УДК 546.56,57:546.811.22 DOI: https://doi.org/10.17308/kcmf.2019.21/2365 Поступила в редакцию 19.09.2019 Поступила в печать: 15.12.2019

Фазовые равновесия в системах Ag_8SnS_6 - Cu_2SnS_3 и Ag_2SnS_3 - $Cu_2Sn_4S_9$

© 2019 В. А. Рзагулуев¹, О. Ш. Керимли², Д. С. Аждарова², Ш. Г. Мамедов[∞], О. М. Алиев²

¹Сумгаитский государственный университет 43-й квартал, Сумгаит АZ5008 Республика Азербайджан ²Институт катализа и неорганической химии им. академика М.Ф. Нагиева Национальной Академии Наук Азербайджана пр. Г. Джавида, 113, Az 1143 Баку, Республика Азербайджан

Аннотация. Комплексными методами физико-химического анализа (дифференциальнотермический, рентгенофазовый, микроструктурный, измерение микротвердости и определение плотности) изучены фазовые равновесия и построены *T*-*x* фазовые диаграммы в системах Ag_aSnS_z-Cu₂SnS_z и Ag₂SnS_z-Cu₂Sn₄S₀. Показано, что система Ag_aSnS_z-Cu₂SnS_z является квазибинарным сечением квазитройной системы Ag,S-SnS,-Cu,S и относится к простому эвтектическому типу с ограниченными областями растворимости на основе исходных сульфидов. Координаты эвтектической точки: 50 mol % Ag₂SnS_{3 и} T = 900 К. Растворимость на основе Ag₂SnS₄ и Cu₂SnS₃ при эвтектической температуре простирается до 20 и 28 mol % соответственно. С уменьшением температуры твердые растворы распадаются и при 300 К составляют 5 и 10 mol %. Установлено, что с увеличением концентрации Ag_8SnS_6 в твердых растворах (Cu₂SnS₃)_{1-v} (Ag_8SnS₆)_v параметр кубической решетки увеличиваётся от a = 0.5445 nm (для чистого Cu₂SnS_z) до $\hat{a} = 0.725$ nm (для состава x = 0.1) т. е. концентрационная зависимость параметра решетки имеет линейный характер. Система Ag₂SnS₂-Cu₂Sn₄S₉ из-за перитектического плавления Cu₂Sn₄S₉ имеет сложный характер и является частично квазибинарным сечением. Квазибинарность нарушается в области концентрации 65-100 mol % Cu₂Sn₄S₀ и выше температуры 900 К. Твердые растворы на основе Ag₂SnS₂ и Cu₂Sn₄S₀ узкие и при 300 К составляют 10; 2.5 mol % соответственно.

Ключевые слова: система, квазибинарная, твердый раствор, рентгенофазовый анализ, структура, эвтектика.

ВВЕДЕНИЕ

Создание надежной технологической основы для получения известных или новых функциональных материалов с воспроизводимыми свойствами в значительной степени определяется состоянием исследованных фазовых равновесий в различных системах и построением соответствующих диаграмм состояния.

Из литературных данных известно, что халькостаннаты меди и серебра относятся к числу важных функциональных материалов современной техники. Среди них имеются материалы с ценными полупроводниковыми, фоточувствительными и термоэлектрическими свойствами [1–12].

Соединение Ag_8SnS_6 впервые обнаружено в работе [13] при изучении квазибинарной системы Ag_2S-SnS_2 . По данным [13] Ag_8SnS_6 плавится конгруэнтно при 1112 К и имеет фазо-

вый переход: α -Ag₈SnS₆ $\leftrightarrow \beta$ -Ag₈SnS₆ при 445 К. В дальнейшем система Ag₂S-SnS₂ изучалась Kokhan O. P. [14] и им установлено образование кроме Ag₈SnS₆, еще двух фаз: Ag₂SnS₃ и Ag₂Sn₂S₅. Соединение Ag₂SnS₃ плавится конгруэнтно при 936 K, a Ag₂Sn₂S₅ образуется по перитектической реакции. По данным [14] соединение Ag_sSnS_s плавится при 1121 К, а фазовый переход протекает при 455 К. Низкотемпературная α-Ag₂SnS₂ кристаллизуется в орторомбической (a = 1.5248, b = 0.7548, c = 1.0699 nm, прост. группа Pna2, структурный тип Ag₈SnS₆), высокотемпературная β -Ag₈GeS₆ в кубической (a = 1.085 nm), $Ag_{2}SnS_{2}$ в моноклинной (a = 0.627, b = 0.5796,*c* = 1.3179 nm, β = 93.27°, прост. группа *Cc*), а соединение $Ag_{2}Sn_{3}S_{5}$ в орторомбической (*a* = 1.0799, *b* = 0.7645, *c* = 0.38224 nm) сингонии.

