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Аннотация
Цель статьи: Механохимическая модификация цеолитов с добавками кислых солей приводит к увеличению де-
фектности их структуры, изменению дисперсности порошка и проводимости таблетированных образцов. Цель 
работы заключалась в получении минеральных образцов с улучшенной проводимостью механохимическим мето-
дом из воздушно-сухих смесей клиноптилолит-стильбитовых и клиноптилолитовых пород и гидросульфата калия 
в разных соотношениях.
Экспериментальная часть: Форма и размеры частиц, химический, фазовый состав порошков, их физические свой-
ства исследованы методами электронной микроскопии, энергодисперсионной рентгеновской спектрометрии, 
рентгенофазового анализа, дифференциальной сканирующей калориметрии, инфракрасной спектроскопии, сито-
вого анализа, гравиметрии, воздухопроницаемости. Электропроводность таблетированных образцов измеряли по 
трёхэлектродной схеме в диапазоне температур от 25 до 100 °C.
Выводы: Найдено, что механическое воздействие на смеси цеолитов с кислой солью приводят к аморфизации стиль-
бита и полевого шпата, полиморфным превращениям кварца в кристобалит и тридимит, повышению дефектности 
структуры. Найдено, что компоненты взаимодействуют посредством силанольных групп клиноптилолита и гидро-
сульфатных групп через водородные связи с участием молекул воды. Также установлено, что электрическая проводи-
мость минерального таблетированного образца на основе клиноптилолитовой породы и гидросульфата калия в экви-
массовом соотношении, подвергнутого ударно-сдвиговому воздействию с дозой механической энергии в 2.16 кДж/г, 
составляет 4.26·10–4 См·м–1 при 100 °C. Значения электропроводности такого же порядка получены ранее при механо-
химической активации природных цеолитов с гидрофосфатами калия. Следовательно, гидросульфатный анион не 
вносит по сравнению с гидрофосфатным анионом значительного вклада в проводимость цеолитных образцов.
Ключевые слова: природные цеолиты, клиноптилолит, стильбит, механохимическая активация, электропровод-
ность, гидросульфат калия
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1. Введение
Уникальная микропористая структура и ио-

нообменные свойства обуславливают примене-
ние цеолитов в качестве адсорбентов, катализа-
торов, ионообменников [1–4], в электрохими-
ческих устройствах, например, для литий-ион-
ных аккумуляторов [5–7]. Низкая ионная прово-
димость ограничивает применение природных 
цеолитов в качестве твердых электролитов [8, 9]. 
Повысить их ионную проводимость можно с по-
мощью химической модификации, термической 
обработки и механоактивации в высокоэнерге-
тических аппаратах [10–13]. Механическое воз-
действие на твердое вещество приводит к умень-
шению и деформации частиц без использования 
высоких температур и агрессивных химических 
реагентов [14–16]. Образующиеся дефекты и на-
рушения кристаллической решетки создают до-
полнительные вакансии и междоузлия, способ-
ствуют увеличению концентрации и подвиж-
ности ионов-носителей заряда [8, 10]. При этом 
образование аморфной фазы может обеспечить 
более высокую ионную проводимость по сравне-
нию с кристаллической фазой [10, 17, 18]. 

Механическая обработка цеолитов в присут-
ствии кислых солей щелочных металлов приво-
дит к сложным структурным изменениям [11]. 
Интенсивное механическое воздействие вызы-
вает уменьшение размеров кристаллитов, уве-
личение удельной поверхности, внедрение ио-
нов щелочного металла из кислой соли в струк-
туру цеолита [19]. Электрические свойства меха-
ноактивированных цеолитов, содержащих кис-
лые соли щелочных металлов, существенно от-
личаются от свойств исходных материалов [11, 
19]. Ионная проводимость увеличивается на не-
сколько порядков в зависимости от типа цео-
лита, кислой соли, условий механоактивации и 
температуры [19]. В механоактивированных це-
олитах увеличение концентрации ионов щелоч-
ного металла и дефектообразование способст-
вуют повышению ионной проводимости [8, 12]. 
Контроль количества дефектов в цеолитах име-
ет решающее значение для применения в нако-
пителях энергии [20]. Обнаружено [19], что элек-
тропроводность спрессованных образцов, полу-
ченных посредством совместной механохими-
ческой активацией клиноптилолит-стильбито-
вой или клиноптилолитовой пород с гидрофос-
фатом калия, составляет ~ 10–5–10-6 См·м–1 при 
25 ºС. Гидросульфат калия является хорошим 
ионным проводником (рис. 1) с возможностью 
стабилизации в этом соединении аморфного со-

стояния [21], но при этом хрупким и химически 
недостаточно устойчивым. Свойства гидросуль-
фата калия в нанокомпозитных твердых элек-
тролитах (1-x)KHSO4-xSiO2 зависят от размера 
частиц и пор диоксида кремния [21]. Высоко- и 
микропористые цеолиты механически и терми-
чески стабильны, также являются подходящей 
матрицей для инкапсулирования проводящих 
компонентов [5, 6]. Ионы-гости могут влиять на 
протонную проводимость благодаря синергети-
ческому эффекту характеристик пор и концент-
рации ионов [7]. Совместная механическая акти-
вация природного цеолита с гидросульфатом ка-
лия окажет влияние на структуру, дисперсность, 
морфологию, физические и электрофизические 
свойства полученного композита. 

