

Конденсированные среды и межфазные границы

Оригинальные статьи

DOI: https://doi.org/10.17308/kcmf.2020.22/2832 Поступила в редакцию 11.04.2020 Принята к публикации 15.05.2020 Опубликована онлайн 25.06.2020 ISSN 1606-867X eISSN 2687-0711

УДК 544.653.2

Электрохимическое окисление муравьиной кислоты на поверхности анодно-модифицированного сплава Ag15Pd

© 2020 Е.В.Бедова, Е.А.Тонких, О.А.Козадеров∞

Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

Аннотация

Показано, что фазовое превращение палладия в собственную фазу при селективном растворении сплава Ag15Pd протекает в режиме мгновенной нуклеации и лимитируется поверхностной диффузией ад-атомов Pd к растущему трехмерному зародышу новой фазы. С применением нестационарных электрохимических методов установлены кинетические закономерности процесса электроокисления муравьиной кислоты на сплаве Ag15Pd, подвергнутом предварительному селективному растворению. Найдено, что процесс анодной деструкции HCOOH в кислом сульфатном растворе протекает с более высокой скоростью на анодно-модифицированном сплаве Ag15Pd, поверхность которого морфологически развита и обогащена палладием в результате потенциостатического селективного растворения при закритических условиях поляризации. Процесс электроокисления HCOOH является нестационарным, протекает в смешанно-кинетическом режиме и ускоряется с ростом анодного потенциала. С применением метода хроноамперометрии найдены кинетические токи анодного окисления муравьиной кислоты. Обнаружена корреляция между значением электрического заряда, пропущенного при предварительной анодной модификации сплава Ag15Pd и скоростью кинетической стадии электроокисления HCOOH.

Ключевые слова: сплав, серебро, палладий, селективное растворение, фазовое превращение, муравьиная кислота, электроокисление.

Для цитирования: Бедова Е. В., Тонких Е. А., Козадеров О. А. Электрохимическое окисление муравьиной кислоты на поверхности анодно-модифицированного сплава Ag15Pd. *Конденсированные среды и межфазные границы*. 2020;22(2): 204–210. DOI: https://doi.org/10.17308/kcmf.2020.22/2832

1. Введение

Анодное поведение металлических сплавов зачастую является избирательным. В ходе селективного растворения бинарного гомогенного А,В-сплава преимущественной ионизации подвергается электрохимически отрицательный компонент А. Данный процесс является источником дефектов (в том числе вакансий) в его поверхностном слое [1], который при определенных условиях анодного селективного растворения сплава или под воздействием коррозионной среды [2–7] морфологически дестабилизируется и переходит в высокоразвитое, дисперс-

Козадеров Олег Александрович, e-mail: ok@chem.vsu.ru ное состояние. В основе такого перехода лежат необратимые процессы фазовой перегруппировки электроположительного металла [8–10], термодинамически возможные при закритических анодных потенциалах и зарядах. Если при докритических потенциалах протекает только растворение электроотрицательного компонента и поверхность сплава морфологически стабильна, а концентрация благородного компонента увеличивается при приближении к межфазной границе с электролитом, то в закритической области потенциалов и зарядов наряду с ионизацией компонента А в высокодефектном поверхностном слое сплава происходит рекристаллизация компонента В из метастабильного структурно-

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

разупорядоченного состояния в собственную высокоразвитую фазу [11]. Как следствие, селективное растворение сплавов в области закритических потенциалов может быть использовано для получения электродных материалов с микро- и нанопористой структурой. В электрохимической энергетике такие материалы могут использоваться при изготовлении электродов в химических источниках тока. Важным преимуществом электрохимического способа получения высокоразвитых электродных материалов путем селективного растворения сплавов является возможность оптимизации их морфологических и электрокаталитических свойств посредством управления процессом предварительной анодной модификации сплава [12–15].

