

Original articles

Research article

<https://doi.org/10.17308/kcmf.2025.27/13327>

Phase composition and texture of palladium (II) oxide thin films on SiO_2/Si

A. M. Samoylov¹, A. I. Dontsov¹, A. S. Przhimov¹✉, S. Yu. Vakhmin²

¹Voronezh State University,

Universitetskaya pl., 1, Voronezh 394018, Russian Federation

²Military Air Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin,

54a Staraya Bolshevikov ul., Voronezh 394064, Russian Federation

Abstract

The objects of the study are nanostructures based on palladium (II) oxide of various elemental compositions and morphological organization.

The aim of the work is to establish the influence of synthesis conditions on the phase composition and texture of thin films of palladium (II) oxide synthesized by oxidation in an oxygen atmosphere of initial ultrafine layers of metallic palladium of various thicknesses on SiO_2/Si (100) substrates.

Conclusions: It has been established that the oxidation of the initial ultrafine layers of metallic palladium with thicknesses of ~ 95, ~ 190, and ~ 290 nm in an oxygen atmosphere in the temperature range $T_{\text{ox}} = 873 - 1123$ K leads to the formation of homogeneous polycrystalline films of palladium (II) oxide on SiO_2/Si (100) substrates. It is shown that the surface layers of $\text{PdO}/\text{SiO}_2/\text{Si}$ (100) films have a pronounced texture (001), the degree of which increases with increasing oxidation temperature.

Keywords: Palladium (II) oxide, Phase composition, X-ray phase analysis, High-energy electron diffraction, Gas sensors

Funding: The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment for universities in the field of scientific activity for 2023-2025 (project no. FZGU-2023-006).

Acknowledgments: The research was carried out using the equipment of the VSU Center for Collective Use of Scientific Equipment

For citation: Samoylov A. M., Dontsov A. I., Przhimov A. S., Vakhmin S. Yu. Phase composition and texture of palladium (II) oxide thin films on SiO_2/Si . *Condensed Matter and Interphases*. 2025;27(4): 669–675. <https://doi.org/10.17308/kcmf.2025.27/13327>

Для цитирования: Самойлов А. М., Донцов А. И., Прижимов А. С., Вахмин С. Ю. Фазовый состав и текстура тонких пленок оксида палладия (II), синтезированных на SiO_2/Si . *Конденсированные среды и межфазные границы*. 2025;27(4): 669–675. <https://doi.org/10.17308/kcmf.2025.27/13327>

✉ Andrey S. Przhimov, e-mail: rniileme@mail.ru

© Samoylov A. M., Dontsov A. I., Przhimov A. S., Vakhmin S. Yu., 2025

The content is available under Creative Commons Attribution 4.0 License.

1. Introduction

Currently, various types of binary, ternary, and more complex metal oxide semiconductors are being intensively studied as materials suitable for detecting gases with oxidizing properties. In most cases, n-type conduction semiconductors such as SnO_2 [1–3], ZnO [4, 5], In_2O_3 [6], and TiO_2 [7] are traditionally used for this purpose. However, in the last decade, the study of the sensory properties of wide-band metal oxide semiconductors with p-type conductivity and composites based on them has begun [8]. Sensor materials based on Cu_2O [9], NiO [10] nanostructures, porous NiO microspheres [11], and nanostructures based on copper (II) oxide [12] have been synthesized. Nanocomposites with a p-n heterojunction are considered the most promising for the detection of oxidizing gases [13]. Research by scientists of Voronezh State University has proved the effectiveness of using nanocrystalline and thin films of palladium (II) oxide characterized by p-type conductivity [14]. Studies of the physical and chemical properties of n-type metal oxide semiconductors have led to the creation of sufficiently efficient gas sensors based on them [15]. The enormous success in using tin dioxide SnO_2 gas sensors is not least due to accurate information about the nature of point defects (oxygen vacancies), as well as about chemical and physical processes involving adsorbed oxygen molecules and analyzing gases. To date, gas sensors of the resistive type are produced in two ways: thick-film and thin-film technologies. It should be emphasized that thick-film gas sensors are formed by various methods from pre-synthesized nanocrystalline powders. As a result, thick-film polycrystalline structures can be considered isotropic in the first approximation. Therefore, nonstoichiometry, crystallite sizes, and specific surface area are critical physical and chemical parameters that determine the functional properties of sensors. For gas sensors based on thin films, another important criterion is the morphology and orientation of the surface layers, which play an important role in the detection of toxic or explosive gases [15]. Despite the widespread use of palladium (II) oxide in various fields of science and technology, many fundamental properties of this material have not been sufficiently

studied, including the formation of thin and nanocrystalline films. Therefore, the purpose of this work is to establish the influence of synthesis conditions on the phase composition and texture of thin films of palladium (II) oxide synthesized by oxidation in an oxygen atmosphere of initial ultrafine layers of metallic palladium of various thicknesses on $\text{SiO}_2/\text{Si}(100)$ substrates.

