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Аннотация
Объект исследования – наноструктуры на основе оксида палладия (II).
Цель работы – установление влияния условий синтеза на фазовый состав и текстуру тонких пленок оксида палла-
дия (II), синтезированных посредством оксидирования в атмосфере кислорода исходных ультрадисперсных слоев 
металлического палладия различной толщины на подложках SiO2/Si(100).
Выводы: Установлено, что оксидирование исходных ультрадисперсных слоев металлического палладия толщиной 
~ 95, ~ 190 и ~ 290 нм в атмосфере кислорода в интервале температур Tox = 873–1123 К приводит к формированию 
гомогенных поликристаллических пленок оксида палладия (II) на подложках SiO2/Si (100). Показано, что поверх-
ностные слои пленок PdO/SiO2/Si (100) имеют выраженную текстуру (001), степень которой возрастает с ростом 
температуры оксидирования
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1. Введение
В настоящее время различные типы бинар-

ных, тройных и более сложных металлоксидных 
полупроводников интенсивно изучают в качест-
ве материалов, пригодных для обнаружения га-
зов с окислительными свойствами. В большин-
стве случаев для этой цели традиционно исполь-
зуют полупроводники n-типа проводимости, та-
кие как SnO2 [1–3], ZnO [4, 5], In2O3 [6] и TiO2 [7]. 
Однако в последнее десятилетие началось из-
учение сенсорных свойств широкозонных ме-
таллоксидных полупроводников с p-типом про-
водимости и композитов на их основе [8]. Были 
синтезированы сенсорные материалы на осно-
ве наноструктур Cu2O [9], NiO [10], пористых ми-
кросфер NiO [11] и наноструктур на основе окси-
да меди (II) [12]. Наиболее перспективными для 
обнаружения окисляющих газов считаются на-
нокомпозиты с p-n-гетеропереходом [13]. Иссле-
дования ученых Воронежского государственного 
университета в целом ряде публикаций доказа-
ли эффективность использования нанокристал-
лических и тонких пленок оксида палладия (II), 
характеризующихся p-типом проводимости [14].

Исследования физико-химических свойств 
металлоксидных полупроводников n-типа про-
водимости привели к созданию достаточно эф-
фективных газовых сенсоров на их основе [15]. 
Огромный успех при использовании газовых 
сенсоров на основе диоксида олова SnO2 не в по-
следнюю очередь обязан точной информации о 
природе точечных дефектов (кислородных ва-
кансиях), а также о химических и физических 
процессах с участием адсорбированных моле-
кул кислорода и анализирующих газов.

К настоящему моменту газовые сенсоры ре-
зистивного типа получают двумя способами: 
толстопленочной и тонкопленочной техноло-
гиями. При этом необходимо подчеркнуть, что 
толстопленочные газовые сенсоры формируют 
различными методами из заранее синтезиро-
ванных нанокристаллических порошков. Вслед-
ствие этого толстопленочные поликристалличе-
ские структуры в первом приближении можно 
считать изотропными. Поэтому критическими 
физико-химическими параметрами, которые 
определяют функциональные свойства сенсоров, 
являются нестехиометрия, размеры кристалли-
тов и удельная площадь поверхности. Для газо-
вых сенсоров на основе тонких пленок еще од-
ним важным критерием является морфология и 
ориентация поверхностных слоев, которые иг-
рают важнейшую роль в процессе детектирова-
ния токсичных или взрывоопасных газов [15].

Несмотря на широкое применение оксида 
палладия (II) в различных областях науки и техни-
ки, многие фундаментальные свойства этого ма-
териала изучены недостаточно, в том числе про-
цессы формирования тонких и нанокристалли-
ческих пленок. Поэтому цель настоящей работы 
– установление влияния условий синтеза на фазо-
вый состав и текстуру тонких пленок оксида пал-
ладия (II), синтезированных посредством оксиди-
рования в атмосфере кислорода исходных ультра-
дисперсных слоев металлического палладия раз-
личной толщины на подложках SiO2/Si(100). 