Цель настоящего исследования заключается в 
получении минеральных порошков с улучшенны-
ми электрофизическими свойствами посредст-
вом кратковременной механической активации 
смесей в разных соотношениях природных цео-
литов клиноптилолитов с гидросульфатом калия.

2. Экспериментальная часть
2.1. Материалы

Природные цеолитовые породы [22] клиноп-
тилолит-стильбитовая (I) и клиноптилолитовая 
(II) (Холинское и Шивыртуйской месторождения, 
Россия) предварительно измельчали с помощью 
дробилки, а гидросульфат калия (d) (квалифика-
ция «чда», ГОСТ 4223) использовали без какой-
либо обработки.

Рис. 1. Температурные зависимости проводимости 
гидросульфата калия (метод комплексного импе-
данса, импедансметр ВМ-507, n = 5 Гц – 500 кГц, 
серебрянные электроды, режим охлаждения, воз-
дух, 2 К/мин) [21]
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Отнесение полос поглощения в ИК-спектре 
КНSО4, n, см–1: 2978; 2884; 2834; 2484; 2417 (Н2О; 
OH в HSО4); 1767; 1701; (ОН связ. с HSО4); 1651; 
1620 (Н2О); 1454; 1317; 1284; 1175 (S-O-H); 1071; 
1007; 883; 853 (SО4); 665; 614; 577 (SО4); 453. Про-
водимость таблетированных механоактивиро-
ванных образцов клиноптилолит-стильбитовой 
и клиноптилолитовой пород при 25 °С прини-
мает значения ~ 10–6–10–9 См·м–1 [23].

Модифицированные минеральные образцы 
получали смешиванием порошков клиноптило-
литов с размером частиц не более 0.5 мм с 25, 
33, 50 мас. % гидросульфата калия и последую-
щей механоактивацией их в течение 3, 5, 7 мин 
в истирателе вибрационном чашевом ИВЧ-3 по 
методике, подробно описанной в работе [19].

2.2. Методы исследования
Формы и размеры частиц исследовали мето-

дом электронной микроскопии (растровый элек-
тронный микроскоп JSM-6510LV JEOL, Япония). 
Элементный состав определяли рентгеновским 
энергодисперсионным спектрометром INCA 
Energy 350 (Oxford Instruments, Великобритания).

Состав фаз изучали с использованием по-
рошковой дифракции (дифрактометр ДРОН‑3, 
CuKα-излучение, Ni-фильтр, U = 25 кВ, I = 20 мА, 
2θ = 3–55°, 1 °/мин). Полуколичественный ана-
лиз проводили методом корундовых чисел. Спо-
собом, описанным в работе [19], вычисляли от-
носительную степень кристалличности клиноп-
тилолита (kотн).

Изменения массы ~ 20 мг минеральных 
образцов при нагревании в платиновых тиглях 
в области от 30 до 850 °C изучали в динамиче-
ской атмосфере аргона при скорости нагрева 
10  °C/мин (синхронный термоанализатор STA 
449F1, NETZSCH, Германия). Кажущуюся энер-
гию активации дегидратации (Еа) в области тем-
ператур от 50 до 150 °C рассчитывали по урав-
нению Аррениуса, как в работе [24].

Удельную площадь определяли с помощью 
прибора Т-3 (Товарова) [14]. Гранулометриче-
ский состав порошков изучали с помощью сито-
вого анализа, а их насыпную плотность (ρн) из-
меряли методом гравиметрии. Истинную плот-
ность (ρи) находили пикнометрическим мето-
дом с керосином ТС-1 в качестве рабочей жид-
кости. Пористость слоя (eсл) вычисляли по урав-
нению [19]:

eсл = [1 – (1/rн·rи)]·100 %,		        (1)

Структуру минералов анализировали с при-
менением инфракрасного Фурье-спектрометра 

SHIMADZU FTIR-8400S в интервале частот 4000–
400 см–1 в таблетках с KBr. 

Образцам придавали таблетированную фор-
му (диаметр 10 мм и толщина 3–4 мм) на прессе 
ИП-1А-1000. Объемную проводимость измеря-
ли с помощью тераомметра Е6-13А (влажность 
воздуха 26 %, U = 100 В, трехэлектродная схема, 
t = 25÷100 °C погрешность 5 %) [19]. Энергию ак-
тивации проводимости (Еакт) рассчитывали гра-
фически по линейной зависимости натурально-
го логарифма электропроводности от обратной 
температуры.