В системе Cu_2S-SnS_2 по данным [5] образуются следующие тройные соединения: Cu_2SnS_3 , Cu_4SnS_4 и $Cu_2Sn_4S_9$. Из указанных фаз толь-

[🖂] Мамедов Шарафат Гаджиага, e-mail: azxim@mail.ru

С О Контент доступен под лицензией Creative Commons Attribution 4.0 License.

The content is available under Creative Commons Attribution 4.0 License.

ко Cu₂SnS₃ плавится конгруэнтно при 1123 K, а Cu₄SnS₄ и Cu₂Sn₄S₉образуются по перитектическим реакциям при 1083 и 1098 K соответственно. Согласно [15] Cu₂SnS₃ кристаллизуется в моноклинной структуре (a = 0.6653, b = 1.9547, c = 0.6665 nm, $\beta = 109.39^\circ$, z = 4, прост. группа *C*'c), а по данным [3] Cu₂SnS₃ кристаллизуется в искаженной кубической структуре с параметром решетки a = 0.5445нм и относится к структурному типу сфалерита.

Цель настоящей работы изучение квазитройной системы по разрезам $Ag_8SnS_6 - Cu_2SnS_3$ и $Ag_2SnS_3 - Cu_2Sn_4S_9$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследования получали вакуумно-термическим методом из исходных сульфидов Ag_2SnS_3 , Cu_2SnS_3 , Ag_8SnS_6 , $Cu_2Sn_4S_9$, которые синтезировали в вакуумированных кварцевых ампулах из особо чистых элементов (Ag – 99.997 wt %, Cu – 99.997 wt %, Sn – 99.994 wt %, S – 99.9999 mass %) при 1250–1360 K в течение 8 часов. После окончания синтеза электрическую печь с ампулой охлаждали со скоростью 40– 50 K/h до 850 K и при этом режиме отжигали в течение 240 часов. Образцы после термообработки однородные, серо-черного цвета [16, 17]. По разработанному режиму по двум системам синтезировали 34 сплава (табл. 1 и 2).

Отожженные образцы исследовали методами физико-химического анализа: термический анализ проводили на пирометре HTP-73 (скорость нагрева 10 °/min, эталон – Al_2O_3 , хромель-алюмелевая термопара); рентгенограммы снимали на рентгендифрактометре D2 PILSENER фирмы Брюкер (Си K_{α} -излучение, Ni-фильтр), микротвердость образцов измеряли на микротвердомере ПМТ-3 (оптимальная нагрузка составляла 0.02 kg), а микроструктуру образцов изучали на микроскопе МИМ-7, в качестве травителя использовали разбавленный раствор азотной кислоты. Погрешность измерения тепловых эффектов составляет ±2°, вычисления параметров решетка ±0.003 Å, измерение микротвердости ± 0.005 MPa.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЯ

Как видно из табл. 1. в системе Ag_8SnS_6 – Cu_2SnS_3 протекает сложное химическое взаимодействие. На термограммах сплавов системы имеются по три и четыре тепловых эффекта (за

Таблица 1. Результаты ДТА, РФА и измерение микротвердости сплавов системы Ag₈SnS₆ – Cu₂SnS₃ [**Table. 1**. The results of DTA, XRD and measurements of the microhardness of the alloys of the Ag₈SnS₆ – Cu₂SnS₃ system]

