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Аннотация
Цель статьи: Решение актуальной задачи создания компактных газоанализаторов, способных к длительной авто-
номной работе в труднодоступных местах, связано с разработкой сенсоров, имеющих сниженное энергопотребле-
ние. Целью данной работы явилось создание низкотемпературного сенсора водорода, поскольку именно нагрев 
сенсора вносит определяющий вклад в энергопотребление всего прибора.
Экспериментальная часть: Для решения поставленной задачи была разработана новая методика синтеза нанома-
териала на основе In2O3 с добавкой 3 % палладия, существенно отличающаяся от распространенных методов – золь-
гель синтеза и гидротермального синтеза. Это было связано с тем, что при низких температурах сенсора важнейшее 
значение приобретает минимизация влияние влажности. Проведение синтеза в водной среде приводит к появле-
нию на поверхности большого количества гидроксильных групп, притягивающих воду. В нашей работе наномате-
риал был изготовлен прокаливанием целлюлозного волокна, предварительно пропитанного раствором нитрата 
индия (+3) и нитрата тетраамминпалладия (+2). По данным рентгеновского фазового анализа, порошок, прокален-
ный при температуре 500 ºС, состоит преимущественно из триклинной фазы оксида индия (+3). По данным скани-
рующей электронной микроскопии, образцы во многом сохранили воспроизводимую характерную макрострукту-
ру целлюлозного темплата. Электрофизические характеристики наноматериала, полученные при комнатной 
температуре, показали возможность определения водорода в воздухе. Предел обнаружения – менее 10 ppm. 
Выводы: Чувствительность полученного нами сенсора водорода при комнатной температуре больше чувствитель-
ности сенсоров, описанными в других публикациях. Влияние влажности на показания сенсора сведено к минимуму. 
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1. Введение
Определение водорода и других горючих 

взрывоопасных газов в труднодоступных местах 
является важной практической задачей. Для ре-
шения этой задачи обычно используются газо-
вые сенсоры – в первую очередь, термокатали-
тические, электрохимические и полупроводни-
ковые. Преимуществом термокаталитических 
сенсоров является их простота и дешевизна, од-
нако они не обладают высокой чувствительно-
стью и селективностью. Преимущество электро-
химических сенсоров, напоминающих по свое-
му устройству топливные элементы, достаточно 
высокая чувствительность и селективность, од-
нако они имеют и недостаток – ограниченность 
ресурса, связанную с расходованием реагента. С 
помощью полупроводниковых сенсоров может 
быть достигнута и высокая чувствительность, и 
высокая селективность, однако их применение 
обычно связано с необходимостью поддержа-
ния рабочей температуры около 300 °С. Значи-
тельный расход электроэнергии затрудняет из-
готовление на основе полупроводниковых сен-
соров автономных газоанализаторов, способ-
ных работать в труднодоступных местах дли-
тельное время.

Существует несколько подходов к решению 
проблемы снижения энергопотребления полу-
проводниковыми сенсорами. Один из них – ми-
ниатюризация сенсора, изготовление специ-
альных диэлектрических подложек, имеющих 
низкую теплоемкость [1]. Второй подход – им-
пульсный нагрев, позволяющий не только сни-
зить энергопотребление, но и повысить в неко-
торых случаях чувствительность и селективность 
анализа [2]. Однако в последние годы появилось 
множество публикаций, авторы которых предла-
гают третий подход к решению проблему – син-
тез газочувствительных материалов, способных 
проводить газовый анализ без нагрева сенсора. 
В англоязычной литературе в этом случае ис-
пользуется термин “room temperature sensor”. 
Подобные сенсоры могут применяться для оп-
ределения в воздухе различных газов, как вос-
становителей, например, аммиака [3, 4, 5] и се-
роводорода [6, 7, 8], так и окислителей, таких, как 
NO2 [9, 10, 11].

