УДК 541.123.2, 541.123.3

ФАЗОВЫЕ РАВНОВЕСИЯ В ТРЕХКОМПОНЕНТНОЙ СИСТЕМЕ CsCl-CsBr-Cs,MoO₄ И ЭЛЕМЕНТАХ ЕЕ ОГРАНЕНИЯ

© 2017 М. А. Сухаренко, И. К. Гаркушин, Я. С. Осетрова, М. В. Сысуева

Самарский государственный технический университет, ул. Модогвардейская, 244, 443100 Самара, Россия e-mail: Sukharenko_maria@mail.ru

Поступила в редакцию 11.01.2017 г.

Аннотация. Методом дифференциального термического анализа (ДТА) исследована трехкомпонентная система $CsCl-CsBr-Cs_2MoO_4$, а также элементы ее огранения – двухкомпонентные системы $CsCl-Cs_2MoO_4$ и $CsBr-Cs_2MoO_4$. В двухкомпонентных системах определены температуры плавления и составы точек нонвариантных равновесий. Фазовый комплекс системы $CsCl-CsBr-Cs_2MoO_4$ представлен тремя полями кристаллизации фаз – α - Cs_2MoO_4 , β - Cs_2MoO_4 и полем непрерывного ряда твердых растворов $CsCl_xBr_{1,x}$. Определены координаты минимума (условно-нонвариантное равновесие) на кривой моновариантных равновесий.

Ключевые слова: фазовые равновесия, точка нонвариантных равновесий, непрерывный ряд твердых растворов, линия моновариантных равновесий, дифференциальный термический анализ.

введение

Физико-химический анализ широко используется для разработки новых составов функциональных и конструкционных материалов различного назначения. Многие многокомпонентные солевые системы на основе галогенидов щелочных металлов давно изучены и широко используются в качестве электролитов ХИТ и теплоаккумулирующих материалов [1–6].Однако многокомпонентные системы на основе галогенидов и молибдатов цезия недостаточно хорошо изучены. Поэтому, в качестве объекта исследования авторами была выбрана трехкомпонентная система на основе хлорида, бромида и молибдата цезия.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Трехкомпонентная система CsCl–CsBr–Cs- $_2$ MoO₄ в качестве элементов огранения включает три двухкомпонентные системы: CsCl–CsBr [7] с образованием непрерывного ряда твердых растворов CsCl $_x$ Br_{1-x} с минимумом на моновариантной кривой (условно-нонвариантное равновесие) [8]; CsCl–Cs₂MoO₄, представляющая диаграмму эвтектического типа, исследованная визуально-политермическим методом [7]; система CsBr–Cs₂MoO₄ не исследована. Так как система CsCl–Cs₂MoO₄ эвтектическая, то также прогнозируется образование эвтектики в системе CsBr–Cs₂MoO₄. В трехкомпонентной системе CsCl–CsBr–Cs₂MoO₄ возможны два варианта топологии ликвидуса. В случае распада бинарного твердого раствора CsCl_xBr_{1-x} с образованием граничных твердых растворов на основе CsCl и CsBr в трехкомпонентной системе образуется эвтектика. В случае устойчивости бинарноготвердого раствора CsCl_xBr_{1-x} с минимумом внутри тройной системы будет также прогнозироваться минимум на кривой моновариантных равновесий, соединяющей двойные эвтектики систем CsCl–Cs₂MoO₄ и CsBr–Cs₂MoO₄ [9].

МЕТОДИКА ЭКСПЕРИМЕНТА

Объектом исследования являются двухкомпонентные системы $CsCl-Cs_2MoO_4$ и $CsBr-Cs_2MoO_4$ и трехкомпонентная система $CsCl-CsBr-Cs_2MoO_4$, изучение фазовых равновесий в которых проводили методом дифференциального термического анализа (ДТА) [10].

Кривые нагревания и охлаждения образцов снимали на установке ДТА в стандартном исполнении. Термоаналитические исследования проводили в стандартных платиновых микротиглях (ГОСТ 13498-68). Холодные спаи термопар термостатировали при 0 °С в сосуде Дьюара с тающим льдом. Скорость нагрева (охлаждения) образцов составляла 10–15 К/мин. Индифферентным веществом служил свежепрокаленный оксид алюминия квалификации «ч.д.а.». Градуировку термопар проводили по температурам плавления и полиморфным превращениям безводных неорганических солей. Точность измерения температур составляла ±2.5 °С, при точности взвешивания составов ±0.0001 г на аналитических весах VIBRAHT. Составы всех смесей – молярные концентрации эквивалентов, температуры – в градусах Цельсия. Масса исходных смесей составляла 0.3 г.