2. Experimental methodology

A two-stage process was used to synthesize thin films of palladium (II) oxide. During the first stage, thin films of metallic palladium were formed by open evaporation in a vacuum. The method of open evaporation in vacuum is the simplest way to produce films of various materials. A freshly prepared powder of the sprayed substance is placed in a crucible made of graphite or refractory metal, the substrate is fixed in a heated holder, and the entire system is evacuated. The substrate is heated until its temperature is equal to the required value, and then the temperature of the evaporator is increased. When the time of the spraying process reaches the required value, the flap separating the evaporator and the substrate is closed, after which the substrate with the film cools down in vacuum. In addition, an upgraded film production technology is often used, which uses additional evaporators. In this work, tungsten heaters were used to produce thin films of metallic Pd by thermal evaporation in high vacuum, which were used to heat palladium foil with a basic component content of 99.99 at. %. A high vacuum at a residual pressure level of $\sim 10^{-8}$ mmHg in the working chamber was created using a turbomolecular pump. To establish the modes of the palladium film formation process, its vapor pressure was calculated using the equation:

$$\lg P(\text{Pd}^s, \text{Pa}) = -\frac{20150}{T} + 13,670 - 0,419 \lg T - 0,302 \cdot 10^{-3} T, \quad (1)$$

where T is the absolute temperature, K.

Palladium metal films were formed on $\text{SiO}_2/\text{Si}(100)$ substrates. The thickness of the SiO_2 buffer layer was ~ 300 nm. The SiO_2 buffer layer is necessary in order to prevent direct interaction of the palladium metal with the substrate material. The oxidation of palladium metal films in the

temperature range $T = 970\text{--}1070\text{ K}$ grown on $\text{Si}(100)$ substrates without a SiO_2 buffer layer led to the formation of palladium silicide Pd_2Si [14].

Metallic Pd films were grown on a $\text{SiO}_2/\text{Si}(100)$ substrate without heating in order to obtain ultrafine layers with Pd crystallite sizes from 2 to 6 nm. Such crystallite sizes ensure uniform oxidation to form palladium (II) oxide. The thickness of the initial palladium metal films, determined by scanning electron microscopy during the study of chips of $\text{Pd}/\text{SiO}_2/\text{Si}$ (100) heterostructures, ranged from 95 ± 8 to 300 ± 15 nm. When choosing the modes of oxidation of ultradisperse palladium layers, we were guided by the conditions under which films of lower thickness were oxidized in an oxygen atmosphere. The modes of oxidation of the initial palladium metal films in air are shown in Table 1.

The $\text{Pd}/\text{SiO}_2/\text{Si}$ (100) heterostructures were placed in a tubular furnace at room temperature and then the furnace was heated at a rate of ~ 250 degrees per hour to the desired temperature. After reaching the required temperature, isothermal exposure was carried out for 360 and 480 minutes. As shown in Table 1, in several cases, in particular,