Параметры и свойства модифицированных 
гидросульфатом калия цеолитов клиноптилоли-
тов, подвергнутых механоактивации, сопостав-
ляли с аналогичными характеристиками при-
родных цеолитов, обработанных в идентичных 
условиях без добавок и с гидрофосфатом калия 
[19]. Маркировка образцов состоит из типа по-
роды (I, II), содержания соли (dx, где х = 25, 33, 50) 
и, через тире, времени воздействия в минутах 3, 
5, 7 (соответствуют дозам энергии равным 2.16, 
3.60, 5.04 кДж/г).

3. Результаты и обсуждение
3.1. Исследование морфологии и химического 
состава

Модифицированные гидросульфатом калия 
клиноптилолит-стильбитовые породы харак-
теризуются сложным рельефом поверхности, 
сформированной полидисперсными агрегата-
ми частиц неправильной формы (рис. 2). После 
трехминутной механической обработки на СЭМ-
изображении поверхности порошка наблюдают-
ся микронные агрегаты размерами 46×23; 44×21; 
42×33 (Id33-3), а после семи минут – 29×23; 25×21; 
24×30 (Id33-7). Замена в составе клиноптилолит-
стильбитовой на клиноптилолитовую породу не 
оказывает существенного влияния на морфо-
логию поверхности, однако увеличивается раз-
мер наибольших агрегатов 41×53; 30×27; 26×17 
(IId33-7). Повышение содержания соли в два раза 
практически не влияет на размеры агрегатов ча-
стиц – 40×44; 21×25; 17×23 (IId25-5) 45×25; 25×14; 
16×22 (IId50-5), не исключая возможности обра-
зования квазисферических агломератов в слу-
чае содержания гидросульфата калия 25 мас. %. 
Значимое отличие имеет изображение поверх-
ности порошка Id50‑7 с крупными окатанными 
агломерационными образованиями частиц раз-
мерами 60×95; 57×81; 54×42 мкм. Данные элек-
тронной микроскопии показали, что механиче-
ское ударно-сдвиговое воздействие в среде воз-
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духа способствует как диспергированию, так и 
формированию агрегативно-агломерационных 
структур минеральных частиц. Чтобы получить 
качественный для прессования порошок, дли-
тельность механической обработки должна со-
ставлять 7 мин, этому времени соответствует 
доза энергии 5.04 кДж/г.

Среднее содержания оксидов в массовых 
процентах и вычисленный силикатный модуль 
указывают на принадлежность природных цео-
литов к высококремнистым (табл. 1). Силикат-
ный модуль образцов из клиноптилолит-стиль-
битовой породы составляет 10–11, в то время как 
для образцов из клиноптилолитовой породы – 

8–9. В результате увеличения дозы энергии с 2.16 
до 5.04 кДж/г (Id33-3 и Id33-7) незначительно 
повышается силикатный модуль, а значит сни-
жается сила и число кислотных центров. Увели-
чение содержания гидросульфата калия в соста-
вах образцов ожидаемо приводит к увеличению 
концентрации К2О и SO3, а также уменьшению 
концентрации Na2O. Повышение дозы механи-
ческой энергии будет приводить к увеличению 
подвижности внекаркасных гидратированных 
катионов в системе алюмокремнекислородно-
го каркаса. Это возможно не только благодаря 
увеличению концентрации катионов K+, но и за 
счет изменения степени их гидратации, благо-

Рис. 2. СЭМ-изображения отдельных образцов: I – клиноптилолит-стильбитовая порода; II - клинопти-
лолитовая порода; 25, 33, 50 – содержание гидросульфата калия (d), мас. %; 3, 5, 7 – длительность меха-
нической обработки, мин
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даря преобразованию механической энергии в 
тепловую вследствие локального разогрева при 
механохимической активации.

3.2. Изучение фазового состава
Рентгеновские дифрактограммы, механоак-

тивированных (I5, I7, II5, II7) и механохимически 
модифицированных гидросульфатом калия кли-
ноптилолитовых пород (Id50-7, Id33-7, IId50‑5, 
IId33-7, IId25-7) представлены на рис. 3. Измене-
ния интенсивностей и положения дифракцион-
ных пиков отражают трансформации в кристал-
лической структуре клиноптилолита после меха-
нической обработки. На рентгенограммах меха-
ноактивированных с кислой солью клиноптило-
литов по сравнению с механоактивированными 
без добавок наблюдается повышение интенсив-
ности рефлексов в 1.3–1.9 раз. Аморфное гало в 
области 2θ = 10–35o  (Id33-7, IId33-7) свидетельст-
вует о разупорядочении кристаллической струк-
туры. Механохимическая обработка природных 
цеолитов совместно с солью приводит к измене-
нию их фазового состава (рис. 3). Так, на дифрак-
тограммах образцов Id50-7, Id33-7 и IId50-5 ре-
гистрируются рефлексы высокотемпературных 
фаз кристобаллита и тридимита вместо ожидае-
мого примесного кварца (табл. 2). Это указывает 
на полиморфный переход кварца в кристобалит 
и согласуется с данными о продуктах механоак-
тивации кварцевого сырья [25]. Относительная 
степень кристалличности клиноптилолита воз-
растает у образцов Id33-7 и IId25-5 и снижает-
ся у образцов Id50-7, IId50-5 и IId33-7. Выявле-
но, что соль присутствует после механоактива-
ции совместно с стильбит-клиноптилолитовой и 
клиноптилолитовой породами в виде K3H(SO4)2 
и KHSO4 соответственно. Известно, что особен-
ностью первой из указанных солей является раз-
упорядочение системы водородных связей при 
фазовых переходах и высокая протонная прово-
димость [26]. Помимо этого, на дифрактограм-

