directions of changes in the temperatures of
nonvariant equilibria in the boundary system
GeTe- Sb,Te, and in the regions of compositions
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6-p;7-Te

rich in tellurium lead to the transformation of
the above-mentioned monovariant equilibria [51,
52]. In the case of peritectic equilibrium curves,
similar transformations occur at the intersection
points (K -K,) of the pointed curves with the
corresponding stable sections of the “ternary
compound-elementary tellurium” type (Fig. 5).
Therefore, in the Table, the pointed curves are
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presented as two series, transforming into each
other at the transition points K -K. (Fig. 5).

Using the curve P E as an example, we will
consider one of the above transformations.
This curve, before intersecting with the stable
section Ge,Sb,Te_-Te (P K ), reflects the peritectic
equilibrium L + o <> III. At the intersection
point (K ), this equilibrium is transformed into
the eutectic L <> o + III (curve K E). Similar
transformations take place onthe P,U,,P.U,, P U,
and e U, curves.

TK

930
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700
L+Te

L+IV+Te

600

LAV+VI LvI—
700}
677 -
650 |- V+Te LAViTe
1 GesbTe, 20 40 60 80 Te
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3.3. Polythermal sections of the phase
diagram

Below some polythermal sections of the
T-x-y phase diagram of the GeTe-Sb,Te -Te
system (Fig. 6-8) are presented, which reflect the
crystallization processes in more detail and made
it possible to clarify the location of the curves of
monovariant equilibria and the coordinates of
the invariant points.

Four (Ge,Sb,Te_-Te, GeSb,Te,-Te, GeSb,Te -Te
and GeSb,Te, -Te) of the six polythermal sections
considered are stable in the subsolidus. Two other

850
830 K, L
800 - LV
o 770 .
750 -
LHIVHV 723
L+V-
700
L+ Te
665
e /
650 + IV4Te L+V+Te
0.5 GeSb. Te, 20 40 60 80 Te
900
‘\%Lﬁ'\/
TK _
gsoL_ 850 =
L+V4VI
800 -
750 -
L+VI+ 723
650 - VI+Te
0.25 GeSb,Te,, 20 40 60 80 Te

at % Te (elem.)

Fig. 6. Polythermal sections of Ge,Sb,Te.-Te, GeSb,Te -Te, GeSb,Te -Te u GeSb,Te -Te of the phase diagram of

the GeTe-Sb,Te,-Te system
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sections GeTe-[B] and [A]-Sb,Te, ([A] and [B]
are alloys with equimolar ratios of components
of the boundary systems GeTe-Te and Sb,Te,-
Te, respectively) intersect almost all fields of
primary crystallization of phases and reflect most
heterogeneous equilibria.

Ge,Sb,Te -Te section (Fig. 6) passes through
the fields of primary crystallization of the a-phase,
Ge,Sb,Te, and GeSb,Te, compounds as well as
elemental tellurium. Below the a-phase liquidus,
crystallization proceeds according to the L + o <>
Ge,Sb,Te, peritectic reaction (Fig. 5, curve P K)),
resulting in the formation of a three-phase field
L + a + Ge,Sb,Te.. In this reaction, the a-phase
is completely consumed and at 825 K the system
passes into a two-phase state L.+ Ge,Sb, Te.. Starting
from 750 K, crystallization continues according to
the peritectic reaction L + GeSb,Te, <> Ge,Sb,Te,
(Fig. 5, curve K,U)), as a result of which a three-
phase region L+Ge,Sb,Te +GeSb, Te, is formed.

Near the tellurium angle, tellurium crystallizes
primarily from the melt, then the monovariant

2025;27(4): 639-650
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eutectic process L <> GeSb,Te +Te begins (Fig. 5,
curve U.U,). Complete crystallization of the
alloys of this section occurs at 651 K according
to the invariant transition reaction U, and a
two-phase mixture GeSb,Te,+Te is formed. The
crystallization processes along the other three
sections connecting the compositions of ternary
compounds with elemental tellurium (Fig. 6) can
be followed by comparing them with Figs. 2 and
5. As can be seen from the T-diagrams, despite
the stability of these sections below the solidus,
the crystallization processes in them are complex
and multi-stage.

The GeTe-[B] section (Fig. 7) passes through
the fields of primary crystallization of all phases
except elemental tellurium (Fig. 5). In the
subsolidus it crosses all phase regions of the
system (Fig. 2). In this diagram, the liquidus
curves of different phases are marked taking
into account Fig. 5. Pairs of conjugate curves
emanating from the intersection points of the
liquidus lines reflect the beginning and the

T, K
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L
900 | b
[+a c
L+I111
v 825 fe f
;:3‘ L+(3
800 | ::4* V)
A Ao
& ~ (<=}
\:’L 5? - = L5
o F Sll7|&
~ —~ * -~ [«n}
-+ - T
~ > *F -
¥~ .
~ 677 688 4695
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600 o'+Te | %} atll+Te — HI+IV+Te | IVEV+Te E EE_ <=
=
1‘ S TR e =
GeTe 80 0 20 [B]

60 4
mol% GeTe

Fig. 7. Polythermal section of GeTe-[B] of the phase diagram of the GeTe-Sb,Te, -Te system
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Fig. 8. Polythermal section of [A]-Sb,Te, of the phase diagram of the GeTe-Sb,Te -Te system

end of monovariant equilibria along the curves
P KE (b), P.K,U, (¢), P.K.U, (d), PK,U, (e), P KU,
(f). The fields between the indicated pairs of
curves correspond to the two-phase areas L+III
(IV, V, VI) and L + B. These pairs of curves in the
temperature range of 640-688 K reach the curves
of monovariant equilibria originating from the
eutectic points e, and e, of the side systems and
form a series of transition points (U, U, U,, U,)
and eutectic (E) equilibria (Fig. 5). The horizontals
at 688, 677, 665, 651 and 640 K in Fig. 7 reflect
these nonvariant equilibria.

Section [A]-Sb,Te, (Fig. 8). Phase equilibria
along this section are qualitatively similar to
those in Fig. 7 and differ from them only in
temperature-concentration intervals.

4. Conclusion

Based on the experimental data obtained
by studying carefully homogenized equilibrium
alloys using the DTA, XRD and SEM methods,
a new refined picture of phase equilibria in the
GeTe-Sb,Te,-Te system was obtained, which
significantly differs from the previously known

one. A solid-phase equilibria diagram at 300
K and a projection of the liquidus surface, as
well as a number of polythermal sections of the
phase diagram, were constructed. The fields of
primary crystallization of seven phases, including
ternary compounds Ge,Sb,Te , GeSb,Te,, GeSb,Te,
and GeSb Te, were determined, non- and
monovariant equilibria were established. It
was shown that monovariant equilibria on
the curves of monovariant equilibria undergo
transformations at certain transition points.
The interaction of the indicated curves with
the eutectic curves emanating from the lateral
systems GeTe-Te and Sb,Te,-Te leads to a cascade
of invariant transition reactions characterizing
the joint crystallization of two-phase mixtures
1I(IV, V, VI)+Te.

The results obtained in the work can be
used to obtain poly- and single crystals of
the above-mentioned ternary compounds,
which are promising as topological insulators,
thermoelectrics and materials with phase
memory.
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