Состав, % [Structure, %]		Термические эффекты нагревания, К	Микротвердость, МПа Microbardness MPal	Фазовой состав
Ag ₈ SnS ₆	Cu ₂ SnS ₃	[Thermal effects of heating, K]		
100	0.0	450, 1112	2710	однофазовый [single phase]
95	5.0	420, 455, 1040, 1105	2780	α (однфазовый) [α (single phase)]
90	10	410, 430, 1000, 1090	2750	$\alpha + \gamma$
80	20	410, 900,1065	2780	$\alpha + \gamma$
70	30	410, 900, 1020	2780	$\alpha + \gamma$
60	40	410, 900, 960	2780	$\alpha + \gamma$
55	45	410, 900, 930	эвтектика [eutectic]	$\alpha + \gamma$
50	50	410, 900	не измер. [not measured]	$\alpha + \gamma$
40	60	410, 900, 965	2940	$\alpha + \gamma$
30	70	410, 900, 1020	2940	$\alpha + \gamma$
20	80	410, 900, 1055	2940	$\alpha + \gamma$
15	85	410, 940, 1080	2940	$\alpha + \gamma$
10	90	1010, 1090	2940	γ (однофазовый) [γ(single phase)]
5.0	95	1070, 1115	2870	γ
0.0	100	1123	2800	$\gamma (Cu_2 SnS_3)$

Coctab, % [Structure, %]		Термические эффекты нагревания, К [Thermal effects of heating K]	Микротвердость, МПа [Microhardness, MPa]	Фазовый состав [Phase composition]
100	0.0	920, 936	2500	однофазовый [single phase]
98	2.0	935	2550	α
95	5.0	895, 930	2650	α
90	10	860, 925	2700	α
85	15	850, 920	2700	$\alpha + \gamma$
80	20	850, 910	2700	$\alpha + \gamma$
75	24	850, 905	2700	$\alpha + \gamma$
70	40	850, 895	2700	$\alpha + \beta$
60	40	850, 870	не измер. [not measured]	$\alpha + \beta$
55	45	850, 860	эвтектика [eutectic]	α + β
50	50	850	не измер. [not measured]	$\alpha + \beta$
45	55	850, 865	2160	$\alpha + \beta$
40	60	850, 885	2160	$\alpha + \beta$
30	70	850, 900, 915, 925	2160	$\alpha + \beta$
20	80	850, 900, 935, 975	2160	$\alpha + \beta$
15	85	850, 910, 935, 1010	2160	$\alpha + \beta$
10	90	850, 940, 1040	2160	$\alpha + \beta$
5.0	95	930, 955, 1090	2160	$\alpha + \beta$
0.0	100	943,1150	2150	β (однофазовый) [β (single phase)]

Таблица 2. Результаты ДТА, РФА и измерение микротвердости сплавов системы Ag₂SnS₃ – Cu₂Sn₄S₉ [**Table. 2.** The results of DTA, XRD and measurements of the microhardness of the alloys of the Ag₂SnS₃ – Cu₂Sn₄S₉ system]

исключением сплава состава 50 и 90-95 mol % Cu₂SnS₂, который имеет два эндоэффекта). Все тепловые эффекты обратимые и эндотермические. В зависимости от состава в системе $Ag_{\alpha}SnS_{\lambda}$ -Cu₂SnS₃ наблюдается два набора значений микротвердости: 2710-2780 и 2800-2940 МРа, относящегося к α- и γ-твердым растворам на основе Ag₈SnS₆ и Cu₂SnS₃ соответственно. Как видно из табл. 1. значение микротвердости α- и g-фаз очень близкие. Это связано с тем, что химическая связь в обоих соединениях одинаковая, и ионные радиусы Ag⁺ и Cu⁺ близки (1.13 и 0.98 Å). Результаты рентгенофазового анализа хорошо согласуется с данными ДТА и измерениями микротвердости. Как видно из рис. 1, в области концентраций 0-5 и 90-100 mol % Cu₂SnS₃ наблюдаются только дифракционные линии исходных сульфидов, доказывающий образование твердых растворов на основе Ag₈SnS₆ и Cu₂SnS₃. В области концентрации 5–90 mol % Cu₂SnS₃ совместно кристаллизуются α- и γ-фазы.

Диаграмма состояния системы Ag_8SnS_6 -Cu₂SnS₃, построенная по результатам физикохимического анализа, приведена на рис. 2. Как видно, диаграмма состояния системы Ag_8SnS_6 -Cu₂SnS₃ относится к эвтектическому типу с ограниченной растворимостью компонентов в твердом состоянии. Так растворимость при 300 K на основе α - Ag_8SnS_6 составляет 5 mol % Cu₂SnS₃, на основе Cu₂SnS₃ 10 mol % Ag_8SnS_6 , при эвтектической температуре растворимость достигает 20 и 28 mol % соответственню.