В работе использовались реактивы следующих марок: CsCl-«х.ч.» (ТУ 6-09-4066-84, содержание основного вещества 99.7 мас.%), CsBr - «х.ч.» (ТУ 6-09-04-186-81, содержание основного вещества 99.6 мас.%), Cs₂MoO₄-«ч.» (ТУ 6-09-04-80-82, содержание основного вещества 98.3 мас.%). Температуры плавления исходных солей, определенные методом ДТА (при точности измерения ± 2.5 °C) равны 644, 636 и 933 °C, т.е. влияние имеющихся примесей на температуры плавления исходных солей незначительны. Поэтому в работе приняты данные литературы [11], в которой приведены следующие температуры плавления солей: CsCl - 645 (±2 °С), α/β при 470±2 °С; CsBr – 638 (±2 °С); Сs₂MoO₄- 935 (±5°С), α/β - 572±5 °С. Исходные реактивы были предварительно высушены, переплавлены, а затем, после охлаждения в сухом боксе, помешены в бюксы.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Двухкомпонентная система CsCl-Cs₂MoO₄. С целью уточнения данных ВПА [7] были проведены дополнительные исследования системы методом ДТА. Ликвидус системы представлен тремя ветвями кристаллизации: β-CsCl (ветвь *ae*₁), α -Cs₂MoO₄ (ветвь *bp*) и β -Cs₂MoO₄ (ветвь *p*e₁). Исследуемая двухкомпонентная система является эвтектической.

Фазовая диаграмма двухкомпонентной системы CsCl-Cs₂MoO₄ (рис. 1) представлена шестью полями. Выше линии ликвидуса находится поле жидкого состояния системы (Ж). Ниже линии солидуса находятся поля твердого состояния $(\beta$ -CsCl+ α -Cs₂MoO₄) и (α -CsCl+ α -Cs₂MoO₄). При температуре 470 °С у хлорида цезия наблюдается полиморфный переход (α ≈ β). Кроме указанных, на диаграмме еще три двухфазных поля: $\mathcal{K}+\beta$ -CsCl, $\mathcal{K}+\beta$ -Cs₂MoO₄, $\mathcal{K}+\alpha$ -Cs₂MoO₄. Mohobaриантной кривой bp отвечает фазовое равновесие Ж ≈ β-Cs₂MoO₄. При 572 °C наблюдается полиморфный переход α -Cs₂MoO₄ \Rightarrow β -Cs₂MoO₄. Кривой ликвидуса между точками р и е, (ветвь ре,) отвечает фазовое равновесие Ж ≓α-Сs₂MoO₄.

По пересечению ветвей первичной кристаллизации были уточнены температура плавления и состав эвтектики e₁: 563 °C, и 40.0 % Cs₂MoO₄ + 60.0 % CsCl. Эвтектическому составу соответствует нонвариантное равновесие $\mathcal{K} \rightleftharpoons \beta$ -CsCl+ α -Cs₂MoO₄.

Двухкомпонентная система CsBr-Cs, MoO₄. Фазовая диаграмма двухкомпонентной системы CsBr-Cs₂MoO₄ приведена на рис. 2. Ликвидус системы CsBr-Cs₂MoO₄ представлен двумя ветвями кристаллизации: бромида цезия и β-молибдата цезия. Ветви кристаллизации de, соответствует фазовое равновесие Ж ≈ CsBr, ветви кристаллизации $ce_2 - \phi$ азовое равновесие Ж $\rightleftharpoons \beta$ -Cs₂MoO₄. При 572 °С у молибдата цезия наблюдается полиморфный переход α -Cs₂MoO₄ \rightleftharpoons β -Cs₂MoO₄.

