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Аннотация
Цель статьи: В работе проведено исследование влияния равномерности пространственного распределения нано-
частиц Pt по поверхности носителя в Pt/C материалах на микроструктуру и электрохимическое поведение получа-
емых на их основе PtCo/C катализаторов.
Экспериментальная часть: Для синтеза PtCo/C катализаторов используется метод пропитки Pt/C с последующей 
термической обработкой в атмосфере Ar/H2.
Выводы: Применение Pt/C материала с массовой долей платины около 20 % и равномерным распределением нано-
частиц Pt по поверхности углеродного носителя позволяет получить PtCo/C катализатор, активность которого в 
реакции восстановления кислорода при 0.90 В составляет 1215 А/г (Pt), что превышает аналогичный показатель для 
коммерческого Pt/C катализатора в 4.8 раза. При этом использование Pt/C материала с неравномерным распреде-
лением наночастиц приводит к получению PtCo/C катализатора с крупным размером частиц и низкой величиной 
активной площади поверхности, что значительно ухудшает его активность в реакции восстановления кислорода. 
Ключевые слова: платиносодержащие электрокатализаторы, биметаллические наночастицы, высокотемператур-
ный синтез, термическая обработка, реакция электровосстановления кислорода
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1. Введение 
Поиск путей повышения активности и ста-

бильности платиносодержащих электрокатали-
заторов является важной задачей для развития 
разных областей водородной энергетики, напри-
мер, таких как низкотемпературные топливные 
элементы (НТЭ) [1–4]. Так, легирование благо-
родного металла различными d-металлами (Co, 
Ni, Fe, Cu и т. д.) [5–7], варьируя состав и струк-
туру наночастиц, позволяет повысить функци-
ональные характеристики катализатора [8–14], 
а также снизить его себестоимость. 

Известно, что морфология катализатора, а 
именно: распределение металлических наноча-
стиц по поверхности катализатора, а также фор-
ма, состав металлической компоненты, структу-
ра, средний размер и размерное распределение 
биметаллических наночастиц (НЧ) в значитель-
ной степени определяет его активность и ста-
бильность [15–18]. Кроме того, катализатор, со-
держащий биметаллические наночастицы, мо-
жет обладать повышенной стабильностью за 
счет более прочной связи НЧ с носителем. Таким 
образом, для биметаллических катализаторов 
все эти факторы оказывают существенное вли-
яние на его функциональные характеристики и 
должны учитываться при выборе оптимальной 
стратегии синтеза таких материалов.

На сегодняшний день PtCo/C катализаторы 
считаются наиболее перспективными матери-
алами для использования в НТЭ за счет соче-
тания высокой активности в реакции электро-
восстановления кислорода (РВК) и выдающей-
ся стабильности данных материалов [4, 19, 20]. 
Высокую прикладную ценность исследований в 
области получения и модификации PtCo/C ка-
тализаторов также определяет использование 
таких систем компанией Toyota для автомоби-
лей Mirai [21].

Химический состав и структура наночастиц 
биметаллических катализаторов, а также харак-
тер их распределения по поверхности углерод-
ного носителя, определяют их функциональные 
характеристики. Так, например, повышение сте-
пени сплавления металлических компонентов 
наночастиц катализаторов является важной за-
дачей для получения эффективных PtCo/C ката-
лизаторов, поскольку атомы кобальта, не вошед-
шие в состав наночастиц, растворяются в процес-

се функционирования катализаторов и отравля-
ют полимерную мембрану, что снижает характе-
ристики НТЭ [22]. При этом важно отметить, что 
в процессе синтеза трудно добиться вхождения 
атомов Co в состав НЧ, в ряде случаев требуется 
дополнительная термическая обработка, кото-
рая, однако, может приводить к укрупнению ча-
стиц и снижению площади поверхности, а значит 
и активности катализатора. Важно отметить, что 
получение биметаллических PtCo наночастиц со 
структурой упорядоченного твердого раствора 
(интерметаллид) позволяет значительно повы-
сить стабильность материалов по сравнению с 
материалами со структурой неупорядоченного 
твердого раствора [22, 24]. 