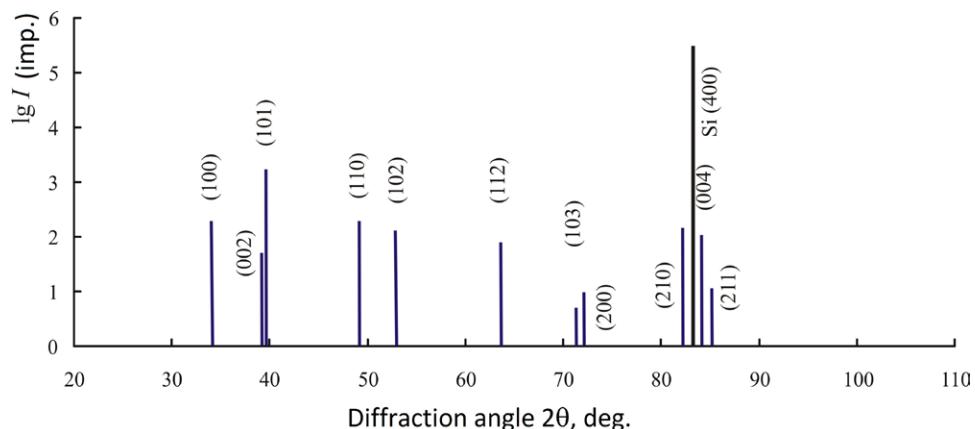
at oxidation temperatures of $T_{\text{ox}} = 773\text{ K}$ and $T_{\text{ox}} = 973\text{ K}$, the durations of oxidation in air were 360 and 480 minutes, respectively.

3. Results and discussion

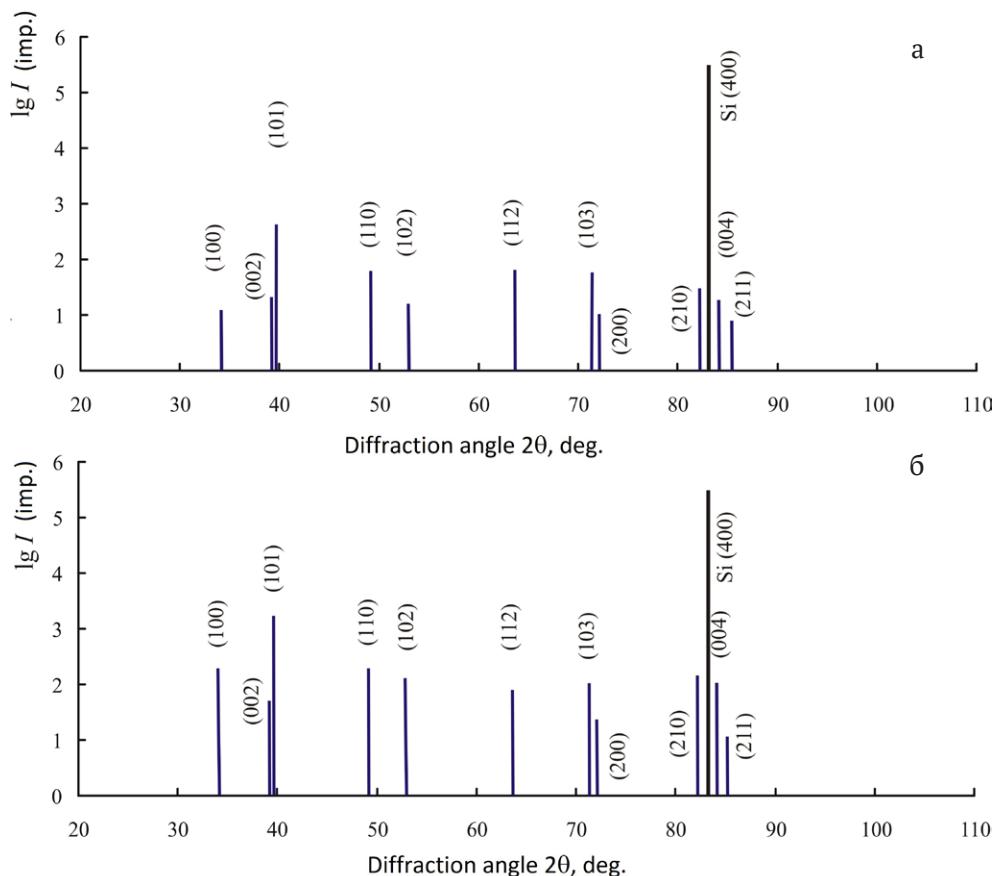
Thin PdO films on $\text{SiO}_2/\text{Si}(100)$ substrates obtained by thermal oxidation in an oxygen atmosphere of the initial ultrafine layers of metallic palladium with a thickness from 95 ± 5 to 290 ± 15 nm were studied by X-ray phase analysis (XFA). In order to increase the accuracy of calculations of the parameters of the tetragonal lattice of thin PdO films, $\text{CoK}\alpha$ radiation was used during X-ray studies. In addition, for the same purpose, thin PdO films were synthesized on $\text{SiO}_2/\text{Si}(100)$ substrates with a thickness from 95 ± 5 nm to 290 ± 15 nm (Table 1). An increase in the thickness of thin PdO films on $\text{SiO}_2/\text{Si}(100)$ substrates should lead to a change in the ratio of the reflection intensities of palladium (II) oxide and silicon.

