УДК 539.21

СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА КОНДЕНСИРОВАННОЙ ФОЛЬГИ ТВЁРДОГО РАСТВОРА Pd-Cu

© 2016 В. М. Иевлев^{1, 2}, А. А. Максименко², С. В. Канныкин², Е. К. Белоногов^{2, 3}, М. С. Володина², Н. Р. Рошан⁴

¹Московский государственный университет имени М. В. Ломоносова, Ленинские горы, 1, 119991 Москва, Россия ²Воронежский государственный университет, Университетская пл., 1, 394018 Воронеж, Россия

³Воронежский государственный технический университет, Московский проспект, 14, 394026 Воронеж, Россия

⁴Институт металлургии и материаловедения им. А. А. Байкова РАН, Ленинский пр-т, 49, 119991 Москва, Россия

Поступила в редакцию 04.11.2016 г.

Аннотация. Исследованы структура, твердость и прочность тонкой фольги твердого раствора Pd-Cu с разным содержанием α и β фаз, полученной методом магнетронного распыления. Для исходных образцов характерна градиентная зеренная структура и одноосные текстуры ({111} для α -фазы, {110} и {112} для β -фазы), обусловленные селективным ростом зерен соответствующих ориентаций. Отжиг приводит к собирательной рекристаллизации, устраняющей градиентность зеренной структуры. Установлено, что отжиг в вакууме увеличивает твёрдость фольги, а в водороде — снижает; пластичность однофазных образцов увеличивается при снижении прочности; двухфазные образцы увеличивают пластичность при сохранении прочности. Обнаружено снижение хрупкости без ухудшения прочности материала. Отжиг в водороде многократно увеличивает пластичность фольги (β фаза) без существенного уменьшения прочности.

Ключевые слова: фольга Pd-Cu, структура, фазовый состав, $\beta \rightarrow \alpha$ фазовые превращения, упорядочение, механические свойства, твердость, прочность, водород.

введение

Твёрдые растворы системы Pd-Cu относятся к группе сплавов, рекомендуемых для изготовления селективных мембран глубокой очистки водорода [1-4]. К этому есть основания: наряду с экономическим следует отметить относительную пассивность к гидридизации и возможность образования упорядоченной структуры с кристаллической решеткой типа CsCl (β-фаза) [5]. Образование упорядоченной структуры представляет практический интерес в разных аспектах: для создания электрических проводников — малое удельное сопротивление по сравнению с неупорядоченной структурой (α-фаза); для мембран — малая величина энергии активации диффузии водорода (0.035 эВ), что почти на порядок величины меньше, чем в неупорядоченном твёрдом растворе (0.325 эВ) и в Pd (0.23 эВ) [6]. В предыдущих публикациях мы показали возможность получения тонкой (менее 10 мкм) мембранной фольги этой системы с упорядоченной структурой методом магнетронного распыления [7], установили смещение границы β→α фазового превращения в сторону более высоких температур в среде водорода [8].

Изготовление и эксплуатация мембраны сопряжены с нагревом, а также механическими напряжениями вследствие перепада давления, поэтому цель настоящей работы — установление механических свойств тонкой конденсированной фольги в зависимости от структуры и термообработки (в вакууме и водороде).

МЕТОДИКА ИССЛЕДОВАНИЙ

Образцы фольги диаметром до 60 мм и толщиной около 4—7 мкм получали методом магнетронного распыления мишени состава 45 ат.% Pd — 55 ат.% Cu (серия 1) и 51 ат.% Pd — 49 ат.% Cu (серия 2). Исходный вакуум в рабочей камере 10^{-3} Па, давление рабочего газа (Ar) — $1.6 \cdot 10^{-1}$ Па. Исходная температура подложки (T_n) для каждой серии была 300 и 700 К, а скорость конденсации, рассчитаная исходя из толщины и времени процесса, составляла $\sim 1 \text{ нм} \cdot \text{c}^{-1}$. Подложкой служили оксидированные монокристаллические пластины кремния (SiO₂/Si).

