

Condensed Matter and Interphases (Kondensirovannye sredy i mezhfaznye granitsy)

Original articles

DOI: https://doi.org/10.17308/kcmf.2020.22/2831 Received 28 April 2020 Accepted 15 May 2020 Published online 25 June 2020 ISSN 1606-867X eISSN 2687-0711

Spectral-Luminescent Properties of Terbium-Containing Zirconomolybdates

©2020 B. G. Bazarov^{∞,a,b}, R. Yu. Shendrik^{c,d}, Yu. L. Tushinova^{a,b}, D. O. Sofich^c, J. G. Bazarova^a

^aBaikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanovoy, Ulan-Ude 670047, Republic of Buryatia, Russian Federation

^bBanzarov Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation ^cVinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a ul. Favorskogo, Irkutsk 664033, Russian Federation

^dIrkutsk State University, 20 bulvar Gagarina, Irkutsk 664003, Russian Federation

Abstract

To date, double molybdates of mono- and tetravalent elements have been comprehensively studied, and systems with molybdates of mono- and trivalent elements have been studied quite thoroughly. Some materials based on double molybdates, for example, those containing lanthanides, are considered promising for laser technology and electronics. Meanwhile, there is limited information on the properties, especially optical ones, of the molybdates containing rare-earth elements and zirconium. The aim of this work was to study the luminescent properties of self-activated terbium-containing zirconomolybdates with the compositions $Tb_2Zr_3(MOO_4)_9$ (1:3) and $Tb_2Zr(MOO_4)_5$ (1:1), crystallising in two different structural types.

Powder samples of the studied molybdates were synthesised by ceramic technology. The absorption, excitation, and emission spectra were measured using a Perkin Elmer Lambda 950 spectrophotometer. Luminescence was excited by a 250 W DKSSh-250 xenon lamp through an MDR-2 monochromator and recorded using an SDL-1 double monochromator with a grating of 600 lines/mm. The optical properties of new zirconium molybdates containing Tb^{3+} ions were studied. They revealed bright luminescence in the green spectral region due to the transitions inside the 4*f* shell of the rare-earth Tb^{3+} ion, excited both in the bands associated with the 4*f*-4*f* transitions and in the band with a charge transfer. The observed spectral lines as well as luminescence and excitation bands were identified.

It was shown that the position of the wide excitation band associated with the "charge transfer" transitions from O^{2-} in MoO_4^{2-} groups via Mo–O bonds to luminescent centres (Tb^{3+}) does not depend on the matrix structure. The structure and intensity of the observed spectral lines, indicating a low symmetry of the Tb^{3+} crystalline environment, correlate with the structural analysis data. The results obtained in this work can be used when creating promising phosphors in the green spectral region under ultraviolet excitation.

Keywords: solid-phase synthesis, luminescence, terbium-containing zirconomolybdate.

Funding: The study was conducted within the framework of the state order by the Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, and partially funded by the Russian Foundation for Basic Research (project No. 18-08-799a).

For citation: Bazarov B. G., Shendrik R. Yu., Tushinova Yu. L., Sofich D. O., Bazarova J. G. Spectral-luminescent properties of terbium-containing zirconomolybdates. *Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases*. 2020;22(2): 197–203. DOI: https://doi.org/10.17308/kcmf.2020.22/2831

🖂 Bair G. Bazarov, e-mail: bazbg@rambler.ru

The content is available under Creative Commons Attribution 4.0 License.

1. Introduction

Since lantanoids luminesce in the UV and in visible and near-infrared regions, they can be used in various fields: laser and fibre optics technology, medical diagnostics, and the creation of scintillators and luminophores.

The electrons in lantanoids, located on the 4f shell, are screened by the outer $5s^2$ and $5p^6$ shells. As a result, the position of the energy levels is weakly dependent on the environment. In this case, the energetic states of the sublevels are completely determined by the immediate

Fig. 1. Phase diagram of the system $\text{Tb}_2(\text{MoO}_4)_3 - \text{Zr}(\text{MoO}_4)_2$

environment of rare-earth ions due to the Stark splitting effect.

The studies aimed at the search for new materials for matrices activated by rare-earth ions are considered relevant. There are works of Russian and foreign scientists [1–6] dedicated to the study of luminescent properties of double zirconium molybdates and lantanoids, although the luminescent properties of zirconomolybdates with Tb³⁺ of the Tb₂Zr(MO₄)₅ composition were not studied.