For X-ray studies, $\text{PdO}/\text{SiO}_2/\text{Si}(100)$ heterostructures were selected, thermally oxidized under conditions that allowed the synthesis of homogeneous polycrystalline films of palladium (II) oxide. The experimental

Table 1. Modes of thermal oxidation in an oxygen atmosphere of ultrafine metallic Pd films of various thicknesses and phase composition of samples (according to XRD data) after heat treatment


The thickness of the initial films Pd d_{Pd} , nm	Duration of annealing t , min	Annealing temperature		Phase composition of the samples
		T_{ox} , °C	T_{ox} , K	
95 ± 5	480	400	673	PdO + Pd*
	480	500	773	PdO
	480	600	873	PdO
	480	700	973	PdO
	480	800	1073	PdO
	480	850	1123	PdO
190 ± 10	480	400	673	Pd + PdO**
	480	500	773	PdO + Pd*
	480	600	873	PdO
	480	700	973	PdO
	480	800	1073	PdO
	480	850	1123	PdO
290 ± 15	480	400	673	Pd + PdO**
	480	500	773	PdO + Pd*
	480	600	873	PdO
	480	700	973	PdO
	480	800	1073	PdO
	480	850	1123	PdO

* Intense PdO reflexes and weak Pd reflexes.


** Intense Pd reflexes and a few weak PdO reflexes.

data obtained in the form of bar diagrams of $\text{PdO}/\text{SiO}_2/\text{Si}$ (100) samples obtained by oxygen oxidation of the initial palladium metal layers of various thicknesses are shown in Fig. 1–3. Since the intensity of the $\text{Si}(400)$ reflex from the silicon