мах модифицированных гидросульфатом калия 
клиноптилолит-стильбитовых образцов нет кри-
сталлических фаз стильбита и микроклина. По-
вышение электрической проводимости связа-
но с аморфизацией, которая подтвердилась по-
нижением относительной степени кристаллич-
ности клиноптилолита (образцы Id50-7, IId33-7, 
IId50-7). В то же время кристаллическая нанопо-
ристая структура клиноптилолита предоставля-
ет каналы для эффективной диффузии катионов 
металлов и необходимую механическую проч-
ность. Очевидно здесь важными будут не мак-
симальные, а оптимальные значения степени 
кристалличности клиноптилолита в образцах.

3.3. Исследование термической 
устойчивости

На ДСК-кривых механоактивированных це-
олитов наблюдаются эндоэффекты в темпера-
турной области 172–202 оС [22], которые объ-
ясняются удалением сорбционной воды. Ана-
логичные кривые механоактивированных сов-
местно с гидросульфатом калия цеолитов в эк-
вимассовых соотношениях содержат ряд эндо-
эффектов (рис. 4). При термическом разложении 
гидросульфата калия возможно протекание ре-
акций (2) – (4).

2KHSO4 
240 oCæ Æææ  K2SO4 + H2SO4,	         (2)

2KHSO4 
320 340-æ Æææææ

>C  K2S2O7 + H2O,	          (3)

K2S2O7 
>æ Ææææ600 >C  K2SO4 + SO3.	          (4)

Согласно результатам рентгенофазового ана-
лиза, в составах образцов регистрируются кри-
сталлы соли K3H(SO4)2 (табл. 2). Тогда эндоэф-
фекты при 386 и 392 ºС (IId50-3, Id50-3) мож-
но отнести к фазовому переходу соли K3H(SO4)2 
в высокотемпературную тетрагональную фазу 
[26]. Эндотермические эффекты при 195–204 ºС 
с четкой формой обусловлены структурным фа-

Таблица 1. Среднее содержание оксидов и силикатный модуль для отдельных образцов

Образцы
Среднее содержание основных компонентов в минеральных образцах, мас. %

Mc = Si/AlSiO2 Al2O3 Na2O CaO Fe2O3 K2O SO3 MgО CuО ZnО

Id33-3 52.2±7.4 8.8±0.9 1.3±0.2 1.2±0.2 0.7±0.2 15.6±2.1 18.4±1.8 0 1.1±0.5 0.8±0.3 10.1
Id33-7 47.1±7.6 7.6±0.4 1.1±0.3 1.0±0.3 0.8±0.5 19.4±5.2 19.6±2.5 0 2.1±1.4 1.2±0.6 10.5
Id50-7 34.3±1.6 6.0±0.4 0.9±0.2 0 0.5±0.1 25.3±2.9 31.5±3.4 0 0.9±0.6 0.6±0.5 9.7
IId25-5 63.8±2.9 13.2±0.7 1.6±0.2 2.2±0.2 2.0±0.4 6.8±1.9 7.6±2.9 1.0±0.1 1.0±0.2 0.7±0.1 8.2
IId33-7 47.9±4.6 9.6±0.7 1.2±0.1 2.1±0.3 1.9±0.2 14.3±1.6 19.5±1.8 0.8±0.1 1.6±0.7 1.1±0.5 8.4
IId50-5 37.3±4.0 7.3±0.6 0.8±0.1 1.7±0.2 1.9±1.1 20.3±2.0 26.1±2.1 0.8±0.1 2.3±2.3 1.5±1.5 8.7