Высокотемпературный синтез платиносо-
держащих электрокатализаторов для низкотем-
пературных топливных элементов в восстанови-
тельной атмосфере обладает целым рядом преи-
муществ, включая возможность масштабирова-
ния технологии синтеза и получения материа-
лов с высокими функциональными характери-
стиками. Существует несколько подходов к вы-
сокотемпературному синтезу биметаллических 
платиносодержащих катализаторов.

Первый подход заключается в пропитке вы-
сокодисперсного углеродного материала пре-
курсорами платины и легирующего d-металла в 
необходимом соотношении и последующее кар-
ботермическое восстановление этих прекурсо-
ров в инертной атмосфере с добавкой водорода 
[25–27]. Равномерность получаемого материала 
в таком случае в значительной степени зависит 
от свойств углеродного носителя и условий вы-
сокотемпературного восстановления.

Другой подход основан на использовании ра-
нее полученного Pt/C катализатора (как прави-
ло коммерчески доступного) для его пропитки 
прекурсором d-металла и осаждением этого ме-
талла в виде оксида/гидроксида с последующей 
термической обработкой в инертной атмосфе-
ре с небольшой добавкой водорода, в процессе 
чего происходит “сплавление” платины и леги-
рующего d-металла [28, 29]. Очевидно, что в дан-
ном случае свойства получаемых биметалличе-
ских платиносодержащих катализаторов зависят 
не только от температуры и условий проведения 
обработки, но и от микроструктуры исходного 
Pt/C катализатора. 
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В литературе представлен ряд исследований 
влияния температуры обработки и состава ат-
мосферы на свойства PtM/С катализаторов, по-
лученных таким методом. В то же время отсут-
ствуют систематические исследования влияния 
микроструктуры (под микроструктурой пони-
мается средний размер и размерное распреде-
ление наночастиц платины, а также равномер-
ность распределения наночастиц платины по по-
верхности углеродного носителя) Pt/C матери-
алов, используемых в качестве промежуточно-
го компонента для получения биметаллических 
катализаторов, на структурные характеристики 
и электрохимическое поведение катализаторов.  

Таким образом, целью данной работы было 
получение ряда PtCo/C катализаторов методом 
высокотемпературной обработки в восстанови-
тельной атмосфере на основе пропитки прекур-
сорами различных по микроструктуре Pt/C ката-
лизаторов, а также сравнительное исследование 
состава, структуры и каталитической активно-
сти в реакции электровосстановления кислоро-
да полученных PtCo/C катализаторов. 

2. Экспериментальная часть
2.1. Осаждение Co(OH)2  
на Pt/C катализатор 

Поиск путей получения высокоэффектив-
ных катализаторов, содержащих неблагород-
ный компонент, является важной и перспектив-
ной областью водородной энергетики. Предло-
женный метод синтеза позволяет получить ка-
тализаторы, обладающие высокой активностью 
в РВК и стабильностью. 

Навеску Pt/C катализатора (содержание Pt 
около 20 мас. %) помещали в химический ста-
кан и добавляли 60 мл этиленгликоля (чда, АО 
«ЭКОС-1», Москва, РФ), отмеренные цилиндром. 
В полученную суспензию помещали магнитный 
якорь и ставили перемешиваться на магнит-
ную мешалку на 2–3 минуты, после чего дан-
ную смесь диспергировали ультразвуком 2 раза 
в течение 2 мин (Ultrasonic Processor FS‑1200N) 
и возвращали на магнитную мешалку. Рассчи-
танный объем прекурсора кобальта CoSO₄·7H2O в 
виде водного раствора с концентрацией 0.071 М 
добавляли с помощью дозатора и оставляли при 
перемешивании на 1 час [30]. После этого вноси-
ли рассчитанное количество NaOH, растворен-
ное в 20 мл бидистиллированной воды, для полу-
чения гидроксида кобальта. Смесь снова остав-
ляли при перемешивании на магнитной мешал-
ке на 1 час. Суспензию катализатора фильтро-