Были синтезированы газочувствительные 
материалы для низкотемпературных сенсоров 
водорода. Наночастицы PdO с добавкой палла-
дия позволяют определять очень высокие кон-
центрации водорода, более 1000 ppm при ком-
натной температуре [12]. Наноматериал на осно-

ве WO3, графена и палладия позволил получить 
отклик величиной в несколько процентов при 
концентрации водорода 10000 ppm и темпера-
туре 50 °С [13]. Отклик максенов состава Ti2CTx 
по отношению к 1000 ppm водорода составил 
несколько процентов [14]. Материал на основе 
наносфер TiO2 с добавками палладия позволил 
определять водород при концентрации 500 ppm 
[15]. Материал на основе наноиголок NiCo2O4 c 
добавкой палладия позволил уверенно опреде-
лять водород при концентрации 100 ppm [16]. 
Наноматериал на основе WO3 позволил полу-
чить сенсорный отклик 12 % при концентрации 
водорода 100 ppm [17]. Примерно такая же вели-
чина отклика у наноматериала на основе сме-
шанных оксидов марганца и кобальта с добав-
кой восстановленного графена [18]. Значитель-
но больший отклик к водороду у наноматериа-
ла на основе оксида вольфрама (VI) с добавкой 
палладия [19]. Довольно значительные откли-
ки к водороду при комнатной температуре уда-
лось получить при использовании наноматери-
алов на основе TiO2, однако для этого необходи-
мо было использовать УФ-излучение для акти-
вации чувствительного материала и измерение 
импеданса [20].

Наноматериалы на основе оксида индия (III) 
находят широкое применение [21, 22]. Например, 
модифицированные серебром нанолисты In2O3 
при УФ-излучении были использованы для опре-
деления бутанола-1 [23]. Тонкопленочный оксид 
индия, полученный термическим напылением, 
позволил при комнатной температуре опреде-
лять NO2 и H2S [24].

Важной проблемой при определении газов 
низкотемпературными (“room temperature”) по-
лупроводниковыми сенсорами является мини-
мизация влияния влажности среды. Наличие на 
поверхности металлоксидных полупроводников 
гидроксильных групп, образующихся при син-
тезе, делает их уязвимыми к сорбции воды, ко-
торая приводит к существенному повышению 
вклада ионной проводимости. Электрокондук-
тивный отклик полупроводниковых сенсоров 
основан на изменении концентрации электро-
нов и изменении их подвижности, поэтому уве-
личение вклада ионной проводимости мешает 
проведению газового анализа. Таким образом, 
для получения газочувствительных материалов 
низкотемпературных сенсоров имеет смысл вы-
бирать методы, в которых взаимодействие ре-
агентов протекает не в водной среде. В боль-
шинстве работ, посвященных “room temperature 
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sensors”, не используется ни золь-гель синтез, ни 
гидротермальный синтез.

В данной работе синтез наноматериала In2O3 
был проведен биотемплатным методом, кото-
рый в последние годы находит самое разноо-
бразное применение, например, для производ-
ства биокатализаторов, антибиотиков и анти-
канцерогенных медицинских препаратов [25]. 
Применяется биотемплатный синтез и для полу-
чения газочувствительных материалов. Напри-
мер, материал на основе CeO2–ZnO пустотелых 
нитей был успешно использован для получения 
сенсора этанола [26]. Нанотрубки на основе SnO2 
позволили создать сенсор ацетона [27].

Цель нашей работы состояла не только в ис-
следовании газовой чувствительности получен-
ного материала по отношению к водороду, но 
также и в исследовании влияния влажности на 
фоновое сопротивление, поскольку эта проблема 
в публикациях, посвященных “room temperature 
sensors”, по непонятным причинам не рассма-
тривается.

2. Экспериментальная часть
2.1. Изготовление материала 

Навеску нитрата индия (CAS: 207398-97-8 
InN3O9·nHOH  MW: 300.83 g/mol form: powder and 
chunks product of USA Sigma-Aldrich), соответ-
ствующую 0.05 моль(экв)/л, смешали с водным 
раствором уксусной кислоты (рН = 5). Смесь вы-
держали при комнатной температуре до полно-
го растворения нитрата индия. 