Our study of the $\text{Tb}_2(\text{MoO}_4)_3 - \text{Zr}(\text{MoO}_4)_2$ system allowed establishing for the first time the formation of three new molybdates with the following compositions: $\text{Tb}_2\text{Zr}_3(\text{MoO}_4)_9$ (1:3), $\text{Tb}_2\text{Zr}_2(\text{MoO}_4)_7$ (1:2), and $\text{Tb}_2\text{Zr}(\text{MoO}_4)_5$ (1:1) (Fig. 1) [7].

The structures of the first two molybdates, 1:3 (space group $R\bar{3}c$, Z = 6) and 1:2 (space group C2/c, Z = 4), were determined for monocrystals (Fig. 2a, b) [8–10].

The structure of the 1:1 molybdate was determined through the use of isostructural $\text{Er}_2\text{Zr}(\text{MoO}_4)_5$, the Rietveld refinement method, and principles of derivative difference minimisation (Fig. 3) [11].

The aim of this work was to study the luminescent properties of self-activated terbium-containing zirconomolybdates with the 1:3 and 1:1 compositions, crystallising in two different structural types.

Fig. 2. Part of the structure $\text{Ln}_2\text{Zr}_3(\text{MoO}_4)_9$ (space group $R\bar{3}c$, Z = 6) (Ln = Nd) (*a*); Part of the structure $\text{Ln}_2\text{Zr}_2(\text{MoO}_4)_7$ (space group C2/c, Z = 4) (*b*)

Condensed Matter and Interphases, 2020, 22(2), 197-203

Fig. 3. Part of the structure $Ln_2Zr(MoO_4)_5$ (space group $Cmc2_1$, Z = 2)

2. Experimental

The absorption, excitation, and emission spectra of Tb^{3+} were measured in two terbiumcontaining matrices $Tb_2Zr(MoO_4)_5$ (space group $Cmc2_1, Z = 4$) and $Tb_2Zr_3(MoO_4)_9$ (space group $R\bar{3}c$, Z = 6). The molybdates were obtained by ceramic technology [7].

In order to study the optical properties of the investigated samples, the absorption, emission, and excitation spectra were recorded in the integrating sphere at various temperatures.

The absorption spectra were recorded using a Perkin Elmer Lambda 950 spectrophotometer with an integrating sphere. When recording the absorption spectra, the studied sample was poured into a KU-1 quartz-glass ampoule and placed inside the integrating sphere. The absorption of the test glass was subtracted from the absorption spectra.

Luminescence was excited in the spectral interval of 200–500 nm by a 250 W DKSSh-250 xenon lamp through an MDR-2 monochromator with a ruled grating of 1200 lines/mm. The emissions were recorded using an SDL-1 double monochromator with a grating of 600 lines/mm. The spectral dimension of the monochromator slits varied from 1.2 nm to 0.3 nm. The measurements at temperature 77 K were conducted in the evacuated cryostat. The excitation spectra were corrected by the lumogen excitation spectra.

3. Results and discussion

Two types of bands were observed in the excitation spectra of the studied samples: narrow bands, corresponding to the transitions inside the 4*f* shell of the rare-earth ion, and wide bands, associated with the bands of charge transfer in the MOO_4^{2-} complexes to the rare-earth element.

Intensive luminescence was observed in the green spectral region in $\text{Tb}_2\text{Zr}(\text{MoO}_4)_5$ upon the excitation in the UV region (Fig. 4).

The emission spectrum upon the excitation in the band with the energy 26500 cm⁻¹ (λ = 377 nm), measured at a temperature of 77 K, is presented in Fig. 4 (curve 1). The bands observed in the

Fig. 4. Emission (curve 1) and excitation (curve 2) spectra of the $Tb_2Zr(MoO_4)_5$ sample measured at temperature 77 K

spectrum are related to the electronic transitions inside the 4*f* shell from the ${}^{5}D_{4}$ term to the ${}^{7}F_{J}$ (J = 1–6) terms. The greatest intensity in the emission spectrum was found in the band with the maximum in the 18500 cm⁻¹ region ($\lambda = 540$ nm). The band is related to the magnetic dipole transition of ${}^{5}D_{4}$ – ${}^{7}F_{5}$. The intensity of this transition changes only slightly depending on the value of the crystalline field. The observed band is split into three lines with the energies of 18280, 18405, and 18460 cm⁻¹.