Ликвидус системы $Ag_8SnS_6-Cu_2SnS_3$ состоит из двух ветвей. Ветви первичной кристаллизации соединения Ag_8SnS_6 (β -твердые растворы) и тиостанната меди Cu_2SnS_3 (β -твердые растворы) пересекаются в эвтектической точке, отвечающей 50 mol % Cu_2SnS_3 и температуре 900 К.

Вычислены параметры кубических кристаллических решеток твердых растворов на основе Cu_2SnS_3 , установлено, что с увеличением содержания Ag_8SnS_6 в твердых растворах $(Cu_2SnS_3)_{1-x}$

Рис. 1. Фазовая диаграмма системы $Ag_8SnS_6 - Cu_2SnS_3$ [**Fig. 1.** Phase diagram of the $Ag_8SnS_6 - Cu_2SnS_3$ system]

 $(Ag_8SnS_6)_x$ параметр *a* увеличивается от 0.5445 nm (для чистого Cu₂SnS₃), до 0.725 nm для состава *x* = 0.1, концентрационная зависимость параметра решетки *a* имеет линейный характер. Границы твердых растворов установлены методом РФА (рис. 2). По формуле *Z* = *P*·*V* вычисляли количество формульных единиц в твердых растворах на основе Cu₂SnS₃. Установлено, что *Z* = 4, т. е. сохраняется число mol растворителя. Поэтому можно считать, что эти растворы относятся к твердому раствору типа замещения.

T-x фазовая диаграмма системы Ag₂SnS₃– Cu₂Sn₄S₉ представлена на рис. 3.

Так как соединение $Cu_2Sn_4S_9$ образуется по перитектической реакции: ж + $SnS_2 \leftrightarrow Cu_2Sn_4S_9$, система имеет сложный характер и является частично квазибинарным сечением квазитройной системы $Ag_2S-SnS_2-Cu_2S$. Квазибинарность системы $Ag_2SnS_3-Cu_2Sn_4S_9$ нарушается в области концентрации 65–100 mol % $Cu_2Sn_4S_9$ и выше температуры 900 К. В указанном интервале концентрации ниже линии ликвидуса имеются двух- и трехфазные области (ж + SnS_2 , ж + $SnS_2 + \gamma$, $SnS_2 + \gamma$).

Ликвидус системы $Ag_2SnS_3-Cu_2Sn_4S_9$ состоит из ветвей первичной кристаллизации фаз Ag_2SnS_3 , $Cu_2Sn_4S_9$ и SnS_2 . Ветви первичной кристаллизации Ag_2SnS_3 (α) и $Cu_2Sn_4S_9$ (γ) пересекаются в эвтектической точке с координатами: 50 mol % Cu₂Sn₄S₉ и T = 850 К. Ниже солидуса совместно кристаллизуются α и γ -твердые растворы. Область растворимости на основе компонентов узкие: на основе Ag₂SnS₃ 10 mol % Cu₂Sn₄S₉, а на основе второго компонента – 2.5 mol % Ag₂SnS₃. Границы растворимости установлены методами РФА, МСА и измерением микротвердости сплавов, отожженных и закаленных при температуре 700 К.

Твердые растворы на основе Ag_2SnS_3 относятся к структурному типу Ag_2GeS_3 и кристаллизуются в моноклинной сингонии. В пределах растворимости параметры кристаллической решетки увеличиваются: *a* = 0.627÷0.648, *b* = 0.580÷0.604, *c* = 1.318÷1.326 nm, β = 93.27÷93°.

Анализ результатов этой работы, а также литературных данных [16, 17] по квазитройной системе $Ag_2S-SnS_2-Cu_2S$ показывает, что ни в одной из изученных систем промежуточная фаза не образуется. По видимому, различие кристаллических структур Ag_2SnS_3 , Ag_8SnS_6 , Cu_2SnS_3 , $Cu_2Sn_4S_9$ и Cu_4SnS_4 в значительной степени влияет на характер химического взаимодействия в системах. Очевиден тот факт, что для прогноза новых фаз в различных системах физико-химические критерии [18] следует применять только в сочетании с анализом кристаллохимических особенностей

Рис. 3. Фазовая диаграмма системы Ag_2SnS_3 - $Cu_2Sn_4S_9$ [**Fig. 3.** Phase diagram of the $Ag_2SnS_3-Cu_2Sn_4S_9$ system]

Condensed Matter and Interphases, 2019, 21(4), 544-551

электронной конфигурации атомов, геометрическими параметрами (радиусы ионов и атомов), координационными числами и т. д., которые являются определяющими критериями при образовании химической связи.