Учитывая, что палладий эффективно ускоряет анодное окисление муравьиной кислоты [16-18], представляется перспективным использование процесса селективного растворения гомогенных Ag, Pd-сплавов для синтеза электрокатализатора анодного процесса в низкотемпературных топливных элементах, работающих на прямом окислении НСООН [19]. Твердые растворы системы Ag-Pd, построенные на основе серебра, при анодной поляризации в подкисленной некомплексообразующей среде подвергаются селективному растворению серебра, сопровождающемуся фазовым превращением палладия [7, 11]. Регулируя условия их анодного растворения – электродный потенциал и пропущенный через электрод электрический заряд, можно сформировать электродный материал с различной степенью морфологического развития поверхностного слоя, его обогащения палладием и, как следствие, с различной электрокаталитической активностью в отношении реакции электроокисления муравьиной кислоты.

Цель работы: установить кинетические закономерности электроокисления муравьиной кислоты на поверхности сплава Ag15Pd (атомная доля палладия 15 %), подвергнутого селективному растворению серебра, и определить роль условий предварительной анодной модификации сплава в кинетике анодной деструкции HCOOH.

Задачи работы:

1. Найти условия осуществления и выявить кинетический режим процесса рекристаллизации палладия при анодном селективном растворении сплава Ag15Pd в кислой нитратной среде.

2. Установить кинетические закономерности процесса электроокисления муравьиной кисло-

ты на поверхности анодно-модифицированного сплава Ag15Pd в кислой сульфатной среде.

3. Выявить влияние условий селективного растворения сплава Ag15Pd на скорость электроокисления муравьиной кислоты на его анодно-модифицированной поверхности в кислой сульфатной среде.

2. Экспериментальная часть

Исследования проводились на сплаве системы Ag-Pd с атомной долей палладия 15 %. Сплав готовили прямым сплавлением в предварительно вакуумированной и заполненной аргоном (1.2 атм.) индукционной вольфрамовой печи в тиглях из Al_2O_3 . Металлы выдерживали в расплавленном состоянии при 1723 К, затем охлаждали до 1373 К со скоростью 600 К/ч, после чего закаливали в воду. Полученный сплав согласно диаграмме состояния и режиму закалки представлял собой статистически разупорядоченный твердый раствор [20].

При изготовлении электрода сплав разрезали, шлифовали и помещали в оправу из полимеризуемой эпоксидной смолы. Стандартная подготовка поверхности электрода включала зачистку на шлифовальной бумаге с уменьшающейся зернистостью, полировку до зеркального блеска на замше с водной суспензией MgO, промывку дистиллированной водой, обезжиривание этиловым спиртом с последующей промывкой дважды дистиллированной водой (бидистиллятом), сушку фильтровальной бумагой.

Рабочие растворы состава 0.1 M KNO₃ + 10^{-3} M HNO₃ + 10^{-3} M AgNO₃ и 0.05 M H₂SO₄ + 1 M HCOOH готовили на бидистилляте из ч. д. а. и х. ч. реактивов, а также фиксаналов серной и азотной кислот. Деаэрацию рабочих растворов химически чистым аргоном проводили непосредственно в электрохимической ячейке в течение не менее 2 ч. Эксперименты вели в неперемешиваемых растворах.

В исследованиях применяли стандартную трехэлектродную ячейку без разделения пространств рабочего и вспомогательного электродов. Вспомогательный электрод – платина. Электрод сравнения – хлоридсеребряный (насыщенный), который находился в отдельном сосуде и соединялся с ячейкой электролитическим мостиком, заполненным насыщенным раствором нитрата аммония с капилляром Луггина. Значения потенциалов в работе даны относительно стандартного водородного электрода.