The luminescence band with the 20500 cm⁻¹ maximum ($\lambda = 488$ nm) is associated with the electronic dipole transition of ${}^{5}D_{4} - {}^{7}F_{6}$ in the Tb³⁺ ion, which is environment-sensitive (but not hypersensitive) and depends on the symmetry of the crystalline field Transitions of ${}^{5}D_{4} - {}^{7}F_{1}$ in the emission of the Tb³⁺ ion have low intensity. Band intensities related to the *f*-*f* transitions diminish with a decreasing value of J in the following way: ${}^{5}D_{4} \rightarrow {}^{7}F_{6} > {}^{7}F_{4} > {}^{7}F_{3} > {}^{7}F_{2}$. The presence of the thin structure in the emission spectra of the ${}^{5}D_{4} - {}^{7}F_{J}$ transitions in terbium ions is associated with their sensitivity to the ligand environment.

The ${}^{5}D_{4} - {}^{7}F_{6}$ band is more intense as compared to the intensities of other bands (except for ${}^{5}D_{4} - {}^{7}F_{5}$) and is split into three peaks, which can be indicative of spacial distortion of the nine-peak TbO₉ with symmetry decreased to C2v [12], which correlates with the data of the structure. The presence of intensive lines of magnetic dipole and electronic dipole transitions in the spectrum is also indicative of the presence of several various types of ligands [13].

The emission was excited in the band with energy of 26500 cm⁻¹ (λ = 377 nm), corresponding to the ${}^{4}F_{0} - {}^{5}D_{3}$ transition, and the excitation spectrum was measured for the band with energy of 18500 cm⁻¹ (λ = 540 nm), corresponding to the ${}^{5}D_{4} - {}^{4}F_{5}$ transition. Vertical lines show the energies of the term of the Tb³⁺free ion. A row of thin bands was observed in the excitation spectrum (Fig. 4, curve 2) that are related to the transitions from the ground state ${}^{7}F_{0}$ to the states split by spinorbital interaction of the 4f⁸ term. The band in the 37000 cm⁻¹ region (λ = 270 nm) is associated with the charge transfer transition in the $(MoO_{4})^{2-}$ complexes. The emission spectrum excited in this band is almost the same as the spectrum excited in the region of 4*f*-4*f* transitions.

The absorption spectrum of $\text{Tb}_2\text{Zr}_3(\text{MoO}_4)_9$ is presented in Fig. 5 [2]; it consists of a wide absorption band in the ultraviolet region and one narrow low-intensity peak, related to the 4f-4ftransition from the ground state of terbium ions $^7\text{F}_6$ to the lower excited state $^5\text{D}_4$. The Tb³⁺ transitions are characterised by the low force of the oscillator. As a result, most of the bands of intracentre transitions in the absorption spectrum are not visible as compared to other absorption bands.

Fig. 6[2] shows the excitation and luminescence spectra $\text{Tb}_2\text{Zr}_3(\text{MoO}_4)_9$. Intensive narrow emission

Fig. 5. Absorption spectrum of $\text{Tb}_2\text{Zr}_3(\text{MoO}_4)_9$

Condensed Matter and Interphases, 2020, 22(2), 197-203

Fig. 6. Excitation (a) and emission spectra (b) of Tb₂Zr₃(MoO₄)₉ at liquid nitrogen temperature

bands were observed in the region of 480-680 nm $(20800-14700 \text{ cm}^{-1})$, which is typical for the Tb³⁺ transitions from the D_4 level to the lower 7F_1 levels (J = 0, 1, 2, 3, 4, 5). Transitions from the ⁷F₆ ground state were observed in the excitation spectrum. Upon the excitation in the 4f-4f bands, the greatest intensity of luminescence was achieved with the excitation wavelength of 380 nm $({}^{7}F_{6} - {}^{5}D_{3})$ transition). In the region of 300 nm (33300 cm^{-1}) a wide intensive excitation band was observed. Seven narrow lines in the emission spectrum belong to the transitions Tb^{3+} : ${}^{5}D_{4} - {}^{7}F_{6}$ (electronic dipole transition, 488 nm (20500 cm⁻¹)), ${}^{5}D_{4} - {}^{7}F_{5}$ (magnetic dipole transition, $540 \text{ nm} (18500 \text{ cm}^{-1}))$, ${}^{5}D_{4} - {}^{7}F_{4}$ (582 nm (17180 cm⁻¹)), ${}^{5}D_{4} - {}^{7}F_{3}$ (618 nm $(16180 \text{ cm}^{-1})), {}^{5}\text{D}_{4} {}^{-7}\text{F}_{2} (644 \text{ nm} (15530 \text{ cm}^{-1})),$ ${}^{5}D_{4} - {}^{7}F_{1}$ (663 nm (15080 cm⁻¹)), and ${}^{5}D_{4} - {}^{7}F_{0}$ (673 nm (14860 cm⁻¹)). The most intensive line reaching the peak at 540 nm (18500 cm⁻¹) is responsible for the green colour of $Tb_2Zr_3(MoO_4)_9$.