Исследуемая двухкомпонентная система является эвтектической. По пересечению ветвей первичной кристаллизации были определены состав и температура плавления эвтектического сплава е₂: 584 °C; 49.0 % Cs₂MoO₄ + 51.0 % CsBr. Эвтектическому составу соответствует следующее нонвариантное равновесие – $\mathcal{K} \rightleftharpoons CsBr + \beta - Cs_2MoO_4$. *Т-х*-диаграмма системы CsBr–Cs₂MoO₄ представлена пятью полями: 1) Ж; 2) Ж+СsBr; 3)Ж+β-Сs₂MoO₄; 4) $CsBr + \beta - Cs_2MoO_4$; 5) $CsBr + \alpha - Cs_2MoO_4$.

[Fig. 1. *T*-*x* diagram of CsCl–Cs₂MoO₄ binary system]

Рис. 2. *T-х* диаграмма двухкомпонентной системы CsBr–Cs₂MoO₄ [**Fig. 2.** *T-х* diagram of CsBr–Cs₂MoO₄ binary system]

Трехкомпонентная система $CsCl-CsBr-Cs_2MoO_4$. Проекция фазового комплекса трехкомпонентной системы CsCl-CsBr-Cs_2MoO_4 на треугольник составов представлена на рис. 3. В соответствии с комплексной методологией исследования многокомпонентных систем [12] система исследована на втором информационном уровне. Этот уровень предусматривает ряд этапов, среди которых в зависимости от цели исследования могут быть определены следующие характеристики: 1) нонвариантных (условно-нонвариантных) равновесных состояний; 2) нон- и моновариантных равновесных состояний; 3) нон-, моно- и поливариантных равновесных состояний.

Для экспериментального изучения трехкомпонентной системы CsCl–CsBr–Cs₂MoO₄ (определения условно-нонвариантного, моно- и дивариантных равновесий) в поле кристаллизации молибдата цезия был выбран политермический разрез AB (где A–[45.0 % CsCl+55.0 % Cs₂MoO₄], B–[45.0 % CsBr + 55.0 % Cs₂MoO₄]). *Т-х*-диаграмма разреза приведена на рис. 4. Линия первичной кристаллизации представлена плавной кривой, она соответствует кристаллизации из расплава β -молибдата цезия. Из *T-х*-диаграммы разреза AB определено направление на минимум \overline{M} и температура плавления сплава, отвечающего минимуму – 556 °C.

Исследованием политермического разреза, проведенного из полюса кристаллизации молибдата цезия через направление на минимум $Cs_2MoO_4 \rightarrow M \rightarrow M$, определен состав минимума 22.5 % CsCl + 35.0 % CsBr + 42.5 % Cs_2MoO_4 с температурой плавления 556 °C.

Ликвидус трехкомпонентной системы CsCl-CsBr-Cs₂MoO₄ представлен тремя полями кристаллизации: β- и α-молибдата цезия и непрерывного ряда твердых растворов $\operatorname{CsCl}_{x}\operatorname{Br}_{1-x}$. Двойные эвтектики е, и е, на противоположных сторонах трехкомпонентной системы позволили построить моновариантную кривую е Ме,. В точке минимума система является условно-нонвариантной [8] с фазовым равновесием \mathcal{K} ≈ α -Cs₂MoO₄ + CsCl_yBr_{1-y}. Используя данные о положении точки \overline{n} на разрезе AB, продолжением луча $Cs_2MoO_4 \rightarrow \overline{n}$ до моновариантной кривой построена точка п пересечения границ α/β полиморфного перехода Cs₂MoO₄ c участком моновариантной кривой Ме₂. Данные по бинарным системам CsCl-Cs₂MoO₄, CsBr-Cs₂MoO₄ и разрезу $Cs_2MoO_4 \rightarrow M \rightarrow M$ позволили построить изотермы в поле кристаллизации фазы β -Cs₂MoO₄, которые нанесены на проекцию треугольника составов (рис. 3).

Таким образом, методом ДТА проведено исследование двухкомпонентной системы $CsCl-Cs_2MoO_4$, в результате которого уточнены: температура плавления эвтектики e₁ (563 °C) и ее состав (40.0 % $Cs_2MoO_4 + 60.0$ % CsCl). Эвтектике соответствует фазовое равновесие $\mathcal{K} \rightleftharpoons CsCl + \alpha - Cs_2MoO_4$.