2. Методика эксперимента
Для синтеза тонких пленок оксида палладия 

(II) использовали процесс, состоящий из двух ста-
дий. На первой стадии методом открытого ис-
парения в вакууме были сформированы тонкие 
пленки металлического палладия. Метод откры-
того испарения в вакууме является самым про-
стым способом получения пленок различных 
материалов. В тигель из графита или тугоплав-
кого металла помещают свежеприготовленный 
порошок распыляемого вещества, подложку за-
крепляют в подогреваемом держателе, и всю си-
стему вакуумируют. Подложку нагревают до тех 
пор, пока ее температура не будет равна необхо-
димой, а затем повышают температуру испари-
теля. Когда время процесса напыления достигает 
необходимого, заслонку, разделяющую испари-
тель и подложку закрывают, после чего подложка 
с пленкой остывает в вакууме. Кроме того, часто 
применяется модернизированная технология по-
лучения пленок, в которой используются допол-
нительные испарители. В настоящей работе для 
получения тонких пленок металлического Pd ме-
тодом термического испарения в высоком ваку-
уме использовали вольфрамовые нагреватели, с 
помощью которых нагревали палладиевую фоль-
гу с содержанием основного компонента 99.99 ат. 
%. Высокий вакуум на уровне остаточного давле-
ния ~ 10–8 мм рт. ст. в рабочей камере создавали 
при помощи турбомолекулярного насоса.

Для установления режимов процесса фор-
мирования пленок палладия давление его па-
ров рассчитывали по уравнению: 

S

3

lg (Pd , )
20150

13,670 0,419lg 0,302 10 ,

P

T T
T

-

=

= - + - - ◊

Па
	 (1)

где Т – абсолютная температура, К.
Пленки металлического палладия форми-

ровали на подложках SiO2/Si (100). Толщина бу-
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ферного слоя SiO2 составляла ~ 300 нм. Буфер-
ный слой SiO2 необходим для того, чтобы пре-
дотвратить непосредственное взаимодействие 
металлического палладия с материалом под-
ложки. Оксидирование пленок металлическо-
го палладия в интервале температуры T = 970–
1070 K, выращенных на подложках Si (100) без 
буферного слоя SiO2, приводило к образованию 
силицида палладия Pd2Si [14].

Пленки металлического Pd выращивали на 
подложке SiO2/Si (100) без нагревания для того, 
чтобы получить ультрадисперсные слои с раз-
мерами кристаллитов Pd от 2 до 6 нм. Такие раз-
меры кристаллитов обеспечивают равномерное 
оксидирование с образованием оксида палладия 
(II). Толщина исходных пленок металлического 
палладия, установленная при исследовании ско-
лов гетероструктур Pd/SiO2/Si (100) методом рас-
тровой электронной микроскопии, составляла от 
95±8 нм до 300±15 нм. При выборе режимов ок-
сидирования ультрадисперсных слоев палладия 
ориентировались по тем условиям, при которых 
проводили оксидирование в атмосфере кислоро-
да пленок меньшей толщины. Режимы процесса 
оксидирования исходных пленок металлическо-
го палладия на воздухе представлены в табл. 1. 

Гетероструктуры Pd/SiO2/Si (100) помещали 
в трубчатую печь при комнатной температу-

ре и далее производили нагрев печи со скоро-
стью ~ 250 градусов в час до нужной температу-
ры. После достижения необходимой температу-
ры проводили изотермическую выдержку в те-
чение 360 и 480 минут. Как показано в табл. 1, в 
нескольких случаях, в частности, при темпера-
туре оксидирования Tox  = 773 и Tox = 973 K, про-
должительность оксидирования на воздухе со-
ставляла 360 и 480 минут. 