Таким образом, впервые изучены разрезы $Ag_8SnS_6-Cu_2SnS_3$ и $Ag_2SnS_3-Cu_2Sn_4S_9$ квазитройной системы $Ag_2S-SnS_2-Cu_2S$. Установлено, что первая система квазибинарная, а вторая частично кавзибинарная. На основе компонентов образуются ограниченные области растворимости.

выводы

1. По результатам комплексных методов физико-химического анализа изучены разрезы $Ag_8SnS_6-Cu_2SnS_3, Ag_2SnS_3-Cu_2Sn_4S_9$ квазитройной системы $Ag_2S-SnS_2-Cu_2S$ и построены их фазовые диаграммы.

2. Установлено, что система $Ag_8SnS_6-Cu_2SnS_3$ является квазибинарной эвтектического типа. На основе компонентов образуются 5 и 10 mol % твердого раствора соответственно.

3. Из-за перитектического плавления соединения $Cu_2Sn_4S_9$ разрез $Ag_2SnS_3 - Cu_2Sn_4S_9$ является частично квазибинарным и характеризуется наличием узкой области твердых растворов на основе Ag_2SnS_3 .

КОНФЛИКТ ИНТЕРЕСОВ

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

СПИСОК ЛИТЕРАТУРЫ

1. Wang N., Fan A. K. An experimental study of the Ag₂S–SnS₂ pseudobinary join // *Neues Jahrb. Mineral.- Abh*, 1989, v. 160, pp. 33–36.

2. Wang N. New data for Ag₈SnS₆ (canfeildite) and Ag₈GeS₆ (argyrodite) // *Neues Jahrb. Mineral. Monatsh.*, 1978, pp. 269–272.

3. Бабанлы М. Б., Юсибов Ю. А., Абишев В. Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку: Изд-во БГУ, 1993, 342 с.

4. Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Piskach L. V., Bogdanyuk M. S., Olekseyuk I. D., Bulatetska L. V., Pekhnyo. Phase diagramm of the Ag_2S -HgS-SnS₂ system and single crystal prepartion, crystal structure and properties of Ag_2HgSnS_4 // *J. Alloys and Compounds,* 2005, v. 399, pp. 32–37. DOI: doi.org/10.1016/j.jallcom.2005.03.008

5. Olekseyuk I. D., Dudchak I. B., Piskach L. V. Phase equilibria in the Cu_2S -ZnSe-SnS $_2$ // *J. Alloys and Compounds*, 2004, v. 368, pp. 135–143. DOI: doi. org/10.1016/j.jallcom.2003.08.084

6. Ollitrault-Fitchet R., Rivet J., Flahaut J., et.al. *Description du systeme ternaire Ag–Sn–Se // J. Less-Common. Met.*, 1988, v. 138(2), pp. 241–261. DOI: https://doi.org/10.1016/0022-5088(88)90113-0

7. Delgado C. E., Mora A. J., Marcano E. Crystal structure refinement of the semiconducting compound Cu_2SnSe_3 from X-ray powder diffraction data // *Mater. Res. Bull.*, 2003, v. 38, pp. 1949–1955. DOI: doi. org/10.1016/j.materresbull.2003.09.017

8. Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu₂Se–HgSe–SnSe₂ // *J. Alloys and Compounds.*, 1999, v. 287, pp. 197–205. DOI: doi.org/10.1016/ S0925-8388(99)00047-X

9. Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag₂Se–HgSe–SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄ // *J. Alloys and Compounds*, 2002, v. 339, pp.1 40–143. DOI: doi. org/10.1016/S0925-8388(01)01985-5

10. Babanly M. B., Yusibov Y. A., Babanly N. B. *Electromotive force and measucement in several systema*. Ed. by S. Kara, Intechneb. Org., 2011, pp. 57–58.