Впервые проведено экспериментальное исследование двухкомпонентной системы $CsBr-Cs_2MoO_4$. Эвтектическому составу e_2 (49.0 % $Cs_2MoO_4 + 51.0$ % CsBr) при 584 °C соответствует фазовое равновесие – $\mathcal{K} \rightleftharpoons CsBr+\alpha$ -Cs_2MoO₄. Проведено экспериментальное исследование трехкомпонентной системы CsCl–CsBr–Cs_2MoO₄ методом ДТА на втором информационном уровне. В системе образуется непрерывный ряд твердых растворов CsCl_xBr_{1-x} с минимумом на моновариантной кривой при 556 °C и 22.5 % CsCl + 35.0 % CsBr + 42.5 % Cs₂MoO₄. Проекция фазового комплекса на треугольник составов представлена тремя фазовыми полями – α -Cs₂MoO₄, β -Cs₂MoO₄ и CsCl_xBr_{1-x}.

выводы

В работе представлено экспериментальное исследование трехкомпонентной системы CsCl-

Рис. 3. Проекция фазового комплекса трехкомпонентной системы CsCl–CsBr–Cs₂MoO₄ на треугольник составов и расположение политремического разреза AB

[**Fig. 3.** The projection of the phase of the complex ternary system CsCl–CsBr–Cs₂MoO₄ on the triangle composition]

CsBr–Cs₂MoO₄ и ее элементов огранения – двухкомпонентных систем CsCl–Cs₂MoO₄ и CsBr–Cs₂MoO₄. Установлено, что двухкомпонентные системы являются системами эвтектического типа. Экспериментально определены температуры плавления и составы в двойных эвтектиках. В трехкомпонентной системе CsCl–CsBr–Cs₂MoO₄ образуется непрерывный ряд твердых растворов хлорида и бромида цезия. В трехкомпонентной системе имеются три кристаллизующиеся фазы – α -Cs₂MoO₄, β -Cs₂MoO₄ и непрерывный ряд твердых растворов CsCl_xBr_{1-x}. Определены температура плавления и состав минимума на кривой моновариантных равновесий.

СПИСОК ЛИТЕРАТУРЫ

1. Istomova M. A., Egortsev G. E., Garkushin I. K. // Russian Journal of Inorganic Chemistry, 2011, vol. 56, № 10, pp. 1640–1647.

2. Garkushin I. K., Chugunova M. V. // Russian Journal of Inorganic Chemistry, 2013, vol. 58, № 9, pp. 1125–1137.

3. Garkushin I. K., Gubanova T. V., Frolov E. I., et. al. // *Russian Journal of Inorganic Chemistry*, 2015, vol. 60, № 3, pp. 374–391.

4. Sukharenko M. A., Garkushin I. K., Redyushev A. K., Yaremenko I. M. // *Russian Journal of Inorganic Chemistry*, 2015, vol. 60, № 6, pp. 736–740.

Рис. 4. *Т-х*-диаграмма разреза АВ трехкомпонентной системы CsCl–CsBr–Cs₂MoO₄

[**Fig. 4.** *T-x*-diagram of the polythermal section AB in the ternary system CsCl–CsBr–Cs₂MoO₄]

5. Васина Н. А., Грызлова Е. С., Шапошников С. Г. *Теплофизические свойства многокомпонентных солевых систем*. М.: Химия, 1984, 112 с.

6. Гаркушин И. К., Радзиховская М. А., Данилушкина Е. Г., Штеренберг А. М. Пат. 250669 (Россия) МПК⁶ Н01М 6/20. Электролит для химических источников тока. Заявл. 2012123930/07 от 08.06.2012. Опубл. 10.02.2014 в БИ № 13.

7. Диаграммы плавкости солевых систем. Ч. 3. Двойные системы с общим катионом / Под ред. В. И. Посыпайко, Е. А. Алексеевой, Н. А. Васиной. М.: Металлургия, 1979, 204 с.

8. Аносов В. Я., Озерова М. И., Фиалков Ю. Я. Основы физико-химического анализа. М.: Наука, 1976, с. 121.

9. Гаркушин И. К., Чугунова М. В., Милов С. Н. Образование непрерывных рядов твердых растворов в тройных и многокомпонентных солевых системах. Екатеринбург: УрО РАН, 2011, 140 с.

10. Егунов В. П. Введение в термический анализ. Самара: СамВен, 1997, 215 с.

11. Термические константы веществ. Вып. Х, ч. 2. Таблицы принятых значений: К, Rb, Cs, Fr. / Под ред. В. П. Глушко. М., 1981. 439 с.