Изменение и поддержание электродного потенциала, а также регистрацию поляризацион-

ных кривых и кривых спада тока производили при помощи универсального компьютерного потенциостатического комплекса IPC-Compact. Приготовленный к опыту электрод помещали в ячейку, заполненную деаэрированным рабочим раствором, помещали подготовленный к опыту электрод и выдерживали некоторое время до установления квазистационарного значения бестокового потенциала. При потенциодинамических измерениях задавали скорость сканирования потенциала V = dE/dt и регистрировали поляризационную І,Е-кривую. При хроноамперометрических измерениях задавали потенциал E = const и регистрировали I,t-зависимость спада тока в течение некоторого времени. Плотность тока і рассчитывали делением силы тока на единицу геометрической площади электрода.

3. Результаты и обсуждение

На рис. 1 приведены билогарифмические кривые спада тока, полученные при разных анодных потенциалах. На них можно выделить линейные участки, отвечающие, вероятно, процессу селективного растворения в режиме нестационарной диффузии [11], протекающему со скоростью $i_{\rm diff}(t)$. При достижении определенного момента времени $t_{\rm cr}$ спад тока замедляется, а линейность токовой зависимости нарушается. С ростом анодного потенциала отклонение от линейности нарастает, а протяженность линейного участка и параметр $t_{\rm cr}$ заметно уменьшаются.

Рис. 1. Анодные хроноамперограммы сплава Ag15Pd в растворе 0.1 M KNO₃ + 10⁻³ M HNO₃ + 10⁻³ M AgNO₃, полученные при потенциалах 835 (1), 840 (2), 850 (3), 860 (4), 870 (5) мВ и перестроенные в билогарифмических координатах

Искривление билогарифмических хроноамперограмм, скорее всего, вызвано ускорением процесса ионизации серебра за счет фазовой перегруппировки палладия [7, 11], сопровождающейся перемещением ад-атомов палладия по поверхности сплава к местам роста зародыша новой фазы Pd. Дело в том, что в ходе такого процесса освобождаются новые нижележащие слои сплава, которые контактируют с раствором электролита, вследствие чего общий поток ионизации увеличивается. В предположении аддитивности скоростей двух параллельных нестационарных процессов – селективного растворения серебра в режиме замедленного диффузионного массопереноса и фазового превращения палладия в режиме гетерогенной нуклеации – токовый транзиент нуклеационного процесса может быть найден по формуле [11]:

$i_{\text{nucl}}(t) = i_{SD}(t) - i_{\text{diff}}(t)$

как разность общего (i_{SD}) и диффузионного (i_{diff}) токов. Полученные таким образом транзиенты плотности тока фазообразования, построенные в форме зависимостей плотности тока нуклеации i_{nucl} от времени нуклеации $t_{nucl} = t - t_{cr}$, приведены на рис. 2. Видно, что с увеличением потенциала скорость процесса увеличивается, а токовые зависимости имеют характерную для нуклеационных процессов форму кривой с максимумом или выходом на плато.

Найденные токовые транзиенты процесса фазообразования были перестроены в координатах, критериальных для различных моделей

Рис. 2. Транзиенты тока фазовой перегруппировки палладия при селективном растворении сплава Ag15Pd в растворе 0.1 M KNO₃ + 10⁻³ M HNO₃ + 10⁻³ M AgNO₃ при потенциалах 835 (*1*), 840 (*2*), 850 (*3*), 860 (*4*), 870 (*5*) мВ

Оригинальные статьи

гетерогенного зародышеобразования [21], что позволило выявить природу кинетических ограничений формирования собственной фазы палладия. Линеаризация оказалась возможной только в $i_{\rm nucl}$, $t_{\rm nucl}^{1/2}$ -координатах, критериальных для мгновенной нуклеации в диффузионном режиме 3D-зародыша (рис. 3). Рост тангенса угла наклона линейных начальных участков хроно-амперограмм при облагораживании электродного потенциала свидетельствует об увеличении эффективной константы скорости образования собственной фазы палладия $k_{\rm eff} = di_{\rm nucl}/dt_{\rm nucl}^{1/2}$.