вали через воронку Бюхнера с использованием 
фильтровальной бумаги «синяя лента» и после-
довательно промывали водой, этиловым спир-
том и водой не менее трех раз. Затем получен-
ный катализатор на фильтре сушили при 80 °C в 
вакуумном сушильном шкафу. После сушки ка-
тализатор отделяли от фильтра и полученный 
порошок подвергали термической обработке в 
трубчатой печи при температуре 700 °C в тече-
ние 1 часа в токе инертного газа с содержанием 
водорода 5 %. Для получения биметаллических 
катализаторов использовали два типа Pt/C ката-
лизаторов: (1) с равномерным распределением 
наночастиц по поверхности углеродного носи-
теля Vulcan XC-72 (рис. 1а), обозначенный как 
Pt/C-р, который характеризуется высокой вели-
чиной активной площади 80 м2/г (Pt), и (2) нерав-
номерным распределением наночастиц, с вы-
сокой долей агломератов (рис. 1б) и величиной 
площади электрохимически активной поверхно-
сти (ЭХАП) 25 м2/г (Pt), обозначенный как Pt/C-н. 
После термической обработки при 700 °С образ-
цы маркировали соответственно как PtCo/C-p и 
PtCo/C-н в зависимости от типа используемого 
Pt/C материала. 

2.2. Исследование состава и структуры 
PtCo/C катализаторов

Фазовый состав полученных материалов из-
учали на дифрактометре ARL X´TRA (CuKα), в 
интервале углов 2θ от 15° до 55° с шагом 0.04° и 
скоростью регистрации 2° в минуту. Элементный 
состав материалов изучали методом рентгено-
флуоресцентного анализа (РФлА) на спектроме-
тре РФС-001 с полным внутренним отражением. 
Средний размер, форма и пространственное рас-
пределение наночастиц по поверхности углерод-
ного носителя были изучены с помощью прос-
вечивающего электронного микроскопа (ПЭМ) 
JEM-F200 (JEOL). Для измерений в ПЭМ исполь-
зовался держатель образцов из бериллия JEOL 
EM-01361RSTHB с двойным наклоном. Изобра-
жения в ПЭМ были получены при увеличении от 
30000× до 600000×.

2.3. Изучение электрохимических 
характеристик

Электрохимическое поведение электроката-
лизаторов исследовали с использованием трех-
электродной ячейки и вращающегося дисково-
го электрода (ВДЭ) в электролите 0.1 М HClO4 
[31]. Катализатор наносили на торец стекло-
графитового электрода с использованием ка-
талитических чернил. Для приготовления чер-
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нил к 0.006 г исследуемого материала добавля-
ли 40 мкл 5%‑ного раствора Nafion и 2000 мкл 
изопропилового спирта. Полученную суспен-
зию диспергировали с помощью ультразвуковой 
обработки в течение 30 минут для достижения 
однородной дисперсии. На торец стеклографи-
тового дискового электрода наносили аликвоту 
рассчитанного объема, обеспечивая загрузку Pt 
на электроде в диапазоне 19–21 мкг/см².

Стандартизацию поверхности электрода и 
регистрацию циклических вольтамперограмм 
(ЦВА) для определения площади электрохи-
мически активной поверхности (ЭХАП) прово-
дили в соответствии с методикой, описанной в 
[31]. Активность синтезированных катализато-
ров в реакции электровосстановления кислорода 
(РВК) оценивали методом вольтамперометрии 
с линейной разверткой потенциалов на враща-
ющемся дисковом электроде. Кинетический ток 
рассчитывали при потенциале 0.90 В с использо-
ванием уравнения Коутецкого–Левича [31]. Все 
потенциалы в работе приведены относительно 
обратимого водородного электрода (ОВЭ).

3. Результаты и обсуждение 
Для легирования кобальтом Pt/C катализа-

торов были выбраны два материала с различ-

ной микроструктурой: (1) Pt/C-р с равномер-
ным распределением наночастиц по поверх-
ности углеродного носителя (рис. 1) и средним 
размером кристаллитов около 2.3 нм (табл. 1); 
(2) Pt/C-н материал с неравномерным распре-
делением наночастиц, выраженной агломера-
цией и несколько большим средним размером 
кристаллитов по данным рентгенофазового ана-
лиза (РФА) – 3.0 нм.