Вследствие слабого межфазного взаимодействия на границе конденсат — подложка фольгу отделяли механически. Толщину фольги определяли по изображению поперечных срезов в растровом электронном микроскопе (РЭМ, Qvanta 3D). Фазовый состав и структуру исследовали методами рентгеновской дифрактометрии (РД, ARL X-TRA с приставкой NT-1200K), просвечивающей электронной микроскопии (ПЭМ, Karl Zeiss Libra120).

Структурные превращения исследовали методом РД in situ в процессе нагревания и охлаждения до комнатной температуры по программе: нагрев до 1120 К и охлаждение до 300 К со скоростью 100 К/мин с шагом 50 К, выдержка 35 минут при заданной температуре. Циклы нагревания и охлаждения проводили в вакууме (10^{-1} Па) или в среде водорода (10^5 Па). Прочность исходных образцов и образцов после нагрева и охлаждения в вакууме и среде водорода определяли при комнатной температуре на разрывной машине Instron 3302, твёрдость — на приборе Nanohardness tester при нагрузках на индентор 5 и 10 мН.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структура и фазовый состав. Общая закономерность зеренной структуры фольги Pd-Cu — градиентный характер, как результат эволюционной селекции в процессе роста [9], конкретнее — преимущественного роста зёрен в направлениях <110> и <211> β-фазы и <111> α-фазы. На рис. 1 приведены дифрактограммы образцов серии 1: *T*_п=300 К (1) и 700 К (2). В обоих случаях они подтверждают вывод работы [7] о возможности формирования однофазной структуры (β-фазы) фольги методом магнетронного распыления. Нагрев до 1120 К и охлаждение образцов серии 1 в вакууме и в среде водорода приводит к повышению степени упорядочения и увеличению доли текстуры <110> (рис. 1, дифрактограммы 3 и 4) и не изменяет фазовый состав. В результате проведения цикла нагрев (1120 К) — охлаждение (300 К) образцов серии 1 в среде водорода упорядоченная фаза сохраняется до 1120 К (хотя её не более 20 %), что соответствует результатам работы [8], в которой показано, что в среде водорода β-фаза твердого раствора стабилизируется. Граница существования 100 % β-фазы смещается более чем на 200 К относительно максимальной температуры предсказанной диаграммой состояния [5].

Рис. 1. Рентгеновские дифрактограммы образцов фольги серии 1: *T*п=300 К (*1*), *T*п=700 К (*2*), после нагрева и охлаждения образца с *T*п=300 К в среде водорода (*3*) и в вакууме (*4*)

Увеличение содержания палладия по отношению к меди в образцах серии 2 приводит к образованию двухфазной структуры ($\alpha+\beta$) исходной фольги. Повышение T_{π} приводит к значительному (с 70 % до 20 %) снижению содержания упорядо-

ченной фазы и изменению текстуры (рис. 2, дифрактограммы *l* и 2). Образцы серии 2 в результате цикла нагрев — охлаждение полностью переходили в разупорядоченное состояние (рис. 2, дифрактограммы 3 и 4).

Рис. 2. Рентгеновские дифрактограммы образцов фольги серии 2: *T*п=300 К (*1*), *T*п=700 К (*2*), после нагрева и охлаждения образца с *T*п=300 К в среде водорода (*3*) и в вакууме (*4*)

Необратимость фазового превращения (такие обстоятельства могут возникать в процессе изготовления мембранного элемента) указывает на нецелесообразность использования такой фольги в качестве мембраны из-за снижения водородопроницаемости. В результате проведения цикла нагрев (1120 К) — охлаждение (300 К) образцов серии 1 в среде водорода установлено, что полное разупорядочение происходит при 720 К, т. е. граница существования β-фазы смещается на 100 К относительно максимальной температуры предсказанной диаграммой состояния [5].

На рис. 3 представлены РЭМ-изображения свободной поверхности (фронт роста) (*a*), освобождённой от подложки (б) и поверхности поперечного среза фольги серии 1. Они подтверждают вывод о сильно выраженной градиентной поликристаллической структуре, характеризующейся увеличением на порядок величины поперечного размера зерен в направлении от межфазной гра-

ницы с подложкой к свободной поверхности (от 25—100 нм у подложки, до 0.5—1.0 мкм у свободной поверхности). Исследование поперечных срезов показало, что по мере роста развивается анизотропия формы зерен в направлении текстуры. Отсутствие характерного контраста от микродвойников на изображении поперечного среза — свидетельство однофазной (β-фаза) структуры.