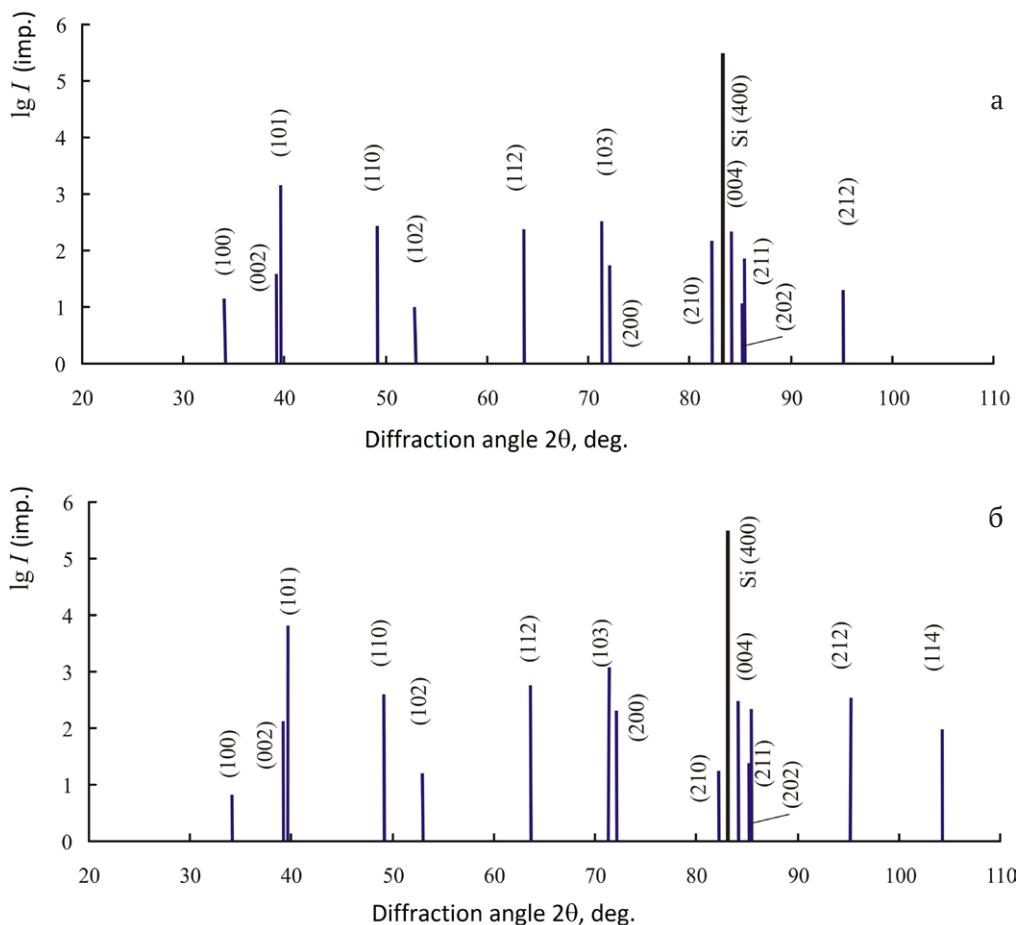

substrate in some cases exceeds the intensity of the strongest reflexes of the palladium (II) oxide film by two or three orders of magnitude, the intensity of the X-ray reflexes is represented in logarithmic coordinates.

Fig. 1. X-ray diffraction pattern of a nanocrystalline PdO film on a SiO_2/Si (100) substrate obtained by thermal oxidation in oxygen of the initial palladium layer with a thickness of ~ 35 nm at $T_{\text{ox}} = 1073$ K

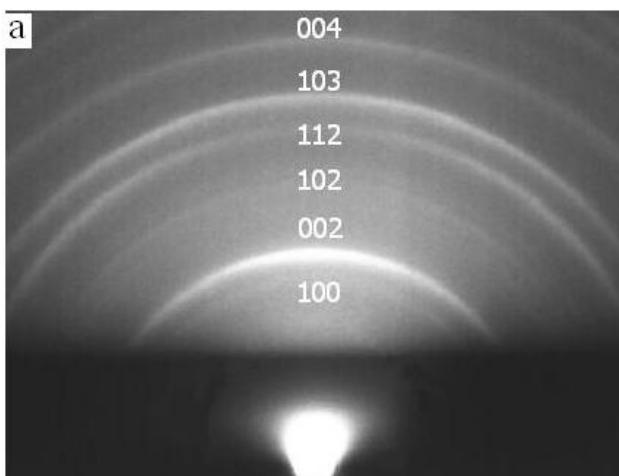
Fig. 2. X-ray diffraction pattern of thin PdO films on a SiO_2/Si (100) substrate obtained by thermal oxidation in oxygen in the initial palladium layer with a thickness of 190 ± 10 nm: a) $T_{\text{ox}} = 873$ K; b) $T_{\text{ox}} = 973$ K

Fig. 3. X-ray diffraction pattern of thin PdO films on a SiO_2/Si (100) substrate obtained by thermal oxidation in oxygen of the initial palladium layer with a thickness of 190 ± 10 nm: a) $T_{\text{ox}} = 1073$ K; b) $T_{\text{ox}} = 1123$ K

When comparing Figures 1 and 2, it becomes obvious that with increasing thickness of the initial ultrafine palladium layers, the intensity of X-ray reflections of palladium (II) oxide films on SiO_2/Si (100) substrates increases. In addition, as can be seen when comparing Fig. 1 and Fig. 3, for palladium (II) oxide films obtained by the thermal oxidation of initial palladium layers with a thickness of ~ 190 nm at $T_{\text{ox}} = 1073$ K, X-ray reflections were recorded at the far diffraction angles, for example, (202) and (212), which did not appear on diffractograms of films synthesized by the thermal oxidation of initial palladium layers with a thickness of ~ 35 nm. Diffractograms of $\text{PdO}/\text{SiO}_2/\text{Si}$ (100) samples synthesized at $T_{\text{ox}} = 1123$ K reveal another long-range reflex (114).

A general analysis of X-ray diffraction patterns of $\text{PdO}/\text{SiO}_2/\text{Si}$ (100) heterostructures obtained by the thermal oxidation of initial

palladium layers with a thickness of ~ 190 nm in the temperature range $T_{\text{ox}} = 873\text{--}1123$ K allows us to conclude that the synthesized palladium (II) oxide films are single-phase and polycrystalline without signs of any texture. This is evidenced by the ratio of X-ray reflex intensities, which in most cases correspond to similar characteristics of the ASTM standard for a powdered palladium (II) oxide sample [42].