Листы беззольных целлюлозных фильтров 
(красная лента) промыли элюентом, смесью «бу-
танол – уксусная кислота» в объемном соотно-
шении 1:4. В стакан 0.5 л налили 50 мл элюен-
та, в раствор на глубину 1–2 см погрузили листы 
целлюлозы. Стакан закрыли стеклом и выдер-
жали 5 часов. Далее листы извлекли из стакана, 
высушили, после сушки отрезали и удалили 2 см 
верхний части листов и далее нагревали 3 часа 
в сушильном шкафу при 105 °С.

В стакан налили 50 мл рабочего раствора ни-
трата индия, погрузили в него на глубину 1 см 
листы промытой, просушенной фильтроваль-
ной бумаги, закрыли и выдержали 2 часа. После 
пропитки целлюлозу извлекли из камеры и вы-
сушили при 105 °С в течение 3 часов, далее ма-
териал прокалили при 500 °С в течение 6 часов 
для выгорания целлюлозы и образования окси-
да индия:

4In(NO3)3 → 2In2O3 + 12NO2 + 3O2.	  (1)

2.2. Изготовление сенсора 
Газочувствительный слой на основе In2O3+Pd 

(массовая доля палладия 3 %) был создан путем 
обработки материала In2O3 раствором нитрата 
тетраамминпалладия (II). После сушки матери-
ал смешивали с терпениолом, используемым в 
качестве вяжущего компонента, до образова-
ния пасты. На диэлектрическую подложку, вы-
полненную из оксида алюминия, с платиновы-
ми электродами и нагревателем наносили по-
лученную пасту и прокаливали до температу-
ры 750 °С, в результате чего терпениол выгорал 
и на подложке образовывался полупроводнико-
вый слой хрупкого геля оксида индия.

2.3. Характеризация материала
Характеризация структуры образца In2O3 

была проведена методом рентгенофазного ана-
лиза (РФА) с помощью прибора ДРОН-4 с кобаль-
товым анодом. Последующая расшифровка полу-
ченных дифрактограмм выполнялась с исполь-
зованием базы данных ICSD Database 2010-2). 

Материал был исследован на сканирующем 
электронном микроскопе JEOL JSM-6380LV в ре-
жиме регистрации вторичных электронов.

2.4. Исследование сенсорных характеристик
Были использованы поверочные газовые 

смеси «водород в синтетическом воздухе» с кон-
центрациями 10 ppm и 200 ppm. Для достиже-
ния нужной концентрации водорода повероч-
ные газовые смеси разбавляли синтетическим 
воздухом. Часть протока синтетического возду-
ха пропускали через дистиллированную воду для 
увлажнения. После смешивания трех потоков – 
сухого воздуха, увлажненного воздуха и пове-
рочной газовой смеси, влажность и температу-
ру измеряли датчиком Honeywell HIH-4602-A. В 
камеру из нержавеющей стали помещали нахо-
дящийся в металлическом корпусе ТО-8 сенсор. 

С помощью специально разработанного 
устройства измеряли электрическое сопротив-
ление газочувствительного слоя сенсора с часто-
той дискретизации 40 Гц и записывали в виде 
компьютерного файла.

Отклик сенсора S определяли как относи-
тельную разность электрической проводимо-
сти в газовой среде σ и в синтетическом возду-
хе s0, что равнозначно относительной разности 
электрического сопротивления в газовой среде 
R и в синтетическом воздухе R0:  

S
R R
R

=
-

=
-s s

s
0

0

0 .		  (2)
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3. Результаты и их обсуждение
3.1. Морфология и структура материала

На рис. 1 показаны снимки образца оксида 
индия, полученные на сканирующем электрон-
ном микроскопе. Образцы во многом сохрани-
ли воспроизводимую характерную макрострук-
туру целлюлозного темплата. По своей морфо-
логии изученный материал представляет агло-
мерации волокнообразных объектов, каждый из 
которых изогнут или «закручен», иногда много-
кратно, вдоль своей длины, составившей от еди-
ниц микрометра до нескольких десятков микро-
метров. При этом толщина достаточно плоских 
волокон может составлять и субмикронные зна-
чения при ширине в микрометры, образуя про-
тяженные «листы». В отдельных областях агло-

мераций волокон отмечаются объекты малой 
толщины (размера) ~ 100 нм.