Decay times of luminescence, corresponding to different transitions inside the f shell with different lengths of the excitation waves, were measured at temperatures 297 K and 77 K (Table).

4. Conclusions

As a result of the conducted studies, we can draw the following conclusions:

Table. Decay times of principal transitions of Tb^{3+} at 297 and 77 K

$({}^{5}D_{4} - {}^{7}F_{J})$	Wave length (nm)		Decay time (µs)	
J	Emis-	Exci-	297 К	77 K
	sion	tation		
6	488	270	420	400
		352	390	360
		370	430	400
		380	430	390
5	540	270	420	400
		352	460	410
		370	450	400
		380	450	420
4	582	290	420	400
		352	500	390
		370	420	370
		380	420	410

1. Spectral-luminescent properties of terbium-containing zirconium molybdates of two compositions (1:3 and 1:1) and structures ($R\bar{3}c$, Z = 6 and $Cmc2_1$, Z = 4) were studied. The observed spectral lines as well as luminescence and excitation bands were identified. Specific features of the matrix structure determine the spectral-luminescent properties of Tb³⁺ ions.

2. The comparison of the excitation spectra of terbium-containing molybdates with different

structures showed that the position of the wide excitation band associated with the "charge transfer" transitions from O^{2-} in MoO_4^{-2-} groups via Mo–O bonds to luminescent centres (Tb³⁺) does not depend on the matrix structure and the nature of REE.

3. The structure of the band associated with the electronic dipole transition ${}^{5}D_{4} - {}^{7}F_{6}$ in the Tb³⁺ ion is indicative of spacial distortion of TbO₉ with decreasing symmetry. The presence of intensive lines of magnetic dipole (${}^{5}D_{4} - {}^{7}F_{5}$) and electronic dipole (${}^{5}D_{4} - {}^{7}F_{6}$) transitions is also indicative of the presence of low symmetry. All this data correlates with the data of the structural analysis.

4. The results obtained in this work can be used when creating promising phosphors in the green spectral region under ultraviolet excitation.

Acknowledgements

The studies were carried out using the scientific equipment of the Centre for Collective Use of Equipment "Isotope-geochemical research of the Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences" and of the Centre for Collective Use of Equipment of the Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Sofich D. O., Dorzhieva S. G., Chimitova O. D., Bazarov B. G., Tushinova Y. L., Bazarova Zh. G., Shendrik R. Yu. Hypersensitive ${}^{5}D_{0}-{}^{7}F_{2}$ Transition of Trivalent Europium in Double Molybdates. *Bull. Russ. Acad. Sci.: Phys.*2019;83(3): 321–323. DOI: https://doi. org/10.1134/S0367676519030220

2. Sofich D., Tushinova Yu. L., Shendrik R., Bazarov B. G., Dorzhieva S. G., Chimitova O. D., Bazarova J. G. Optical spectroscopy of molybdates with composition $Ln_2Zr_3(MoO_4)_9(Ln: Eu, Tb)$. *Opt. Mater.* 2018;81:71–77. DOI: https://doi.org/10.1016/j.optmat.2018.05.028

3. Sofich D., Dorzhieva S. G., Chimitova O. D., Bazarov B. G., Tushinova Yu. L., Bazarova, Zh. G., Shendrik, R.Yu. Luminescence of Pr³⁺ and Nd³⁺ Ions in Double Molybdates. *Phys. Solid State.* 2019;61(5): 844–846. DOI: https://doi.org/10.21883/ FTT.2019.05.47598.35F 4. Dorzhieva S. G., Tushinova Y. L., Bazarov B. G., Nepomniashchikh A. I., Shendrik, R.Y. Luminescence of Ln-Zr molybdates. Bull. Russ. Acad. Sci.: Phys. 2015;79(2): 276–279. DOI: https://doi.org/10.7868/ S0367676515020076

5. Baur F., Justel Th. New red-emitting phosphor La₂Zr₃(MoO₄)₉:Eu³⁺ and the influence of host absorption on its luminescence efficiency. *Aust. J. Chem.* 2015;68(11): 1727–1734. DOI: https://doi.org/10.1071/CH15268

6. Qi S., Huang Y., Cheng H., Seo H. J. Luminescence and application of red-emitting phosphors of Eu^{3+} -activated $R_2Zr_3(MoO_4)_9$ (R = La, Sm, Gd). *Electron. Mater. Lett.* 2016;12(1): 171–177. DOI: https://doi. org/10.1007/s13391-015-5244-1