На рис. 4 и 5 показаны поляризационные кривые электроокисления муравьиной кислоты на поверхности сплава Ag15Pd, подвергнутого анодной модификации при различных значениях приложенного электродного потенциала $E_{\rm mod}$ и пропущенного электрического заряда $q_{\rm mod}$, соответственно. Видно, что скорость электрохимической деструкции HCOOH возрастает как при сдвиге $E_{\rm mod}$ в положительную сторону, так и при увеличении $q_{\rm mod}$. При этом оказалось, что на поверхности модифицированного сплава электроокисление муравьиной кислоты протекает с заметной скоростью только при условии $E_{\rm mod} \ge 830$ мВ.

Для установления кинетических закономерностей анодной деструкции НСООН на поверхности анодно-модифицированного сплава Ag-15Pd процесс проводили в потенциостатических условиях в области вольтамперометрического максимума, варьируя значения анодного потенциала модификации E_{mod} и электрического заря-

Рис. 4. Вольтамперограммы электроокисления муравьиной кислоты в 0.05 М H₂SO₄ + 1 М HCOOH на анодно-модифицированном сплаве Ag15Pd, подвергнутом селективному растворению в кислом нитратном растворе в течение 10 минут при потенциалах 830 (1), 840 (2), 850 (3) мВ

Рис. 3. Хроноамперограммы образования собственной фазы палладия, перестроенные в координатах, критериальных для мгновенной нуклеации в диффузионном режиме роста трехмерного зародыша на поверхности сплава Ag15Pd при его селективном растворении в 0.1 М KNO₃ + 10⁻³ М HNO₃ + 10⁻³ M AgNO₃ при потенциалах 835 (1), 840 (2), 850 (3), 860 (4), 870 (5) мВ

да $q_{\rm mod}$, пропускаемого через электрод на этапе селективного растворения. Анализ показал, что хроноамперограммы электроокисления муравьиной кислоты (в статье не приводятся) независимо от значений $E_{\rm mod}$ и $q_{\rm mod}$ в целом нелинейны в критериальных для диффузионной кинетики коттрелевых координатах, но характеризуются плавным падением тока практически до нуля. Такая форма кривых спада тока свидетельству-

Рис. 5. Вольтамперограммы электроокисления муравьиной кислоты в 0.05 М $H_2SO_4 + 1$ М НСООН на поверхности сплава Ag15Pd, подвергнутого анодной модификации при $E_{mod} = 850$ мВ и $q_{mod} = 15$ (а), 25 (б), 46 (в) мКл/см²

ет о нестационарности процесса и реализации смешанно-кинетического контроля, когда диффузия электроактивного вещества к электроду сопровождается некоторой кинетической стадией. Следуя [22], нашли парциальную скорость этой стадии («кинетический ток»), перестраивая начальные участки кривых спада тока в координатах *i-t*^{1/2} (рис. 6). Учитывали, что если электродный процесс включает последовательные стадии объемной диффузии и некоторую кинетическую стадию, например, стадию переноса заряда или химическую реакцию, характеризующиеся соответственно коэффициентом диффузии D и константой скорости k, то i,t-кривая спада тока в таком смешанно-кинетическом режиме описывается уравнением:

 $i(t) = i(0) \cdot \exp(k^2 D t) \cdot \operatorname{erf} c(k D^{1/2} t^{1/2}).$

Парциальную скорость кинетической стадии *i*(0) определяли экстраполяцией линеаризованного участка хроноамперограммы на ось ординат при $t \to 0$, принимая во внимание, что при $k^2 D \ll 1$ («кинетический» режим электроокисления) транзиент тока подчиняется соотношению:

$$i(t) = i(0) \cdot \left(1 - \frac{2kD^{1/2}t^{1/2}}{\pi^{1/2}}\right).$$

Оказалось, что не только при облагораживании электродного потенциала селективного растворения сплава, но и с ростом электрического заряда, пропущенного при его анодной модификации скорость кинетической стадии электроокисления НСООН увеличивается (рис. 7). Это можно объяснить как обогащением поверхности сплава Ag15Pd палладием, так и вероятным повышением его электрокаталитической активности из-за формирования неравновесной, энергетически метастабильной и морфологически более высокоразвитой фазы в ходе рекристаллизации Pd на этапе селективного растворения Ag, Pdсплава. Выявленная корреляция между параметрами анодной модификации серебряно-палладиевого сплава и скоростью электрохимической деструкции муравьиной кислоты может быть положена в основу разработки оптимальных технологических режимов формирования новых эффективных электродных материалов для низкотемпературных топливных элементов, работающих на прямом окислении НСООН.