В результате расшифровки дифрактограмм 
установлено, что исследуемый образец практи-
чески полностью (более 95 %) представлен ос-
новной модификаций кристаллического окси-
да индия (III), которая является кубической (ПГ 
Ia). Кроме того, в малых количествах обнаруже-
но присутствие смешанного оксид-гидрокси-
да индия InO(OH) (кубическая, ПГ P213, до 3 %), 
а также гидроксида индия In(OH)3 (кубическая, 
ПГ Im, менее 1 %), что может быть объяснено не-
достаточностью термической обработки по вре-
мени или температуре. Данные об R-факторах 
и добротности дифрактограммы также приве-
дены на рис. 2. 

3.2. Исследование сенсорных свойств
На рис. 3 показано электрическое сопротив-

ление сенсора при добавлении в воздух водорода 
с концентрацией 10 ppm. Как и следовало ожи-
дать, характер отклика донорный, приводящий 
к увеличению электрической проводимости сен-
сора. Это связано с тем, что оксид индия – по-
лупроводник n-типа, а водород является восста-
новителем. Добавление водорода увеличивает 
концентрацию электронов в полупроводнике:

H2 → 2H+ + 2e		  (3)

2H2 + O2
– → 2H2O + e		  (4)

На рис. 4 показана градуировочная зависи-
мость сенсора In2O3+Pd при температуре 25 °С. 
Чувствительность сенсора в нашей работе выше, 
чем работах [12–18].

Рис. 2. Рентгенограмма нанопорошка, прокален-
ного при температуре 500 °С. Присутствующие 
соединения: с − In2O3 (кубическая, ПГ Ia); InO(OH) 
(кубическая, ПГ P213); In(OH)3 (кубическая, ПГ Im)

Рис. 3. Электрическое сопротивление сенсора 
In2O3-Pd при добавлении водорода. Температура 
сенсора 25 °С, влажность воздуха 25 %

Рис. 1. СЭМ изображение материала In2O3, полу-
ченного биотемплатным методом
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3.3. Исследование влияния влажности среды
Как уже было отмечено, важной проблемой 

низкотемпературных сенсоров является мини-
мизация влияния влажности. На рис. 5 показана 
зависимость электрического сопротивления сен-
сора In2O3-Pd от влажности температуре 25 °С.

Как и следовало ожидать, повышение влаж-
ности приводит к существенному снижению 
электрического сопротивления, которое свя-
зано с появлением дополнительного (ионного) 
механизма проводимости, вызванного сорбци-
ей воды на поверхности металлоксидного по-
лупроводника [28]. Этот механизм вызван дис-
социацией воды и появлением на поверхности 
значительного количества катионов водорода. 
Кроме того, перенос заряда может быть связан 
и транспортом гидроксид-анионов.

4. Заключение
Синтезированные биотемплатным мето-

дом образцы наноматериалов In2O3-Pd показа-
ли возможность определения довольно низких 
концентраций водорода при комнатной темпе-
ратуре, поэтому они могут быть использованы 
для создания сенсоров, не требующих энергопо-
требления для нагрева. 

Несмотря на выбор неводного метода син-
теза и минимальное количество гидроксильных 
групп в составе металлоксидного полупроводни-
ка, сопротивление полученного сенсора сущест-
венно зависит от влажности, поэтому практиче-
ское применение соответствующего газоанали-
тического прибора возможно только с комбина-
ции с датчиком влажности.
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