11. Gulay L. D., Olekseyuk I. D., Parasyuk O. V. Crystal structure of β -Ag₈SnSe₆ // *J. Alloys and compounds*, 2002, v. 339, pp. 113–117. DOI: doi.org/10.1016/S0925-8388(01)01970-3

12. Гусейнов Г. М. Получение соединения Ag₈SnS₆ в среде диметилформамида // Вестн. Томского гос. ун-та. Химия, 2016, № 1(3), с. 24–34. Режим доступа: file:///C:/Users/Lab351/Downloads/sub_%2 0%20in%20dimethylformamide%20medium.pdf (дата обращения: 19.09.2019)

13. Gorchov O. Les composes Ag_8MX_6 (M = Si, Ge, Sn et X = S, Se, Te) // *Bull. Soc. Chim. Fr.*, 1968, N^o 6. pp. 2263–2275.

14. Kokhan O. P. *The Interactions in* Ag_2X - $B^{V}X_2$ (B^{V} – Si, Ge, Sn; X – S, Se) systems and the properties of compounds. Doctoral Thesis, Uzhgorod, Uzhgorod State Univ., 1996.

15. Onoda U., Chen X. A., Sato A., Wada H. Crystal structure and twinning of monoclinic $Cu_2SnS_3//Mater$. *Res. Bull.*, 2000, v. 35 (8), pp. 1563–1570. DOI: doi. org/10.1016/S0025-5408(00)00347-0

16. Рзагулиев В. А., Керимли О. Ш., Мамедов Ш. Г. Изучение квазитройной системы Ag_2S - SnS_2-Cu_2S по разрезу $Ag_8SnS_6-Cu_2SnS_3$. *Труды Международ. научно–практич. конф.*, Россия, Белгород, 2019, с. 18.

17. Рзагулиев В. А., Керимли О. Ш., Мамедов Ш. Г. Исследование квазибинарного разреза Cu_2SnS_3 – Ag_2SnS_3 в квазитройной системе $Ag_2S-Cu_2S-SnS_2$. *Труды XXI Междун. конф.,* Санкт-Петербург, 2019, с. 20–21.

18. Цигика В. В., Переш Е. Ю., Лазарев В. В. и др. Получение и свойства мнонокристаллов соединений TlPbJ₃, Tl₃PbJ₅, TlSnJ₃, TlSn₂J₅ и Tl₃PbBr₅// Изв. АН СССР. Неорган. материалы, 1981, т. 17(6), с. 970–974.

В. А. Рзагулуев, О. Ш. Керимли, Д. С. Аждарова...

DOI: https://doi.org/10.17308/kcmf.2019.21/2365 Received 19.09.2019 Accepted 15.12.2019 ISSN 1606-867X

Phase Equilibria in $Ag_8SnS_6 - Cu_2SnS_3$ and $Ag_2SnS_3 - Cu_2Sn_4S_9$ Systems

©2019 V. A. Rzaguluyev¹, O. Sh. Kerimli², D. S. Azhdarova², Sh. H. Mammadov², O. M. Aliyev²

¹Sumgait State University 43rd block, Sumgait, AZ5008 Azerbaijan ²Institute of Catalysis and Inorganic Chemistry named after academician M. F. Nagiyev of the National Academy of Sciences of Azerbaijan 113, Javid ave., Az 1143 Baku, Republic of Azerbaijan

Abstract

Purpose. Chalcostannates of copper and silver are among the important functional materials of modern technology. Among them, there are materials with valuable semiconductor, photosensitive, and thermoelectric properties. By complex methods of physical-chemical analysis (differential thermal, X-ray phase, microstructural analysis, microhardness measurement, and density determination) phase equilibria have been studied in systems $Ag_8SnS_6-Cu_2SnS_3$ and $Ag_2SnS_3-Cu_2Sn_4S_9$ and their *T*-*x* phase diagrams have been constructed.

Results. It was shown that the $Ag_8SnS_6-Cu_2SnS_3$ system is a quasi-binary cross-section of the $Ag_2S-SnS_2-Cu_2S$ quasi-triple system and belongs to the simple eutectic type with limited solubility regions based on the initial sulphides. The coordinates of the eutectic point are: 50 mol % Ag_2SnS_3 and T = 900 K.