3. Результаты и обсуждение
Тонкие пленки PdO на подложках SiO2/Si 

(100), полученные термооксидированием в ат-
мосфере кислорода исходных ультрадисперс-
ных слоев металлического палладия толщи-
ной от 95±5 нм до 290±15 нм, исследовали ме-
тодом рентгенофазового анализа (РФА). С це-
лью повышения точности расчетов параметров 
тетрагональной решетки тонких пленок PdO 
при проведении РФА исследований использо-
вали CoKα‑излучение. Кроме того, с той же це-
лью были синтезированы тонкие пленки PdO 
на подложках SiO2/Si (100) толщиной от 95±5 до 
290±15 нм (табл. 1). Повышение толщины тонких 
пленок PdO на подложках SiO2/Si (100) должно 
привести к изменению соотношения интенсив-
ностей рефлексов оксида палладия (II) и крем-
ния. 

Таблица 1. Режимы термооксидирования в атмосфере кислорода ультрадисперсных пленок 
металлического Pd различной толщины и фазовый состав образцов (по данным РФА) после 
термообработки

Толщина исходных 
пленок Pd dPd, нм

Продолжитель-
ность отжига t, мин

Температура отжига Фазовый 
состав образцовTox, °С Tox, К

95 ± 5
95 ± 5
95 ± 5
95 ± 5
95 ± 5
95 ± 5

480
480
480
480
480
480

400
500
600
700
800
850

673
773
873
973

1073
1123

PdO + Pd*
PdO
PdO
PdO
PdO
PdO 

190 ± 10
190 ± 10
190 ± 10
190 ± 10
190 ± 10
190 ± 10 

480
480
480
480
480
480

400
500
600
700
800
850

673
773
873
973

1073
1123

Pd + PdO** 
PdO + Pd*

PdO
PdO
PdO
PdO

290 ± 15
290 ± 15
290 ± 15
290 ± 15
290 ± 15
290 ± 15

480
480
480
480
480
480

400
500
600
700
800
850

673
773
873
973

1073
1123

Pd + PdO** 
PdO + Pd*

PdO
PdO
PdO 
PdO

* Интенсивные рефлексы PdO и слабые рефлексы Pd.
** Интенсивные рефлексы Pd и несколько слабых рефлексов PdO.
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Для проведения рентгенографических 
исследований были отобраны гетероструктуры 
PdO/SiO2/Si (100), термооксидированные при 
условиях, которые позволяли синтезировать го-
могенные поликристаллические пленки окси-
да палладия (II). Полученные эксперименталь-

ные данные в виде штрих-диаграмм образцов 
PdO/SiO2/Si (100), полученных оксидировани-
ем в кислороде исходных слоев металлического 
палладия различной толщины, представлены на 
рис. 1–3. Поскольку интенсивность рефлекса Si 
(400) от подложки кремния в некоторых случаях 

Рис. 2. Рентгеновские штрих-диаграммы тонких пленок PdO на подложке SiO2/Si (100), полученных 
термооксидированием в кислороде исходного слоя палладия толщиной ~ 190±10 нм: а) при температу-
ре Tox = 873 К; б) при температуре Tox = 973 К

Рис. 1. Рентгеновская штрих-диаграмма нанокристаллической пленки PdO на подложке SiO2/Si (100), 
полученной термооксидированием в кислороде исходного слоя палладия толщиной ~ 35 нм при тем-
пературе Tox = 1073 К
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превышает интенсивность самых сильных реф-
лексов пленки оксида палладия (II) на два или 
три порядка величины, интенсивность рентге-
новских рефлексов представлена в логарифми-
ческих координатах.    

При сопоставлении рис. 1 и 2 становит-
ся очевидным тот факт, что с ростом толщи-
ны исходных ультрадисперсных слоев пал-
ладия интенсивность рентгеновских рефлек-
сов пленок оксида палладия (II) на подложках 
SiO2/Si (100) увеличивается. Кроме того, как 
видно при сравнении рис. 1 и рис. 3, для пле-
нок оксида палладия (II), полученных термоок-
сидированием исходных слоев палладия тол-
щиной ~ 190 нм при Tox = 1073 К фиксируются 
рентгеновские рефлексы на дальних углах 
дифракции, например, (202) и (212), которые 
не проявлялись на дифрактограммах пленок, 
синтезированных термооксидированием 
исходных слоев палладия толщиной ~ 35 нм. На 
дифрактограмах образцов PdO/SiO2/Si (100), син-

тезированных при Tox = 1123 К, обнаруживается 
еще один дальний рефлекс (114). 