12. Трунин А. С. Комплексная методология исследования многокомпонентных систем. Самара: Самар. гос. техн. ун-т, 1977. 308 с.

PHASE EQUILIBRIA IN TERNARY SYSTEM CsCl-CsBr-Cs₂MoO₄ AND THE ELEMENTS OF ITS TERMINATED

© 2017 M. A. Sukharenko, I. K. Garkushin, I. S. Osetrova, M. V. Sysueva

Samara State Technical University, 244 Molodogvardiis'ka str., 443100 Samara, Russia e-mail: Sukharenko_maria@mail.ru

Received 11.01.2017

Abstract.The methods of physical-chemical analysis is widely used for the development of new compositions of functional materials for various purposes. The alkali halides have found most wide-spread use in the industry. Mixtures based on them are used as electrolytes for chemical sources of current, heat storage materials, environments for growing single crystals fluxes for metal welding and soldering, as compositions for salt baths and others. Other salts, such as molybdates, tungstates, chromates etc., are often injected into the composition of salt systems besides halides. Their study is of practical interest. So as a research object has been selected ternary system from chloride, bromide and molybdate cesium and its unexplored elements of faceting.

The studies were conducted using a differential thermal analysis. The prognosis of the population and composition of the crystallizing phases in the unstudied elements of the selected object of the study given in the present work.

Triangle compositions of the ternary system CsCl–Cs₂MoO₄ consists of the three binary systems: CsCl–CsBr, CsCl–Cs₂MoO₄, CsBr–Cs₂MoO₄. The binary system CBr–Cs₂MoO₄ has not been studied. In the CsBr-Cs₂MoO₄ system predicted eutectic formation as the system CsCl–Cs₂MoO₄ relates to eutectic systems. Two variants are possible liquidus topology in the ternary system CsCl–CsBr–Cs₂MoO₄. In the case of the collapse of the binary solid solution CsCl_xBr_{1-x} with the formation limited solid solutions based on CsCl and CsBr in ternary system formed eutectic. In the case of the stability of a binary solid solution CsCl_xBr_{1-x} with a minimum inside the ternary system minimum is predicted on of invariant equilibrium curve connecting the bynary eutectic systems CsCl–Cs₂MoO₄ and CsBr–Cs₂MoO₄.

The experimental study of the ternary system from the chloride, bromide and molybdate cesium and binary system from the bromide and molybdate cesium are shown in the present work. Additional studies the CsCl–Cs₂MoO₄ byli system conducted to clarify the data visually polythermal analysis by differential thermal analysis. The liquidus system is represented by three branches of crystallization. The binary system is a eutectic. The melting temperature and the composition of the eutectic e have been refined over the intersection of the branches of the primary crystallization. The melting point of eutectic 563 degree Celsius, the composition -40.0 % Cs₂MoO₄ + 60.0 % CsCl. Eutectic composition corresponds to the invariant equilibrium $-L \rightleftharpoons \beta$ -CsCl+ α -Cs₂MoO₄. The experimental study of a bynary system CsBr–Cs₂MoO₄ given in the article. The liquidus of the system is represented by two branches of crystallization: cesium bromide and cesium molibdate. The binary system is a eutectic. The composition and the temperature of eutectic melting point e, were determined by the intersection of the primary crystallization of branches: 584 degree Celsius; 49.0 % Cs_aMoO₄ + 51.0 % CsBr. Eutectic composition corresponds the invariant equilibrium – L \neq CsBr+ β -Cs,MoO₄. The experimental study of a ternary system CsCl–CsBr–Cs₂MoO₄ given in the article. The liquidus the ternary system CsCl-CsBr-Cs₂MoO₄ represented by three crystallization fields: β - and α -Cs₂MoO₄ and the continuous series of solid solutions CsCl₂Br₁₋₂. The minimum point of the system is conditionally invariant with the phase equilibrium $L \rightleftharpoons \alpha$ -Cs₂MoO₄ + CsCl_xBr_{1-x}. The composition of a minimum 22.5 % CsCl + 35.0 % CsBr + 42.5 % Cs₂MoO₄ with the melting temperature 556 degree Celsius.

Keywords: phase equilibria, point of invariant equilibria, continuous series of solid solutions, line of the monovariant equilibria, differential thermal analysis.