Nevertheless, it should be noted that an increase in the oxidation temperature leads to an increase in the degree of structural perfection of palladium (II) oxide films. This fact is confirmed not only by an increase in the intensity of the corresponding X-ray peaks, but also by the appearance of additional reflections at distant diffraction angles with large values of the Miller indices, for example, peaks (212) and (114).

In order to determine the orientation of the surface layers, $\text{PdO}/\text{SiO}_2/\text{Si}$ (100) samples were

studied by high-energy electron diffraction (HEED), which allows obtaining information from layers several nanometers thick. The electron diffraction patterns obtained during the study of some $\text{SiO}_2/\text{Si}(100)$ heterostructures are shown in Fig. 4.

A comparison of experimental X-ray diffraction data on the crystal structure over the entire volume of thin films of $\text{PdO}/\text{SiO}_2/\text{Si}(100)$ and the results obtained by the HEED method from near-surface layers allows us to draw the following conclusions. The XRD method captures all reflexes, while the HEED method does not register a number of mixed reflexes (hkl) characteristic of a homogeneous polycrystalline palladium (II) oxide film. In addition, with an increase in the oxidation temperature from $T_{\text{ox}} = 873$ K and $T_{\text{ox}} = 1073$ K, along with the disappearance of mixed reflexes (hkl), reflexes (002) and (004) become the most intense on electronograms. All this indicates that, unlike the entire volume of thin polycrystalline films of palladium (II) oxide, the surface layers with a thickness of several nanometers acquire a pronounced orientation (001).

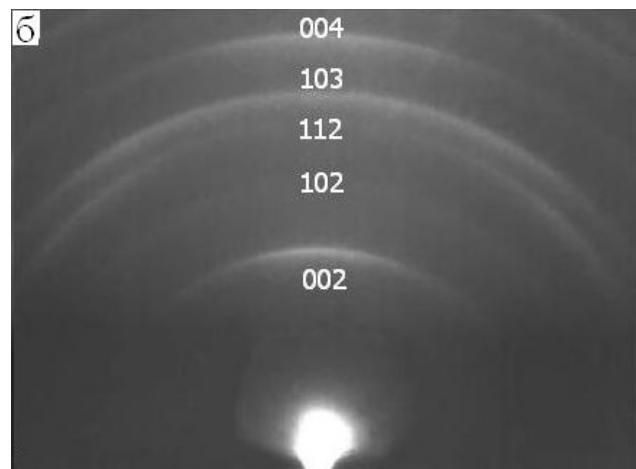
The crystallographic planes (001) and (002) in the unit cell of palladium (II) oxide are formed exclusively by palladium atoms, which allows us to conclude that there is a preferential orientation (001) of the surface layers of thin PdO films with increasing oxidation temperature and may be important for the formation of gas sensors with increased selectivity.

4. Conclusion

1. By the X-ray method has been established that the oxidation of the initial ultrafine layers of metallic palladium with thicknesses of ~ 95 , ~ 190 , and ~ 290 nm in an oxygen atmosphere in the temperature range $T_{\text{ox}} = 873$ – 1123 K leads to the formation of homogeneous polycrystalline films of palladium (II) oxide on $\text{SiO}_2/\text{Si}(100)$ substrates.

2. Through the use of the HEED method it has been established that the surface layers of $\text{PdO}/\text{SiO}_2/\text{Si}(100)$ films have a pronounced texture (001), the degree of which increases with increasing oxidation temperature.

Contribution of the authors


The authors contributed equally to this article.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

1. Korotcenkov G., Brinzar, V., Cho B. K. In_2O_3 - and SnO_2 -based thin film ozone sensors: fundamentals. *Journal of Sensors*. 2016;2016: 1–31. <https://doi.org/10.1155/2016/3816094>
2. Oros C., Horprathumb M., Wisitsoraat A., ... Chindaudom P. Ultra-sensitive NO_2 sensor based on vertically aligned SnO_2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. *Sensors and Actuators B*. 2016;223: 936–945. <https://doi.org/10.1016/j.snb.2015.09.104>

Fig. 4. Electron diffraction patterns obtained with the RHEED method on palladium (II) oxide films synthesized by oxidation in an oxygen atmosphere of the initial ultrafine layers of metallic Pd with a thickness of $\sim 190 \pm 10$ nm: a) $T_{\text{ox}} = 873$ K; b) $T_{\text{ox}} = 1073$ K