I – клиноптилолит-стильбитовая порода; II - клиноптилолитовая порода; 25, 33, 50 – содержание гидросульфа-
та калия (d), мас. %; 3, 5, 7 – длительность механической обработки, мин
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Рис. 3. Рентгеновские дифрактограммы цеолитных образцов: I – клиноптилолит-стильбитовая порода; 
II – клиноптилолитовая порода; 25, 33, 50 – содержание гидросульфата калия (d), мас. %; 3, 5; 7 – дли-
тельность механической обработки, мин; Cl – клиноптилолит; G – гейландит; St – стильбит; М – микро-
клин; Q – кварц; C – кристобалит; Т – тридимит; Мс – меркаллит; Hs – гидросульфат калия
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зовым переходом и беспорядком в кристалли-
ческой решетке KHSO4 [27]. Их можно отнести 
к процессу плавления соли в механоактивиро-
ванной цеолитной матрице. После семиминут-
ной механической обработки наблюдается оче-
видное включение гидросульфатного аниона в 
систему водородных связей, и указанный эндо-

эффект в области 381–390 ºС уже не регистри-
руется. Более того, наблюдаются уменьшенные 
в 2–3 раза эндотермические эффекты при 195 ºС 
(Id50-7) и 174 ºС (IId50-7). Следует отметить со-
хранение эндоэффектов в температурном ин-
тервале от 560 до 650 ºС во всех образцах цеоли-
тов с добавками гидросульфата калия.

Таблица 2. Состав фаз, межплоскостные расстояния в области 2q = 20–25°, относительные 
интенсивности дифракционных рефлексов клиноптилолита и относительная степень его 
кристалличности 

Образцы Фазовый состав d, Å I/I0 kотн, %

I-7 St; Cl; M; Q 3.975 3.786 3.427 253 137 171 100
Id33-7 Hs; Cl; G; C 3.974 – 3.320 402 0 268 119
Id50-7 Hs; T; Cl 3.981 3.869 3.426 209 90 49 62

II-5 Cl 3.971 3.780 3.419 1000 297 484 100
IId25-5 Cl; Mc; Q 3.979 3.862 3.417 1000 465 427 106

II-7 Cl 3.982 – 3.434 1000 0 579 100
IId33-7 Mc; T; Cl 3.962 3.787 3.411 941 202 334 94
IId50-7 Mc; Cl; T 3.972 3.863 3.342 369 169 74 39

Cl: [00-025-1349] (Na,K,Ca)6(Si,Al)36O72·20H2O; G: [00-019-0211] CaAl2Si7O18·7.5H2O; 
St: [00-022-0518] Са4Al9Si27O72·32H2O; M: [00-019-0932] KAlSi3O8; Q: [01-085-0794] SiO2; C: [01-082-0512] SiO2; 

T: [01-083-1339], [00-016-0152] SiO2; Mc: [01-072-1247] KHSO4; Hs: [00-052-0406] K3H(SO4)2; I – клиноптилолит-стиль-
битовая порода; II – клиноптилолитовая порода; 25; 33; 50 – содержание гидросульфата калия (d), мас. %; 5, 7 – 
длительность механической обработки, мин

Рис. 4. Кривые дифференциальной сканирующей калориметрии отдельных образцов: I – клиноптило-
лит-стильбитовая порода; II – клиноптилолитовая порода; 50 – содержание гидросульфата калия (d), 
мас. %; 3, 7 – длительность механической обработки, мин
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Плавный ход термогравиметрических кри-
вых механоактивированных цеолитов характе-
рен для минерала клиноптилолита [19]. ТГ‑кри-
вые модифицированных гидросульфатом калия 
цеолитов, как и в случае модификации триги-
дратом гидрофосфата калия [19], имеют две - 

три ступени потери веса (рис. 5). Выявлено, что 
остаточная масса механоактивированных эк-
вимассовых составов клиноптилолитов с до-
бавками кислой соли при 850 ºС достигает 76–
79 % (табл. 3). Процесс испарения сорбционной 
воды из исследуемых порошков с высокими ко-

Рис. 5. Термогравиметрические кривые отдельных образцов: I – клиноптилолит-стильбитовая порода; 
II – клиноптилолитовая порода; 50 – содержание гидросульфата калия (d), мас. %; 3, 7 – длительность 
механической обработки, мин

Таблица 3. Минимумы ДТГ-кривых, потери массы при 850 оС, кажущаяся энергия активации 
дегидратации в уравнении Аррениуса в соответствии с отдельными моделями формальной 
кинетики: одномерной диффузии (D1), Гинстлинга–Броунштейна (D4), Бройдо

Образцы ДТГmin, oC Dm850, %
Модель D1 Модель D4 Бройдо*

R2 Еа, 
кДж·моль–1 R2 Еа, 

кДж·моль–1 R2 Еа, 
кДж·моль–1

Ic50-3 93; 144; 307 9.95* 0.9688 34.19 0.9774 36.58 0.9883 30.74
Id50-3 119; 218 21.04 0.9936 43.20 0.9932 43.59 0.9994 32.17
Ic50-7 110; 142; 309 8.39* 0.9971 49.49 0.9955 51.27 0.9976 37.42
Id50-7 117; 169 21.40 0.9962 51.12 0.9960 51.60 0.9999 36.25
IIc50-3 140; 303 9.31 0.9983 45.48 0.9971 47.05 0.9978 35.10
IId50-3 121; 207 22.03 0.9760 42.20 0.9751 42.71 0.9938 31.84
IIc50-7 140; 293 10.00 0.9998 43.08 0.9994 44.94 0.9983 34.35
IId50-7 115; 174 23.57 0.9908 55.04 0.9902 55.79 0.9980 38.62