7. Bazarova J. G., Tushinova Yu. L., Bazarov B. G., Dorzhieva S. G. Double molybdates of rare earth elements and zirconium. *Rus. Chem. Bull.* 2017; 66(4): 587–592. DOI: https://doi.org/10.1007/s11172-017-1777-9

8. Klevtsova R.F., Solodovnikov S.F., Tushinova Y. L., Bazarov B. G., Glinskaya L. A., Bazarova Z. G. A new type of mixed framework in the crystal structure of binary molybdate $Nd_2Zr_3(MoO_4)_9$. *J. Struct. Chem.* 2000;41(2): 280–284. DOI: https://link.springer.com/ article/10.1007/BF02741593

9. Bazarov B. G., Grossman V. G., Tushinova Y. L., Fedorov K. N., Bazarova Z. G., Klevtsova R. F., Glinskaya L. A., Anshits A. G., Vereshchagina T. A. Crystal structure of binary molybdate $Pr_2Hf_3(MoO_4)_9$. *J. Struct. Chem.* 2009;50(3): 566–569. DOI: https://doi. org/10.1007/s10947-009-0086-z

10. Grossman V. G., Bazarov B. G., Bazarova T. T., Bazarova J. G., Glinskaya L. A., Temuujin J. Phase equilibria in the $Tl_2MoO_4 - Ho_2(MoO_4)_3 - Zr(MoO_4)_2$ system and the crystal structure of $Ho_2Zr_2(MoO_4)_7$ and $TlHoZr_{0.5}(MoO_4)_4$. *J. Ceram. Process. Research.* 2017;18(12): 875–881.

11. Bazarov B. G., Bazarova J. G., Tushinova Y. L., Solovyov L. A., Dorzhieva S. G., Surenjav E., Temuujin J. A new double molybdate of erbium and zirconium, its crystalline structure and properties. *J. Alloys Compd.* 2017;701: 750–753. DOI: https://doi.org/10.1016/j. jallcom.2017.01.173

12. Bunuel M. A., Lozano L., Chaminade J. P., Moine B., Jacquier B. Optical properties of Tb^{3+} -doped Rb_2KInF_6 elpasolite. *Opt. Mater.* 1999;13(2): 211–223. D O I: https://doi.org/10.1016/S0925-3467(98)00085-8

13. Gupta S. K., Ghosh P. S., Yadav A. K., Pathak N., Arya A., Jha S. N., Bhattacharyya D., Kadam R. M. Luminescence properties of SrZrO₃/Tb³⁺ perovskite: host-dopant energy transfer dynamics and local structure of Tb³⁺. *Inorg. Chem.* 2016;55(4): 1728–1740. DOI: https://doi.org/10.1021/acs.inorgchem. 5b02639

Information about the authors

Bair G. Bazarov, DSc in Physics and Mathematics, Leading Researcher, Laboratory of Oxide Systems Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences (BINM SB RAS), Associate Professor at the Department of Inorganic and Organic chemistry, Banzarov Buryat State University, Ulan-Ude, Russian Federation; email: bazbg@rambler.ru. ORCID iD: https://orcid. org/0000-0003-1712-6964.

Roman Yu. Shendrik, PhD, Senior Researcher of Single Crystal Lab, A. P. Vinogradov Institute of Geochemistry Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation, e-mail r.shendrik@gmail.com. ORCID iD:https://orcid. org/0000-0001-6810-8649.

Yunna L. Tushinova, PhD in Chemistry, Researcher Fellow, Laboratory of Oxide Systems, Baikal Institute

of Nature Management, Siberian Branch of the Russian Academy of Sciences, Associate Professor at the Department of Inorganic and Organic Chemistry, Banzarov Buryat State University, Ulan-Ude, Russian Federation; e-mail: tushinova@binm.ru. ORCID iD: https://orcid.org/0000-0003-1032-8854.

Dmitriy O. Sofich, Junior Researcher of Single Crystal lab, A. P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Federation, e-mailsofich-dmitriy@live. com. ORCID iD: https://orcid.org/0000-0002-2836-3597.

Jibzema G. Bazarova, DSc in Chemistry, Chief Scientist, Laboratory of Oxide Systems, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, , Russian Federation; e-mail Jbaz@binm.ru.. ORCID iD: https://orcid. org/0000-0002-1231-0116.

All authors have read and approved the final manuscript.

Translated by Marina Strepetova Edited and proofread by Simon Cox