4. Выводы

Анализом парциальных токовых транзиентов фазовой перегруппировки палладия показано, что процесс рекристаллизации Pd в ходе селективного растворения сплава Ag15Pd включает стадию мгновенного зародышеобразования, при этом режим роста зародыша является диффузионно-контролируемым. Установлено, что скорость электроокисления муравьиной кисло-

Рис. 6. Критериальные i,t^{1/2}-зависимости процесса электроокисления муравьиной кислоты в 0.05 M $H_2SO_4 + 1$ M HCOOH при потенциалах 300 (1), 400 (2), 500 (3), 600 (4), 700 (5) мВ на поверхности сплава Ag15Pd, подвергнутого анодной модификации при $E_{mod} = 850$ мВ и $q_{mod} = 15$ (а), 25 (б), 46 (в) мКл/см²

Рис. 7. Кинетические токи электроокисления HCOOH на поверхности сплава Ag15Pd, подвергнутого анодной модификации при E_{mod} = 850 мВ и q_{mod} = 15 (1), 25 (2), 46 (3) мКл/см²

ты в сульфатной среде на анодно-модифицированном сплаве Ag15Pd увеличивается с ростом потенциала анодной деструкции HCOOH, причем процесс является нестационарным и протекает в смешанно-кинетическом режиме. По данным хроноамперометрии анодного окисления HCOOH в кислом сульфатном растворе определены кинетические токи процесса. Показано, что скорость кинетической стадии увеличивается с ростом как электродного потенциала селективного растворения, так и электрического заряда, пропущенного при анодной модификации сплава.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

1. Бедова Е. В., Козадеров О. А. Кинетика электроокисления муравьиной кислоты на анодно-модифицированных серебряно-палладиевых сплавах. Электрохимическая энергетика. 2018;18(3): 141– 154. DOI: https://doi.org/10.18500/1608-4039-2018-18-3-141-154

2. Маршаков И. К, Введенский А. В., Кондрашин В.Ю., Боков Г. А. *Анодное растворение и селективная коррозия сплавов*. Воронеж: Изд-во Воронеж. гос. ун-та; 1988. 208 с.

3. Encyclopedia of electrochemistry. Vol. 4. Corrosion and oxide films. Eds. A. J. Bard, M. Stratmann, G. S. Frankel. Weinheim (Germany): Wiley-VCH; 2003. 755 p.

4. Landolt D. *Corrosion and Surface Chemistry of Metals*. EPFL Press; 2007. 632 c.

5. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. М.: Металлургия; 1984. 400 с.

6. Маршаков И. К. *Термодинамика и коррозия сплавов*. Воронеж: Изд-во Воронеж. гос. ун-та; 1983. 168 с.

7. Козадеров О. А. *Массоперенос, фазообразование и морфологическая нестабильность поверхностного слоя при селективном растворении гомогенных металлических сплавов:* дис.... докт. хим. наук. Воронеж; 2016. 361 с. Режим доступа: http://www. science.vsu.ru/disserinfo&cand=2897

8. Зарцын И. Д., Введенский А. В., Маршаков И. К. О неравновесности поверхностного слоя при анодном растворении гомогенных сплавов Электрохимия. 1994;30(4): 544–565. Режим доступа: https://www.elibrary.ru/item.asp?id=23828139

9. Зарцын И. Д., Введенский А. В., Маршаков И. К. О превращениях благородной компоненты при селективном растворении гомогенного сплава в активном состоянии. *Защита металлов*. 1991;27(1): 3–12. Режим доступа: https://www. elibrary.ru/item.asp?id=23951443