The solubility based on Ag₈SnS₆ and Cu₂SnS₃ at the eutectic temperature stretches to 20 and 28 mol %, respectively. With decreasing temperature, the solid solutions decompose, and at 300 K they have values of 5 and 10 mol %. The phase transition α -Ag₈SnS₆ $\leftrightarrow \beta$ -Ag₈SnS₆ occurs at 410 K and has a eutectoid character. It was established that with an increase in the concentration of Ag₈SnS₆ in solid solutions (Cu₂SnS₃)_{1-x} (Ag₈SnS₆)_x, the cubic lattice parameter increases from a = 0.5445 nm (for pure Cu₂SnS₃) to a = 0.725 nm (for composition *x* = 0.1). The concentration dependence of the lattice parameter on the composition is linear.

Conclusion. The $Ag_2SnS_3-Cu_2Sn_4S_9$ system, due to the peritectic melting of $Cu_2Sn_4S_9$, has a complex character and is a partial quasi-binary section. The quasi-binary state is violated in the range of 65–100 mol % $Cu_2Sn_4S_9$ and above temperature 900 K. The part of the system in the concentration range of 0–65 mol % $Cu_2Sn_4S_9$, is of a eutectic type. Solid solutions based on $Ag_2SnS_3 - Cu_2Sn_4S_9$ are narrow and at 300 K they are 10; 2.5 mol %, respectively.

Keywords: system, quasi-binary, solid solution, X-ray phase analysis, structure, eutectic.

CONFLICT OF INTEREST

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.^{*}

REFERENCES

1. Wang N., Fan A. K. An experimental study of the Ag₂S-SnS₂ pseudobinary join. *Neues Jahrb. Mineral.*-*Abh*, 1989, v. 160, pp. 33–36.

2. Wang N. New data for Ag₈SnS₆ (canfeildite) and Ag₈GeS₆ (argyrodite). *Neues Jahrb. Mineral. Monatsh.*, 1978, pp. 269–272.

3. Babanly M. B., Yusibov Yu. A., Abishev V. T. *Trekhkomponentnye khal'kogenidy na osnove medi i serebra* [Three-component chalcogenides based on copper and silver]. Baku, BSU Publ., 1993, 342 p. (in Russ.) 4. Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Pis-

5. Olekseyuk I. D., Dudchak I. B., Piskach L. V. Phase equilibria in the Cu₂S–ZnSe–SnS₂. *J. Alloys and Compounds*, 2004, v. 368, pp. 135–143. DOI: doi.org/10.1016/j.jallcom.2003.08.084

6. Ollitrault-Fitchet R., Rivet J., Flahaut J., et.al. Description du systeme ternaire Ag–Sn–Se. *J. Less-Common. Met.*, 1988, v. 138(2), pp. 241–261. DOI: https://doi.org/10.1016/0022-5088(88)90113-0

7. Delgado C. E., Mora A. J., Marcano E. Crystal structure refinement of the semiconducting compound

kach L. V., Bogdanyuk M. S., Olekseyuk I. D., Bulatetska L. V., Pekhnyo. Phase diagramm of the Ag₂S– HgS–SnS₂ system and single crystal prepartion, crystal structure and properties of Ag₂HgSnS₄. *J. Alloys and Compounds*, 2005, v. 399, pp. 32–37. DOI: doi. org/10.1016/j.jallcom.2005.03.008

[🖂] Sharafat H. Mammadov, e-mail:azxim@mail.ru

 Cu_2SnSe_3 from X-ray powder difraction data. *Mater. Res. Bull.*, 2003, v. 38, pp. 1949–1955. DOI: doi. org/10.1016/j.materresbull.2003.09.017

8. Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu₂Se–HgSe–SnSe₂. *J. Alloys and Compounds.*, 1999, v. 287, pp. 197–205. DOI: doi.org/10.1016/S0925-8388(99)00047-X

9. Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag₂Se–HgSe–SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄. *J. Alloys and Compounds*, 2002, v. 339, pp.1 40–143. DOI: doi. org/10.1016/S0925-8388(01)01985-5

10. Babanly M. B., Yusibov Y. A., Babanly N. B. *Electromotive force and measucement in several systema*. Ed. by S. Kara, Intechneb. Org., 2011, pp. 57–58.