* – потери массы приведены при 700 оС [19], энергия активации дегидратации образцов с тригидратом гидро-
фосфата калия (с) рассчитана нами ранее [19]; I – клиноптилолит-стильбитовая порода; II – клиноптилолитовая 
порода; 50 – содержание гидросульфата калия (d), мас. %; 3, 7 – длительность механической обработки, мин
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эффициентами детерминации (R2 ≥ 0.94) можно 
описать формально-кинетическими уравнени-
ями Бройдо и диффузионных моделей (табл. 3). 
Кажущаяся энергия активации дегидратации в 
температурной области 30–150 ºС для образцов 
механоактивированных совместно с гидросуль-
фатом калия в течение 3 и 7 минут сопостави-
мы с аналогичными показателями для цеоли-
тов, модифицированными тригидратом гидро-
фосфата калия [19]. Кроме того, значения Еа на 
~ 50 и на ~ 10–17 % ниже по сравнению с таки-
ми же показателями для контрольных образцов 
(I3, I7, II3, II7).

3.4. Анализ структуры
ИК-спектры исследуемых образцов (рис. 6) 

имеют характерные полосы поглощения, связан-
ные с колебаниями связей Si-O-Si, Si-O-Al, О-Н, 

а также с наличием молекул воды в цеолитных 
каналах [22]. Полосы поглощения с максимума-
ми в областях 1283–1287 и ~ 850; 885 см–1 при-
надлежат валентным колебаниям S-O и S-O-H 
групп [27, 28], а при 577–579 см–1 – деформаци-
онным колебаниям О-S-O и ножничным колеба-
ниям S-O-H групп [27]. Увеличение содержания 
кислой соли в составах минеральных образцов 
сопровождается увеличением числа полос по-
глощения в области 3050–2450 см–1, связанных 
с сульфатными группами, а также увеличением 
интенсивности полос поглощения, принадлежа-
щих ОН-группам, связанным водородными свя-
зями. В ИК-спектрах образцов из клиноптило-
лит-стильбитовых пород, содержащих 25 мас. % 
гидросульфата калия, повышение дозы меха-
нической энергии сопровождается смещением 
ряда полос поглощения. Наблюдается смещение 

Рис. 6. Инфракрасные спектры цеолитных образцов: I – клиноптилолит-стильбитовая порода; II – кли-
ноптилолитовая порода; 25, 33, 50 – содержание гидросульфата калия (d), мас. %; 3, 5, 7 – длительность 
механической обработки, мин
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в коротковолновую область полос, принадлежа-
щих валентным колебаниям ОН-групп, и в длин-
новолновую область полос поглощения асимме-
тричных валентных колебаний SO4 при 1169 см–1 
(Id25-x, где х = 3, 5, 7), а также в длинноволновую 
область полос поглощения валентных колеба-
ний Si-O-Si (IId25-x, где х = 3, 5, 7). В ИК-спект-
рах образцов из клиноптилолитовой породы (II) 
появляются гидросульфатные полосы поглоще-
ния с максимумом при 885–887 см–1, и наблюда-
ются небольшие смещения полос поглощения в 
длинноволновую область. Увеличение содержа-
ния кислой соли в цеолитной матрице приводит 
к значимым изменениям прежде всего в инфра-
красной области колебаний ОН-групп. Водород-
ные связи полимерной цепи HSO4

- играют суще-
ственную роль в процессе проводимости и в по-
лиморфном поведении КHSO4 [29]. Дозы меха-
нической энергии 2.16 и 3.60 кДж/г вызывают 
близкие друг к другу структурные изменения, 
а уже семиминутная механическая обработка 
(D = 5.04 кДж/г) приводит к более значимым сме-
щениям полос поглощения. Больше всего водо-
родносвязанных ОН-групп имеется в ИК-спект-
рах порошков с эквимассовым составом гидро-
сульфата калия и цеолита (Id50-х, IId50-x, где 
х =3, 5, 7). В этих случаях, наблюдаются преобра-
зование полосы поглощения при 883–887 см–1 в 
дублеты, например, 887 и 851 см–1 (Id50-3). По-
лосы поглощения, принадлежащие клинопти-
лолиту при 604–601 см–1, уступают место поло-
сам поглощения соли при 579–577 см–1 (Id50-х, 
где х =3, 5, 7; IId50-x, где х =3, 5). Учитывая про-
тонную проводимость гидросульфата калия и 
важную роль в формировании каналов прово-
димости водородных связей, можно ожидать 
улучшенных электрофизических свойств у ми-
неральных образцов с эквимассовым составом.