Общая закономерность изменения зеренной структуры фольги при отжиге (нагрев до 1120 К в течение 0.5 часа и охлаждение) — собирательная рекристаллизация, характерная для высокодисперсных конденсатов металлов. В итоге уменьшается градиентность зеренной структуры (рис. 3г, d), форма зерен становится более изотропной. Из сопоставления рис. 3г и 3d следует, что при нагревании в вакууме рекристаллизация проходит более эффективно, чем в среде водорода. Возможны также изменения в текстуре фольги. В. М. ИЕВЛЕВ, А. А. МАКСИМЕНКО, С. В. КАННЫКИН, Е. К. БЕЛОНОГОВ, М. С. ВОЛОДИНА...

Рис. 3. РЭМ-изображения фольги серии 1:

свободной поверхности (фронт роста) (*a*), освобождённой от подложки (*б*), поперечного среза исходной фольги (*в*), после отжига в вакууме (*г*) и после отжига в среде водорода (*д*)

На рис. 4 представлено РЭМ изображение поверхности поперечного среза исходной фольги серии 2 (T_n =700 K). Структура двухфазная, микродвойники характерны для α-фазы. Область нанокристаллической зеренной структуры простирается до 1.5—2 мкм.

Рис. 4. РЭМ-изображение поверхности поперечного среза исходной фольги серии 2 ($T_{\rm n}$ =700 K)

Для обеих серий образцов перепад высоты рельефа освобождённой от подложки поверхности не превышал 10 нм, на свободной поверхности — 150 нм.

Механические свойства. На рис. 5 приведены диаграммы нагружение (P) — глубина проникновения индентора (h) для освобождённой от подложки поверхности исходных образцов, отожжённых в вакууме и в среде водорода.

Из диаграмм (рис. 5) следует упруго-пластический характер деформации. Для исходных образцов с высокодисперсной зеренной структурой увеличение температуры подложки приводит к увеличению *h*; отжиг в вакууме — к её сближению для всех образцов. Отжиг в среде водорода приводит к большему увеличению *h* для образцов с упорядоченной структурой по сравнению с исходной двухфазной.

Рис. 5. *P-h*–диаграммы индентирования исходных (*a*), отожженных в вакууме (б) и отожженных в среде водорода (*в*) образцов фольги при нагрузках 5 мН (*a*, *e*, *d*) и 10 мН (б, *c*, *e*): *1* — серия 1 *T*п=700 K, *2* — серия 2 *T*п=300 K, *3* — серия 2 *T*п=700 K

Обобщённые результаты исследования твёрдости образцов фольги представлены в табл. 1.

Основные результаты исследования твердости фольги следующие:

 — увеличение нагрузки на индентор приводит к продавливанию индентора в зону более крупных зерен, что в свою очередь приводит к уменьшению твёрдости образца;

— твёрдость отожженных в вакууме образцов мало изменяется с глубиной проникновения инден-

тора вследствие образования однородной зеренной структуры фольги;

 после отжига в вакууме образцов с упорядоченной структурой происходит увеличение твёрдости фольги, а после отжига в водороде
 значительное снижение;

— отжиг исходных двухфазных образцов приводит к полному разупорядочению твердого раствора и уменьшению твёрдости; этот результат соответствует общей закономерности для упорядочивающихся твердых растворов [9].

Таблица 1. Твёрдость (*H*) и модуль Юнга (*E*) образцов фольги при нагрузках (*P*) 5 и 10 мН

№ серии	<i>Р</i> , мН	<i>H</i> (<i>E</i>), ГПа			
		Исходные образцы	После нагрева и охлаждения		
			в вакууме	в водороде	
1 (Tn=700 K)	5	3.02 (85) 2.8 (84)	3.45 (98)	2.68 (56)	
	10		3.48(74)	2.65 (68)	
2 (Тп=300 К)	5	4.17 (118) 4.03 (108)	3.5 (84) 3.4 (69)	3.27 (82) 3.15 (73)	
	10				
2 (Тп=700 К)	5	4.07 (90) 3.51 (76)	3.7 (120) 3.67 (122)	3.5 (103) 3.36 (95)	
	10				

На рис. 6 приведены диаграммы напряжение (σ) — относительная деформация (ε) для исходных,

отожженных в вакууме и водороде образцов серий 1 (100 % β-фаза) и 2 (~40 % β-фазы).