Отметим, что несмотря на одинаковое коли-
чество прекурсоров кобальта (из расчета атом-
ного соотношения Pt-Co – 1:1), осажденных на 
Pt/C материалы, состав полученных PtCo/C ма-
териалов различается в зависимости от методи-
ки синтеза. При осаждении прекурсоров кобаль-
та на Pt/C-р материал с использованием щело-
чи состав полученного катализатора составляет 
Pt1Co1, что соответствует атомному соотноше-
нию закладываемых в процессе синтеза прекур-
соров. С другой стороны, для PtCo/C-н катали-
затора, полученного на основе Pt/C-н матери-
ала, состав соответствует формуле PtCo1.6. Дан-
ный факт означает, что катализатор содержит 
меньшую долю Pt, по сравнению с материалом 
PtCo/C-р, что может быть связано с особенно-
стями синтеза и потерями металлов в процессе 
синтеза. Отметим, что массовая доля платины 

Рис. 1. Схема синтеза PtCo/C катализаторов на различных Pt/C
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для материала PtCo/C-н составила 14 % (табл. 1), 
что ниже ожидаемого из загрузки прекурсоров и 
подтверждает предположение о потерях метал-
лов в процессе синтеза. 

При осаждении кобальта на Pt/C основу с по-
следующей термической обработкой материала 
в инертной атмосфере могут происходить как 
процессы формирования биметаллических PtCo 
наночастиц за счет диффузии атомов, так и про-
цесс укрупнения металлических наночастиц за 
счет агломерации. Показано, что после осажде-
ния прекурсоров кобальта на Pt/C материалы 
с последующей термической обработкой фор-
мируются биметаллические наночастицы, по-
скольку по данным РФА происходит сдвиг отра-
жений, соответствующих гранецентрированной 
структуре платины, в область больших значений 
углов 2θ (рис. 2а). Данный факт свидетельству-
ет об уменьшении параметра кристаллической 
решетки (табл. 1) за счет формирования твер-
дого раствора платины с кобальтом. При этом 
величина сдвига максимума отражения и осо-
бенности фазового состава получаемых PtCo/C 
катализаторов зависят от типа используемо-

го Pt/С материала. Для PtCo/C-р катализатора, 
полученного осаждением прекурсора кобальта 
на Pt/С материале с равномерным распределе-
нием наночастиц, наблюдается формирование 
фазы PtCo с параметром решетки 3.853 Å. Для 
PtCo/C‑н катализатора по данным РФА можно 
выделить две отдельные металлические фазы 
(табл. 1). По величине параметра кристалли-
ческой решетки можно оценить состав твердо-
го раствора Pt-Co (закон Вегарда), который для 
материала PtCo/C-н составил PtCo0.23, а для ма-
териала PtCo/C-н составляет PtCo0.18 и PtCo0.44 
соответственно для фаз с меньшим и большим 
содержанием кобальта. Отметим расхождение в 
составе твердых растворов для биметаллических 
фаз в полученных PtCo/C материалах и соста-
вам катализаторов по данным элементного ана-
лиза, что может быть связано с неполным вхо-
ждением кобальта в состав твердого раствора с 
платиной. Кобальт, не вошедший в состав PtCo, 
может находится в материале в виде отдельной 
фазы, которая предположительно представля-
ет собой рентгеноаморфный оксид или гидрок-
сид кобальта. Анализ среднего размера кристал-

Таблица 1. Структурные характеристики PtCo/C катализаторов, полученных на основе различных 
Pt/C материалов

Материал w(Pt), % Состав РФлА Параметр кристаллической 
решетки, Å Состав РФА Средний размер 

кристаллитов, нм
Pt/C-р 21±1 Pt 3.94(6) – 2.3±0.2
Pt/C-н 18±1 Pt 3.93(3) – 3.0±0.2

PtCo/C-p 18±1 PtCo1.0 3.85(3) PtCo0.23 4.5±0.2

PtCo/C-н 14±1 PtCo1.6

3.86(6)
3.81(1)

PtCo0.18
PtCo0.44

30±3
10±1

Рис. 2. Рентгеновские дифрактограммы Pt/C материалов и PtCo/C катализаторов, полученных на их 
основе с равномерным (а) и неравномерным (б) распределением наночастиц по поверхности углерод-
ного носителя
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литов полученных биметаллических катализа-
торов, выполненный по формуле Шеррера [31], 
показал, что термическая обработка приводит 
к различным изменениям в структуре матери-
алов. Для материала PtCo/C-р, синтезированно-
го на основе равномерного Pt/C-p, наблюдается 
незначительное увеличение размера наночастиц 
до 4.5 нм. В то же время для материала PtCo/C-н 
характерно более существенное укрупнение на-
ночастиц, размер которых достигает 10–30 нм.