3.5. Исследование физических свойств
Известно, что присутствие молекул воды в 

природных цеолитах способствует увеличению 
проводимости [30]. При ударно-сдвиговом меха-
ническом воздействии на воздушно-сухие кли-
ноптилолитовые породы наблюдается локаль-
ный нагрев, который активизирует процесс де-
сорбции воды из внутренних пор цеолитов [19]. 
Это объясняет снижение влажности на ~ 9 % для 
механоактивированных природных цеолитов 
(I3, I7, II3, II7) (табл. 4). Повышение дозы меха-
нической энергии с 2.16 до 3.60 кДж/г вызывает 
изменение кристаллической структуры клиноп-
тилолита, при котором конституционная вода из 
силанольных групп и выделяемая при взаимо-
действии их с гидросульфатом калия преобра-
зуется в сорбционную. Вследствие этого повы-
шается влагосодержание (W, %) во всех моди-
фицированных кислой солью цеолитных образ-
цах, кроме Id50-5. При дальнейшем повышении 
дозы энергии до 5.04 кДж/г наблюдается сни-
жение гигроскопической влаги, за исключени-
ем IId50‑7. Снижение концентрации соли с 50 до 
25 мас.% в модифицированных цеолитах име-
ет результатом увеличение гигроскопичности, 
за исключением IId25-7. Это можно объяснить 
формированием новой системы Н-связывания 
анионов соли и силанольных групп с участием 
молекул воды, а именно: S-О-Н…Н-О-Н…Н-О-Si.

Увеличение дозы подведенной удельной 
механической энергии на 2.88 кДж/г способст-
вует возрастанию насыпной плотности образ-
цов на ~ 6 % (IId33-7) и 13–14 % (Id50-7, IId50-7, 
IId25‑7). Истинная плотность порошков изме-
няется или практически не изменяется (Id25‑7, 
IId50‑7, IId25-7), или увеличивается на 5–6  % 
(Id50‑7, Id33-7), уменьшается на 12 % (IId33‑7). 
При этом пористость слоя составляет от 40 % 

Таблица 4. Физические характеристики модифицированных цеолитных образцов

Образцы ρн, г/см3 ρи, г/см3 eсл, % W, % Sуд, см2/г Образцы ρн, г/см3 ρи, г/см3 eсл, % W, % Sуд, см2/г

Id50-3 1.16 2.06 44 3.3 4870 IId50-3 1.10 2.18 58 3.4 5410
Id50-5 1.28 2.16 41 3.0 5950 IId50-5 1.19 2.11 60 4.3 3950
Id50-7 1.33 2.17 39 3.0 2630 IId50-7 1.25 2.22 64 4.5 3840
Id33-3 1.15 2.10 45 3.7 4710 IId33-3 0.88 2.37 52 4.8 10140
Id33-5 1.15 1.96 41 4.5 3480 IId33-5 0.98 2.04 50 5.0 6480
Id33-7 1.09 2.23 44 3.7 6200 IId33-7 0.93 2.08 48 5.0 7140
Id25-3 1.05 2.05 49 4.6 6950 IId25-3 0.78 2.14 40 4.7 13300
Id25-5 1.08 2.09 48 5.5 7120 IId25-5 0.81 2.14 42 4.9 13800
Id25-7 1.03 2.09 51 4.2 8500 IId25-7 0.88 2.15 47 4.3 11650

I – клиноптилолит-стильбитовая порода; II – клиноптилолитовая порода; 25, 33, 50 – содержание гидросуль-
фата калия (d), мас. %; 3, 5, 7 – длительность механической обработки, мин
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(IId25-3) до 64–65 % (IId50-7, Id50-5, Id50-7). По-
добные изменения объясняются процессами 
диспергирования-агломерации, образованием 
аморфной фазы, дегидратацией, перестройкой 
системы пор в результате механохимической ак-
тивации. Удельная площадь поверхности моди-
фицированных солью клиноптилолитовых по-
род после 7 минут механоактивации уменьша-
ется в 1.4 раза по сравнению с 3 минутами тако-
го воздействия (IIdx-3 и IIdx-7, где х = 25, 33, 50, 
табл. 4). Эта же характеристика клиноптилолит-
стильбитовых пород, напротив, увеличивается 
в 1.2–1.3 раза (Id25-7, Id33-7), за исключением 
образца Id50-7, удельная поверхность которо-
го в сравнении с Id50-3 уменьшилась в 1.9 раз. 

Гранулометрический состав и электрофизи-
ческие характеристики отдельных механически 

прочных модифицированных гидросульфатом ка-
лия и механоактивированных цеолитных образ-
цов представлены в табл. 5. Увеличение времени 
механоактивационного воздействия ожидаемо 
приводит к повышению массовой доли частиц 
размерами 71; 80 (Id50-5) и 140; 320 мкм (IId50-5). 