Рис. 6. Диаграммы напряжение (σ) — относительная деформация (ε) для исходных (1, 4), отожженных в вакууме (2, 5) и водороде (3, 6) образцов серий 1 (1, 2, 3) и 2 (4, 5, 6)

В табл. 2 приведены результаты исследования прочности конденсированной фольги.

Отжиг в вакууме приводит к большему снижению прочности однофазной (β -фаза) фольги Pd-Cu, чем отжиг в водороде.

Пластичность образцов исходной фольги Pd-Cu находится на уровне 0.3—0.6 %, причем нижний уровень пластичности имеют двухфазные образцы. После отжига в вакууме пластичность образцов

увеличивается более чем в 1.5 раза при двукратном снижении прочности. Двухфазные образцы также увеличивают пластичность и не существенно снижают прочность. Такой же отжиг в среде водорода вызывает почти 6-ти кратное увеличение пластичности фольги с упорядоченной структурой, причем уменьшение прочности не превышает 13 %. Т. е. обнаружено снижение хрупкости без ухудшения прочности материала.

Таблица 2. Прочность (σ_B, МПа) и относительная пластическая деформация (ε,%) исходных образцов и отожженных в вакууме или среде водорода при 1120 К

№ серии	Исходные образцы		Отжиг при 1120 К			
			в вакууме		в водороде	
	$\sigma_{_{ m B}}$	e	$\sigma_{_{ m B}}$	e	$\sigma_{_{ m B}}$	e
1	701	0.55	347	0.9	612	3
2	1220	0.3	996	0.5	1118	0.7

ЗАКЛЮЧЕНИЕ

Механическая прочность чистого палладия ~200 МПа, измеренная прочность упорядоченного твердого раствора Pd-Cu, полученного магнетронным распылением, всегда выше, что рекомендует его к использованию в качестве ультратонкой мембранной фольги при изготовлении элемента глубокой очистки водорода.

Установленные закономерности изменения механических свойств образцов обусловлены размером зёрен, а также стабильностью упорядоченной структуры твердого раствора Pd-Cu в среде водорода. Высокая прочность при сохранении пластичности — наиболее необходимое сочетание для фольги мембранных элементов глубокой очистки водорода.

Исследования выполнены в соответствии с планом работ по договору № 76/ФПК от 29.07.2015 в рамках договора № 02.G25.31.0159 с Министерством образования и науки Российской Федерации об условиях предоставления и использования субсидии на реализацию комплексного проекта по созданию высокотехнологичного производства.

СПИСОК ЛИТЕРАТУРЫ

1. Мищенко А. П., Сарылова М. Е., Грязнов В. М., Смирнов В. С., Рошан Н. Р., Полякова В. П., Савицкий Е. М. // Известия Академии наук СССР. Серия химическая, 1977, № 7, с. 1620.

2. Al-Mufachi N. A. Rees N. V., Steinberger-Wilkens R. // *Renewable and Sustainable Energy Reviews*, 2015, vol. 47, pp. 540—551.

3. Basile A., Iulianelli A., Long T., Liguori S., De Falco M. // *Membrane Reactors for Hydrogen Production Processes*, 2011, pp. 21—55.

4. Westerwaal R. J., Bouman E. A., Haije W. G., Schreuders H., Dutta S., Wu M. Y., Boelsma C., Ngene P., Basak S., Dam B. // *International Journal of Hydrogen Energy*, 2015, vol. 40, № 10, pp. 3932—3943.

5. Диаграммы состояния двойных металлических систем: в 3 томах / Под общей редакцией академика РАН Е. П. Лякишева. М.: Машиностроение, 1997, т. 2, 1024 с.