3. Stanoiu A., Somacescu S., Calderon-Moreno J. M., ... Simion C. E. Low level NO_2 detection under humid background and associated sensing mechanism for mesoporous SnO_2 . *Sensors and Actuators B*. 2016;231: 166–174. <https://doi.org/10.1016/j.snb.2016.02.137>
4. Jiao M., Chien N. V., Duy N. V., ... Nguyen H. On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO_2 gas sensor. *Materials Letters*. 2016;169: 231–235. <https://doi.org/10.1016/j.matlet.2016.01.123>
5. Katoch A., Sun G.-J., Choi S., Byun J., Kim S. S. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. *Sensors and Actuators B: Chemical*. 2013;185: 411–416. <https://doi.org/10.1016/j.snb.2013.05.030>
6. Ilin A., Martyshov M., Forsh E., ... Kashkarov P. UV effect on NO_2 sensing properties of nanocrystalline In_2O_3 . *Sensors and Actuators B: Chemical*. 2016;231: 491–496. <https://doi.org/10.1016/j.snb.2016.03.051>
7. Navale S. T., Tehare K. K., Shaikh S. F., ... Mane R. S. Hexamethylenetetramine-mediated TiO_2 films: facile chemical synthesis strategy and their use in nitrogen dioxide detection. *Materials Letters*. 2016;173: 9–12. <https://doi.org/10.1016/j.matlet.2016.02.140>
8. Kim H.-J., Lee J.-H. Highly sensitive and selective gas sensors using *p*-type oxide semiconductors: overview. *Sensors and Actuators B: Chemical*. 2014;192: 607–627. <https://doi.org/10.1016/j.snb.2013.11.005>
9. Cao S., Chen H., Han T., Zhao C., Peng L. Cu_2O nanoflowers via hydrothermal synthesis and their gas sensing properties. *Materials Letters*. 2016;180: 135–139. <https://doi.org/10.1016/j.matlet.2016.05.105>
10. Choia J.-M., Byun J.-H., Kim S. S. Influence of grain size on gas-sensing properties of chemiresistive *p*-type NiO nanofibers. *Sensors and Actuators B: Chemical*. 2016;227: 149–156. <https://doi.org/10.1016/j.snb.2015.12.014>
11. Tian K., Wang X. X., Li H. Y., Nadimicherla R., Guo X. Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO_2 gas sensing. *Sensors and Actuators B: Chemical*. 2016;227: 554–560. <https://doi.org/10.1016/j.snb.2015.12.104>
12. Kneer J., Wöllenstein J., Palzer S. Manipulating the gas-surface interaction between copper (II) oxide and mono-nitrogen oxides using temperature. *Sensors and Actuators B*. *Chemical*. 2016;229: 57–62. <https://doi.org/10.1016/j.snb.2016.01.104>
13. Srivastava V., Jain K. At room temperature graphene/ SnO_2 is better than MWCNT/ SnO_2 as NO_2 gas sensor. *Materials Letters*. 2016;169: 28–32. <https://doi.org/10.1016/j.matlet.2015.12.115>
14. Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. *Thin Solid Films*. 2017;636: 751–759. <https://doi.org/10.1016/j.tsf.2017.04.009>
15. Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. *Inorganic Materials*. 2016;52:1311–1338. <https://doi.org/10.1134/s002016851513004x>

Information about the authors

Aleksander M. Samoylov, Dr. Sci. (Chem.), Senior Researcher at the Department of Materials Science and Industry of Nanosystems, Voronezh State University (Voronezh, Russian Federation).
<https://orcid.org/0000-0003-4224-2203>
rniileme@mail.ru

Alexey I. Dontsov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science and Industry of Nanosystems, Voronezh State University (Voronezh, Russian Federation).
<https://orcid.org/0000-0002-3645-1626>
dontalex@mail.ru

Andrey S. Przhimov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science and Industry of Nanosystems, Voronezh State University (Voronezh, Russian Federation).
<https://orcid.org/0000-0003-0052-0826>
rniileme@mail.ru

Sergey Yu. Vakhmin, Cand. Sci. (Phys.-Math.), Associate Professor, Military Air Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin (Voronezh, Russian Federation).
vax_serg@mail.ru

Received March 21, 2025; approved after reviewing April 10, 2025; accepted for publication May 15, 2025; published online December 25, 2025.