11. Gulay L. D., Olekseyuk I. D., Parasyuk O. V. Crystal structure of β -Ag₈SnSe₆ J. Alloys and compounds, 2002, v. 339, pp. 113–117. DOI: doi.org/10.1016/S0925-8388(01)01970-3

12. Huseynov G. M. The resulting compound Ag₈SnS₆ in dimethylformamide medium. *Tomsk State University Journal of Chemistry*, 2016, no. 1(3). pp. 24–34. Available at: file:///C:/Users/Lab351/Downloads/sub_%20%20in%20dimethylformamide%20medium. pdf (accessed 19. 09.2019)

13. Gorchov O. Les сотрозйз Ag₈MX₆ (M = Si, Ge, Sn et X = S, Se, Te). *Bull. Soc. Chim. Fr.*, 1968, no. 6. pp. 2263–2275.

14. Kokhan O. P. *The Interactions in* $Ag_2X-B^{IV}X_2$ ($B^{IV} - Si$, Ge, Sn; X - S, Se) systems and the properties of compounds. Doctoral Thesis, Uzhgorod, Uzhgorod State Univ., 1996.

15. Onoda U., Chen X. A., Sato A., Wada H. Crystal structure and twinning of monoclinic Cu_2SnS_3 . *Mater. Res. Bull.*, 2000, v. 35 (8), pp. 1563–1570. DOI: doi. org/10.1016/S0025-5408(00)00347-0

16. Rzaguliev V. A., Kerimli O. Sh., Mamedov Sh. G. Studying the $Ag_2S-SnS_2-Cu_2S$ quasi-triple system along the $Ag_8SnS_6-Cu_2SnS_3$ section. In: *Proc. of Int. Scientific and Practical. Conf.*, Russia, Belgorod, 2019, p. 18. (in Russ.)

17. Rzaguliev V. A., Kerimli O. Sh., Mamedov Sh. G. Investigation of the quasi-binary section $Cu_2SnS_3-Ag_2SnS_3$ in the quasi-triple system $Ag_2S-Cu_2S-SnS_2$. In: *Proc. of XXI Int. Conf.*, St. Petersburg, 2019, pp. 20–21. (in Russ.)

18. Tsigika V. V., Peresh E. Yu., Lazarev V. V., et al. Preparation and properties of monocrystals of the compounds TlPbJ₃, Tl₃PbJ₅, TlSnJ₃, TlSn₂J₅ and Tl₃PbBr₅. *Izv. USSR Academy of Sciences. Inorgan materials.*, 1981, v. 17, v. 6, pp. 970–974. (in Russ.)

Рзагулиуев Видади Аскер оглы – диссертант, Сумгаитский государственный университет, Сумгаит, Азербайджан; e-mail: kerimli-64@mail.ru.

Керимли Орудж Шамхал оглы – к. х. н., доцент, в. н. с., институт катализа и неорганической химии им. академика М. Ф. Нагиева Национальной АН Азербайджана, Баку, Азербайджан; e-mail: kerimli-64@mail.ru.

Аждарова Дильбар Самед – д. х. н., гл. н. с., институт катализа и неорганической химии им. академика М. Ф. Нагиева Национальной АН Азербайджана, Баку, Азербайджан; e-mail: azxim@mail.ru.

Мамедов Шарафат Гаджиага оглы – д. х. н., доцент, с. н. с., институт катализа и неорганической химии им. академика М. Ф. Нагиева Национальной АН Азербайджана, Баку, Азербайджан; e-mail: azxim@mail.ru. ORCID iD: https://orcid.org/0000-0002-1624-7345.

Алиев Озбек Мисирхан – д. х. н., профессор, институт катализа и неорганической химии им. академика М. Ф. Нагиева Национальной АН Азербайджана, Баку, Азербайджан; e-mail: azxim@mail.ru. *Vidadi A. Rzaguliyev* – graduate student, Sumgait State University, Sumgait, Azerbaijan; e-mail: kerimli-64@mail.ru.

Oruj S. Kerimli – PhD (Chem.), Leading Researcher, Institute of Catalysis and Inorganic Chemistry Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: azxim@mail.ru.

Dilbar S. Ajdarova – Dr. Chem. Sci., Chief Researcher, Institute of Catalysis and Inorganic Chemistry of Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences; e-mail: azxim@mail.ru.

Sharafat H. Mammadov – PhD (Chem.), Associate Professor, Senior Researcher, Institute of Catalysis and Inorganic Chemistry Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: azxim@mail.ru. ORCID iD: https://orcid.org/0000-0002-1624-7345.

Ozbek M. Aliev – Dr. Chem. Sci., Professor, Institute of Catalysis and Inorganic Chemistry Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: azxim@mail.ru.