6. Водород в металлах / Под ред. Г. Алефельда и И. Фёлькля. Москва, Мир, 1981, т. 1, 385 с.

7. Иевлев В. М., Бурханов Г. С., Рошан Н. Р., Белоногов Е. К., Максименко А. А., Донцов А. И., Рудаков К. Е. // *Металлы*, 2012, № 6, с. 92—100

8. Иевлев В. М., Солнцев К. А., Максименко А. А., Белоногов Е. К., Канныкин С. В., Синельников А. А., Синецкая Д. А. // Доклады Академии наук, 2015, т. 460, № 4, с. 422—426

9. Van Der Drift A. // Philips Res. Rep., 1967, vol. 22, pp. 267—288.

10. Механические свойства упорядоченных твердых растворов / Л. Е. Попов, Э. В. Козлов. М.: Металлургия, 1970, 217 с.

STRUCTURE AND MECHANICAL PROPERTIES OF THE CONDENSED FOIL OF Pd-Cu SOLID SOLUTION

© 2016 V. M. Ievlev^{1, 2}, A. A. Maksimenko², S. V. Kannykin², E. K. Belonogov^{2, 3}, M. S. Volodina², N. R. Roshan⁴

¹Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia ²Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia ³Voronezh State Technical University, Moskovskiy pr., 14, 394026 Voronezh, Russia ⁴Baikov Institute of Metallurgy and Materials Science of RAS, Leninsky pr., 49, 119991 Moscow, Russia *e-mail: maximencoalex@mail.ru*

Received 04.11.2016

Abstract. To evaluate mechanical properties of thin condensed Pd-Cu foil, acceptable to the membrane foil devices for deep cleaning of hydrogen, its structure, hardness and strength have been investigated. Samples of the foil contained 45 at.% Pd — 55 at.% Cu and 51 at.% Pd — 49 at.% Cu were obtained by magnetron sputtering of targets of the appropriate composition and condensation in vacuum on oxidized single crystal silicon wafers (SiO₂/Si). The phase composition and structure were examined by X-ray diffractometry and transmission electron microscopy. The cycles of heating-cooling were performed in vacuum or in hydrogen, controlling by X-ray diffractometry in situ phase composition of the foil. Strength was determined on a tensile testing machine Instron 3302, hardness — on the device Nanohardness tester. It has been established that (i) annealing in vacuum increases the hardness of the foil and annealing in hydrogen reduces its hardness; (ii) the plasticity of single-phase samples increases with decreasing of its strength; (iii) the plasticy of two-phase samples increase without reducing of strength. The decreasing of fragility without reducing of strength of the material was established. Annealing in hydrogen greatly increases the plasticy of the foil (β phase) without significantly reducing of strength.

Keywords: Pd-Cu foil, structure, phase composition, $\beta \rightarrow \alpha$ phase transition, ordering, mechanical properties, hardness, strength, hydrogen.

REFERENCES

1. Mischenko A. P., Sarylova M. E., Gryaznov V. M., Smirnov V. S., Roshan N. R., Polyakova V. P., Savitskiy E. M. *Izvestiya Akademii Nauk USSR*, *Seriya Khimicheskaya*, 1977, no. 7, c. 1620.

2. Al-Mufachi N. A. Rees N. V., Steinberger-Wilkens R. *Renewable and Sustainable Energy Reviews*, 2015, vol. 47, pp. 540—551. DOI 10.1016/j.rser.2015.03.026

3. Basile A., Iulianelli A., Long T., Liguori S., De Falco M. *Membrane Reactors for Hydrogen Production Processes*, 2011, pp. 21–55.

4. Westerwaal R. J., Bouman E. A., Haije W. G., Schreuders H., Dutta S., Wu M. Y., Boelsma C., Ngene P., Basak S., Dam B. *International Journal of Hydrogen Energy*, 2015, vol. 40, no. 10, pp. 3932—3943. DOI 10.1016/j. ijhydene.2015.01.124

5. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: v 3 tomakh / Pod obshchei redaktsiei akademika

RAN E. P. Lyakisheva. Moscow, Mashinostroenie Publ., 1997, vol. 2, 1024 p.