Общий анализ рентгеновских дифракцион-
ных картин гетероструктур PdO/SiO2/Si (100), 
полученных термооксидированием исходных 
слоев палладия толщиной ~ 190 нм в интервале 
температур Tox = 873–1123 К позволяет сделать 
вывод о том, что синтезированные пленки 
оксида палладия (II) являются однофазными и 
поликристаллическими без признаков какой-
либо текстуры. Об этом свидетельствует соот-
ношение интенсивностей рентгеновских реф-
лексов, которые в большинстве случаев соответ-
ствуют аналогичным характеристикам эталона 
ASTM для порошкообразного образца оксида 
палладия (II) [42]. 

Тем не менее, необходимо отметить, что 
повышение температуры оксидирования 
проводит к повышению степени структурного 
совершенства пленок оксида палладия (II). Этот 
факт подтверждается не только повышением ин-

Рис. 3. Рентгеновские штрих-диаграммы тонких пленок PdO на подложке SiO2/Si (100), полученных 
термооксидированием в кислороде исходного слоя палладия толщиной ~ 190±10 нм: а) при температуре 
Tox = 1073 К; б) при температуре Tox = 1123 К

a

б
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тенсивности соответствующих рентгеновских 
пиков, но появлением дополнительных реф-
лексов на дальних углах дифракции с больши-
ми значениями индексов Миллера, например, 
пиков (212) и (114).

С целью установления ориентации по-
верхностных слоев образцы PdO/SiO2/Si (100) 
были изучены методом дифракции быст-
рых электронов (ДБЭ), который позволяет 
получить информацию от слоев в несколько 
нанометров. Электронограммы, полученные 
при исследовании некоторых гетероструктур/
SiO2/Si (100), представлены на рис. 4.

Сопоставление экспериментальных РФА 
данных о кристаллической структуре по всему 
объему тонких пленок PdO/SiO2/Si (100) и резуль-
татов, полученных методом ДБЭ от приповерх-
ностных слоев, позволяет сделать следующие 
выводы. Метод РФА фиксирует все рефлексы, в то 
же время, метод ДБЭ не регистрирует целый ряд 
смешанных рефлексов (hkl), характерных для го-
могенной поликристаллической пленки оксида 
палладия (II). Кроме того, с ростом температуры 
оксидирования от Tox = 873 К и Tox = 1073 К наря-
ду с исчезновением смешанных рефлексов (hkl), 
на электронограммах наиболее интенсивными 
становятся рефлексы (002) и (004). Все это сви-
детельствует о том, что в отличие от всего объ-
ема тонких поликристаллических пленок окси-
да палладия (II) поверхностные слои толщиной 
в несколько нанометров приобретают ярко вы-
раженную ориентацию (001). 

Кристаллографические плоскости (001) и 
(002) в элементарной ячейке оксида палладия 

(II) сформированы исключительно атома-
ми палладия, что позволяет сделать вывод о 
наличии преимущественной ориентации (001) 
поверхностных слоев тонких пленок PdO с 
ростом температуры оксидирования и может 
оказать важное значение для формирования 
газовых сенсоров с повышенной селективностью. 

4. Заключение
1. Методом РФА установлено, что оксидиро-

вание исходных ультрадисперсных слоев метал-
лического палладия толщиной ~ 95, ~ 190 и ~ 290 
нм в атмосфере кислорода в интервале темпе-
ратур Tox = 873–1123 К приводит к формирова-
нию гомогенных поликристаллических пленок 
оксида палладия (II) на подложках SiO2/Si (100).

2. Методом ДБЭ установлено, что поверх-
ностные слои пленок PdO/SiO2/Si (100) имеют вы-
раженную текстуру (001), степень которой воз-
растает с ростом температуры оксидирования.
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