REFERENCES

1. Istomova M. A., Egortsev G. E., Garkushin I. K. *Russian Journal of Inorganic Chemistry*, 2011, vol. 56, no. 10, pp. 1640–1647. DOI: 10.1134/S0036023611080080

2. Garkushin I. K., Chugunova M. V. *Russian Journal of Inorganic Chemistry*, 2013, vol. 58, no. 9, pp. 1125–1137. DOI: 10.1134/S0036023613090106

3. Garkushin I. K., Gubanova T. V., Frolov E. I., et. al. Russian Journal of Inorganic Chemistry, 2015, vol. 60, no. 3, ФАЗОВЫЕ РАВНОВЕСИЯ В ТРЕХКОМПОНЕНТНОЙ СИСТЕМЕ CsCl-CsBr-Cs, MoO₄ И ЭЛЕМЕНТАХ...

pp. 374-391. DOI: 10.1134/S0036023614120092

4. Sukharenko M. A., Garkushin I. K., Redyushev A. K., Yaremenko I. M. *Russian Journal of Inorganic Chemistry*, 2015, vol. 60, no. 6, pp. 736–740. DOI: 10.1134/ S0036023615060169

5. Vasina N. A., Gryzlova E. S., Shaposhikov S. G. *Thermophysical Properties of Multicomponent Salt Systems*. Moscow, Khimiya Publ., 1984, 112 p.

6. Garkushin I. K., Radzikhovskaia M. A., Danilushkina E.G., Shterinberg A. M. *Patent 250669 (Russia) MPK⁶ N01M 6/20. Electrolyte for Chemical current sources.* Statement. 2012123930/07 from 08.06.2012. Published. 10.02.2014 in BI № 13.

7. Diagrams of Fusibility of Salt Systems. Part 3. Binary Systems with Common Cation. / Ed. by V. I. Posypayko, E. A. Alekseeva, N. A. Vasina. Moscow, Metallurgia Publ., 1979. 204 p. (in Russian) 8. Anosov V. Ia. Ozerova M. I., Fialkov Iu. Ia. *Fundamentals of Physico-Chemical Analysis*. Moscow, Nauka Publ., 1976, 121 p. (in Russian)

9. Garkushin I. K., Chugunova M. V., Milov S. N. The Formation of Continuous Series of Solid Solutions in the Ternary and Multicomponent Salt Systems. Ekaterinburg, UrO RAN Publ., 2011, 140 p. (in Russian)

10. Egunov V. P. *Introduction to Thermal Analysis*. Samara, SamVen Publ., 1997, 215 p. (in Russian)

11. Thermal Constants of Substances. Publ. X. Part 2. Table of Accepted Values: K, Rb, Cs, Fr. / Ed. by V. P. Glushko, Moscow, 1981, Part 2, 439 p. (in Russian)

12. Trunin A. S. Complex Methodology of the Multicomponent Systems. Samara, Samara State Tech. University Publ., 1977, 308 p. (in Russian)

Сухаренко Мария Александровна – к. х. н., доцент кафедры общей и неорганической химии, Самарский государственный технический университет; тел.: +7 (908) 3960713, e-mail: sukharenko_maria@mail.ru

Гаркушин Иван Киррилович – д. х. н., профессор, заведующий кафедрой общей и неорганической химии, Самарский государственный технический университет, тел.: +7 (937) 6430746, e-mail: gik49@yandex.ru

Сысуева Мария Александровна – студент кафедры общей и неорганической химии, Самарский государственный технический университет.

Осетрова Яна Сергеевна – студент кафедры общей и неорганической химии, Самарский государственный технический университет.

Sukharenko Maria A. – Cand. Sci. (Chem.), Associate Professor of General and Inorganic Chemistry Department, Samara State Technical University; ph.: +7 (908) 3960713, e-mail: sukharenko_maria@mail.ru

Garkushin Ivan K.–Dr. Sci. (Chem.), Professor, Head of Department of General and Inorganic Chemistry, Samara State Technical University, ph.: +7 (937) 6430746, e-mail: gik49@yandex.ru

Sysuev Maria A.– student of the Department of General and Inorganic Chemistry, Samara State Technical University.

OsetrovaIanaS. – student of the Department of General and Inorganic Chemistry, Samara State Technical University.