6. *Vodorod v metallakh /* Pod red. G. Alefel'da i I. Fel'klya. Moscow, Mir Publ., 1981, vol. 1, 385 p.

7. Ievlev V. M., Belonogov E. K., Maksimenko A. A., Dontsov A. I., Rudakov K. E., Burkhanov G. S., Roshan N. R. *Russian metallurgy (Metally*), 2012, vol. 2012, no. 11, pp. 994—1001. DOI: 10.1134/ S0036029512110080

8. Ievlev V. M., Maksimenko A. A., Belonogov E. K., Kannykin S. V., Sinelnikov A. A., Sinetskaya D. A., Solntsev K. A. *Doklady Physical Chemistry*, 2015, vol. 460, no. 2, pp. 33—36. DOI: 10.1134/S0012501615020025

9. Van Der Drift A. *Philips Res. Rep.*, 1967, vol. 22, pp. 267–288.

10. *Mekhanicheskie svoistva uporyadochennykh tverdykh rastvorov* / L. E. Popov, E. V. Kozlov, Moscow, Mettalurgy Publ., 1970, 217 p. Иевлев Валентин Михайлович — д. ф.-м. н., профессор, академик РАН, заведующий кафедрой междисциплинарного материаловедения Факультета наук о материалах МГУ им. М. В. Ломоносова, заведующий кафедрой материаловедения и индустрии наносистем, Воронежский государственный университет; тел.: +7 (473) 2208735, e-mail: rnileme@mail.ru

Максименко Александр Александрович — к. ф.-м. н., научный сотрудник кафедры материаловедения и индустрии наносистем, Воронежский государственный университет; тел.: +7 (473) 2208735, e-mail: maximencoalex@mail.ru

Канныкин Сергей Владимирович — к. ф.-м. н., доцент кафедры материаловедения и индустрии наносистем, Воронежский государственный университет; тел.: +7 (473) 2208735, e-mail: svkannykin@gmail.com

Белоногов Евгений Константинович — д. ф.-м. н., профессор кафедры материаловедения и индустрии наносистем, Воронежский государственный университет, профессор кафедры физики, Воронежский государственный технический университет; тел.: +7 (473) 2208735, e-mail: ekbelonogov@mail.ru

Володина Мария Сергеевна — инженер, Воронежский государственный университет; тел.: +7 (473) 2399292, e-mail: tigrenok051@mail.ru

Рошан Наталия Робертовна — с. н. с., Институт металлургии и материаловедения им. А. А. Байкова РАН; тел.: +7 (499) 1359486, e-mail: roshanat@mail.ru

Ievlev Valentin M. — Dr. Sci. (Phys.-Math.), Academician of RAS, Head of Multidisciplinary Materials Science Department, Lomonosov Moscow State University, Head of Materials Science and Industry of Nanosystems Department, Voronezh State University; ph.: +7 (473) 2208735, e-mail: rnileme@mail.ru

Maksimenko Aleksandr A. — Cand. Sci. (Phys.-Math.), Scientific Researcher of Materials Science and Industry of Nanosystems Department, Voronezh State University; ph.: (473) 2208735, e-mail: maximencoalex@mail.ru

Kannykin Sergey V. — Cand. Sci. (Phys.-Math.), Assistant Professor of Materials Science and Industry of Nanosystems Department, Voronezh State University; ph.: +7 (473) 2208735, e-mail: svkannykin@gmail.com

Belonogov Evgeniy K. — Dr. Sci. (Phys.-Math.), Professor of Materials Science and Industry of Nanosystems Department, Voronezh State University, Professor of Physics Department, Voronezh State Technical University; ph.: +7 (473) 2208735, e-mail: ekbelonogov@mail.ru

Volodina Maria S. — Engineer, Voronezh State University; ph.: +7 (473) 2399292, e-mail: tigrenok051@mail.ru

Roshan Nataliya R. — Scientific Researcher of Baikov Institute of Metallurfy and Materials Science of RAS; ph.: +7 (499) 1359486, e-mail: roshanat@mail.ru