На рис. 7 приведена зависимость электропро-
водности таблетированных образцов от темпера-
туры в аррениусовских координатах. Наивысшее 
значение электропроводности среди исследуе-
мых образцов при 25 и 100 ºС имеет IId50‑3 (табл. 
5). Энергии активации проводимости для меха-
ноактивированных без добавок и с гидросульфа-
том калия клиноптилолит-стильбитовых пород 
составили 0.17–0.18 [19] и 0.70–0.75 эВ. Для ана-
логичных образцов из клиноптилолитовой поро-
ды такие же характеристики равны 0.60–0.63 [19] 

Таблица 5. Гранулометрический состав, удельная электропроводность при 25 и 100 °С, энергии 
активации проводимости, коэффициент детерминации зависимости ln (s) = f (1/Т)

Образцы
Содержание фракций микронных частиц, 

мас. %

Электропроводность при 
разных температурах (оС): 

s·106, См·м–1 Еа, эВ R2

≥ 630 320 140 80 ≤ 71 25 100
Id50-3 0.4 5.0 44.3 47.4 2.9 0.25 74.34 0.74 0.9379
Id50-5 1.9 7.9 29.7 50.4 10.1 0.34 88.84 0.75 0.9785
Id33-3 6.1 5.0 25.5 54.7 8.8 0.45 57.94 0.70 0.9280
IId50-3 0.5 4.9 54.6 35.6 4.3 0.85 426.47 0.73 0.8925
IId50-5 0.4 7.1 70.1 21.1 1.3 0.62 145.66 0.66 0.9063
IId33-3 1.1 4.9 81.0 10.3 2.8 0.08 71.48 0.91 0.9027

Еа – энергия активации проводимости в температурном интервале 25 –  100 оС; R2 – коэффициент детерминации 
линейной зависимости ln σ = f(1/T); I – клиноптилолит-стильбитовая порода; II – клиноптилолитовая порода; 33, 
50 – содержание гидросульфата калия (d), мас. %; 3, 5 – длительность механической обработки, мин

Рис. 7. Зависимости логарифма удельной проводимости от обратной температуры для прессованных 
образцов: I – клиноптилолит-стильбитовая порода; II - клиноптилолитовая порода; 33, 50 – содержание 
гидросульфата калия (d), мас. %; 3, 5 – длительность механической обработки, мин
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и 0.66–0.91 эВ. Коэффициенты детерминации ли-
нейных зависимостей ln s = f(1/T) при этом имеют 
значения от 0.90 до 0.98. У клиноптилолитовой 
породы, модифицированной гидросульфатом 
калия в эквимассовом соотношении после ме-
ханоактивации с дозой энергии 2.16 кДж/г, реги-
стрируется наивысшее значение удельной элек-
тропроводности s = 4.26·10–4 См·м–1. Это соизме-
римо с проводимостью для подобного образца, 
модифицированного тригидратом гидрофосфата 
калия [19]. Однако энергия активации проводи-
мости в случае гидросульфата калия у образцов 
выше почти в 2 раза. 

4. Заключение
Из воздушно-сухой смеси клиноптилолит-

стильбитовой (клиноптилолитовой) пород и ги-
дросульфата калия в соотношениях 3:1, 2:1, 1:1 
получены минеральные порошки в виброисти-
рателе ИВЧ-3 с ударно-сдвиговым воздействием 
и дозой энергии 2.16, 3.60, 5.04 кДж/г. Прессован-
ные образцы при 25 ºС имели значения удельной 
электропроводности порядка 10–6 См·м–1. Крат-
ковременное механическое воздействие в тече-
ние 3–7 мин на клиноптилолитовые породы сов-
местно с солью привело к аморфизации стильби-
та и микроклина, полиморфному переходу квар-
ца в кристобаллит и тридимит, а также к разно-
му фазовому состоянию соли (KHSO4, K3H(SO4)2). 
При эквимассовом соотношения компонентов в 
составах и дозе механической энергии 5.04 кДж/г 
сформировалась система соединенных водород-
ными связями силанольных групп и протонсо-
держащих гидросульфатных анионов, представ-
ляющих возможные каналы проводимости. При 
25 и 100 °С электропроводность образца экви-
массового состава на основе клиноптилолитовой 
породы и гидросульфата калия с дозой энергии 
2.16 кДж·г–1 составляет ~8.5·10-7 и 4.3·10–4 См·м–1 
соответственно. Ранее полученные результаты 
указывают, что ионы HPO4

2– лучше встраивают-
ся в структуру цеолита и эффективнее перено-
сят заряд, чем HSO4

–. Цеолиты с добавкой гидро-
сульфата калия из-за наличия взаимодействия 
и высокой гигроскопичности менее перспектив-
ны для практического использования в электро-
химических устройствах в сравнении с цеолита-
ми с добавкой тригидрата гидрофосфата калия.
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