10. Зарцын И. Д., Введенский А. В., Маршаков И. К. Термодинамика неравновесных фазовых превращений при селективном растворении гомогенных бинарных сплавов *Защита металлов*. 1991;27(6): 883–891. Режим доступа: https://www. elibrary.ru/item.asp?id=12712615

11. Козадеров О. А., Введенский А. В. *Массоперенос и фазообразование при анодном селективном растворении гомогенных сплавов*. Воронеж: Научная книга; 2014. 288 с.

12. Liu W. B., Zhang S. C., Li N., Zheng J. W., An S. S., Xing Y. L. A general dealloying strategy to nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions *Corro*- *sion Science*. 2012;58: 133–138. DOI: https://doi. org/10.1016/j.corsci.2012.01.023

13. Hakamada M., Chino Y., Mabuchi M. Nanoporous surface fabricated on metal sheets by alloying/ dealloying technique. *Materials Letters*. 2010;64(21): 2341–2343. DOI: https://doi.org/10.1016/j. matlet.2010.07.046

14. Weissmüller J., Newman R. C., Jin Hai-Jun, Hodge A. M. Nanoporous metals by alloy corrosion: Formation and mechanical properties. *MRS Bull*. 2009;34(8): 577–586. DOI: https://doi.org/10.1557/ mrs2009.157

15. Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying. *Nature*. 2001;410(6827): 450–453. DOI: https://doi. org/10.1038/35068529

16. Wang Y., Wu B., Gao Y., Tang Y., Lu T., Xing W., Liu Ch. Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst. *Journal of Power Sources*. 2009;192(2): 372–375. DOI: https://doi. org/10.1016/j.jpowsour.2009.03.029

17. Rice C., Ha S., Masel R.I., Waszczuk P., Wieckowski A., Barnard T. Direct formic acid fuel cells. *J. Power Sources*. 2002;111(1): 83–89. DOI: https://doi. org/10.1016/S0378-7753(02)00271-9

18. Rice C. A., Wieckowski A. Electrocatalysis of formic acid oxidation. In: Shao M. (eds.) *Electrocatalysis in Fuel Cells. Lecture Notes in Energy.* London: Springer; 2013:9. 43–67. DOI: https://doi.org/10.1007/978-1-4471-4911-8

19. Jiang K., Zhang H., Zou Sh., Cai W. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. *Phys. Chem. Chem. Phys.* 2014;16. 20360–20376. DOI: https://doi.org/10.1039/C4CP03151B

20. Хансен М., Андерко К. *Структуры двойных* сплавов: Справочник. М.: Металлургиздат; 1962;1. 608 с.

21. Исаев В. А. Электрохимическое фазообразование. Екатеринбург: УрО РАН; 2007. 123 с.

22. MacDonald D. D. *Transient techniques is electrochemistry*. New York; London: Plenum Press; 1977. 329 p. DOI: https://doi.org/10.1007/978-1-4613-4145-1

Информация об авторах

Бедова Евгения Валерьевна, аспирант кафедры физической химии химического факультета, Воронежский государственный университет, Воронеж, Российская Федерация, e-mail: iev.vsu@mail. ru. ORCID iD: https://orcid.org/0000-0002-1284-7909.

Тонких Евгения Андреевна, магистрант кафедры физической химии химического факультета, Воронежский государственный университет, Воронеж, Российская Федерация; e-mail: ok@chem.vsu. ru. ORCID iD: https://orcid.org/0000-0002-5243-1895.

Козадеров Олег Александрович, д. х. н., доцент, заведующий кафедрой физической химии химического факультета, Воронежский государственный университет, Воронеж, Российская Федерация; еmail: ok@chem.vsu.ru. ORCID iD: https://orcid. org/0000-0002-0249-9517.

Все авторы прочитали и одобрили окончательный вариант рукописи.