Кроме того, после термической обработки на 
рентгенограмме материала PtCo/C-н появляются 
дополнительные отражения. Наличие таких от-
ражений может свидетельствовать о формиро-
вании интерметаллических соединений Pt-Co. 
Однако из-за низкой интенсивности этих отра-
жений их точная идентификация затруднена. 

По данным просвечивающей электронной 
микроскопии (рис. 3) катализатор PtCo/C-p ха-
рактеризуется равномерным распределением 
металлических наночастиц по поверхности угле-
родного носителя. При этом по результатам ПЭМ 
установлено, что в состав полученного матери-
ала входят наночастицы различного размера от 
2 до 8 нм (рис. 3б), а также крупные агломера-
ты наночастиц размером до 30 нм (рис. 3б). На 
основе анализа изображений просвечивающей 
электронной микроскопии была построена ги-
стограмма размерного распределения наноча-
стиц (рис. 3в) и рассчитан средний размер ме-
таллических наночастиц, который составил 4.7 
нм. Гистограмма размерного распределения на-
ночастиц характеризуется широкой дисперсией, 
что показывает наличие как мелких (около 2 нм), 
так и крупных наночастиц более 8 нм. Важно от-
метить, что крупные агломераты наночастиц не 

были учтены при расчетах среднего размера на-
ночастиц и построении гистограммы вследствие 
методических сложностей такого учета. Установ-
лено, что для материала PtCo/C-p средний раз-
мер наночастиц по данным ПЭМ практически 
совпадает со средним размером кристаллитов 
PtCo, рассчитанного с использование формулы 
Шеррера (табл. 1). Такими образом, биметалли-
ческий катализатор, полученный на основе рав-
номерного Pt/С материала, с одной стороны, ха-
рактеризуется равномерным распределение на-
ночастиц по поверхности углеродного носителя, 
с другой стороны, характеризуется очень широ-
ким размерным распределением наночастиц и 
наличием агломератов, что является негатив-
ным фактором при получении высокоэффектив-
ного катализатора. По-видимому, для получения 
катализатора с более узким размерным распре-
делением, особенности нанесения прекурсоров 
кобальта и условия термической обработки тре-
буют дальнейшей оптимизации. 

Оценка величины ЭХАП по данным цикличе-
ской вольтамперометрии (рис. 4) показала зна-
чительные различия для PtCo/C материалов, по-
лученных на основе Pt/C материалов с разной 
равномерностью. Величина ЭХАП для материала 
PtCo/C-p составила около 50 м2/г (Pt) (табл. 2), что 
несколько ниже по сравнению с коммерческим 
Pt/C аналогом с величиной ЭХАП 84 м2/г (Pt), и, 
возможно, может быть связано с более крупным 
размером и широким размерным распределени-
ем наночастиц для полученного биметалличе-
ского материала. Отметим, что при осаждении 
кобальта с последующей термической обработ-
кой величина ЭХАП для материала PtCo/C-p сни-
зилась по сравнению с Pt/C-p (табл. 2), что мо-

Рис. 3. ПЭМ-изображения (а, б) и гистограмма размерного распределения наночастиц (в) PtCo/C-р ка-
тализатора, полученного на основе Pt/C катализатора с равномерным распределением наночастиц

Конденсированные среды и межфазные границы / Condensed Matter and Interphases	 2025;27(4): 651–660

А. К. Невельская и др.	 Изучение влияния микроструктуры Pt/С материалов на электрохимические...



657

жет быть связано с увеличением размера частиц 
в процессе термической обработки при синтезе 
биметаллического катализатора. Величина ЭХАП 
для материала PtCo/C-н, полученного на основе 
неравномерного Pt/C материала, значительно 
ниже по сравнению с материалом PtCo/C-p, что 
может быть связано как с меньшей величиной 
ЭХАП Pt/C-н материала, на основе которого он 
был получен, так и с большим размером метал-
лических частиц для материала PtCo/C-н (табл. 1).

Кривые на рис. 4 имеют типичный вид для 
платиносодержащих катализаторов. От потен-
циала 1.10 В до потенциала выхода около 0.98 В 
для материалов PtCo/C-н и Pt/C и около 1.00 В 
для материала PtCo/C-p соответственно (рис. 4в 
область I, 4г) наблюдается нулевой ток – реакция 
электровосстановления кислорода не протекает. 
При достижении потенциала выхода наблюдает-
ся увеличение катодного тока при уменьшении 
потенциала. Данная область не зависит от ско-

Таблица 2. Электрохимические характеристики полученных PtCo/C катализаторов, а также 
коммерческого Pt/C катализатора Hispec 3000 

Материал ЭХАП, м2/г (Pt) Ik, мА Im, А/г (Pt)
(при 0.90 В)

Is, А/м2 (Pt)
(при 0.90 В) E1/2, В

PtCo/C-p 50±5 5.0±0.5 1215±122 24.3±2.4 0.94±0.01
PtCo/C-н < 3 0.6±0.1 192±19 – 0.88±0.01

Hispec 3000 84±8 1.2±0.1 254±25 3.0±0.3 0.91±0.01

Рис. 4. Циклические вольтамперограммы PtCo/C катализаторов, полученных с использованием различ-
ных Pt/C катализаторов (а, б); вольтамперограммы с линейной разверткой потенциалов (в), и зависимость 
Тафеля для полученных PtCo/C катализаторов, а также коммерческого Pt/C катализатора Hispec 3000 (г)
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рости вращения электрода, и скорость реакции 
определяется только замедленной кинетикой 
РВК. При дальнейшем уменьшении потенциала 
начинает вносить свой вклад диффузия кисло-
рода к поверхности электрода, и данная область 
(рис. 4в область II) характеризуется смешанным 
диффузионно-кинетическим контролем. При 
дальнейшем уменьшении потенциала величина 
катодного тока не зависит от значения потенци-
ала, поскольку лимитируется только скоростью 
подвода кислорода к поверхности электрода – 
область предельного диффузионного тока (рис. 
4в область III). Каталитическая активность при 
потенциале 0.90 B, нормированная как на мас-
су Pt (Im), так и на величину ЭХАП (Is), материа-
ла PtCo/C-p, равная 1215 А/г (Pt) и 24.3 А/м2 (Pt) 
соответственно, намного превосходит коммер-
ческий Pt/C аналог с активностью 254 А/г (Pt) 
несмотря на меньшую величину ЭХАП (табл. 2). 
При этом показано, что материал PtCo/C-н обла-
дает значительно меньшей величиной активно-
сти по сравнению с коммерческим Pt/C анало-
гом, что может быть связано с крайне низкой ве-
личиной ЭХАП для данного неравномерного ма-
териала. По величине потенциала полуволны E1/2 
изученные образцы можно расположить в ряду 
по увеличению активности следующим образом: 
PtCo/C-н – Pt/C – PtCo/C-p. Величина потенциа-
ла полуволны является показателем активности 
наравне со значением кинетических токов. Та-
ким образом, еще раз подтверждается, что ката-
лизатор PtCo/C-p, обладающий набольшим по-
тенциалом полуволны 0.94 В из всех приведен-
ных, проявляет наибольшую активностью в РВК. 

4. Выводы
По результатам проведенного исследования 

на модельных Pt/C образцах с равномерным и 
неравномерным распределением наночастиц 
платины по поверхности углеродного носите-
ля было показано определяющее влияние этого 
фактора на характеристики получаемых на их 
основе биметаллических PtCo/C катализаторов. 
Установлено, что PtCo/C катализатор, получен-
ный на основе Pt/C материала с равномерным 
распределением наночастиц платины, характе-
ризуется большей величиной площади электро-
химически активной поверхности, а также более 
чем в 6 раз превышает массовую активность ка-
тализатора, полученного на основе Pt/C матери-
ала с неравномерным распределением наноча-
стиц. Кроме того, величина массовой активности 
наиболее активного PtCo/C катализатора превы-

шает аналогичный показатель для коммерческо-
го Pt/C катализатора в 4.8 раза.

Таким образом, данный метод высокотем-
пературного синтеза PtCo/C электрокатализато-
ров продемонстрировал свою перспективность 
и масштабируемость для получения высокоэф-
фективных биметаллических катализаторов. В 
рамках дальнейшего развития данного подхода 
планируется синтез материалов с различным со-
держанием металлов на углеродном носителе и 
тестирование полученных материалов в составе 
мембранно-электродных блоков низкотемпера-
турных топливных элементов.
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