Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite

Kuban State University,
14, Stavropolskaya str., Krasnodar 350040, Russian Federation

Abstract

In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °C. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of \(a = 8.415 \) Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation \(D = 28.26 \) nm and according to the Williamson-Hall equation \(D = 33.59 \) nm and the microstress value \(\varepsilon = 5.62 \times 10^{-4} \) in the ferrite structure.

Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of \(f_r = 2.3 \) GHz. The discovered magnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz.

Keywords: glycine-nitrate synthesis, cobalt-zinc ferrite, ferrimagnetic, microstructure, composite materials, magnetic permeability, dielectric permittivity.

Goryachko Alexander Ivanovich, e-mail: Alexandr_g_i@mail.ru

The content is available under Creative Commons Attribution 4.0 License.
1. Introduction

The development of methods for obtaining powder metal-oxide magnetic materials is currently considered an urgent task. Such materials are ferrites, which are solid solutions based on iron (III) oxide [1–3]. It is known, that zinc-based ferrite spinels are often used in the industry. The main ones are manganese-zinc and nickel-zinc ferrites with a cubic crystal lattice. However, the disadvantage of these ferrites is their rather low resonance frequency. The substitution of cobalt or nickel by manganese allows the magnetic properties to be changed significantly, namely, to shift the resonance to higher frequencies and, consequently, to increase Snoek’s limit [4].

Now, there are various methods for obtaining both nano-sized and micro-sized ferrite powders using ceramic technologies and from salt solutions [5–7]. The production method significantly affects the shape and size of the particles, which determines the microstructural and electromagnetic properties of the material [8–10]. For example, one of the most widespread methods of obtaining ferrite powder is ceramic synthesis [11–14]. However, the disadvantage of this method is the long-term high-temperature annealing, which leads to an inhomogeneity of particles, the manifestation of anisotropy, and the poor reproducibility of electromagnetic properties; therefore, chemical syntheses are promising methods for obtaining ferrite materials.

The purpose of this study was the synthesis of cobalt-zinc ferrite by the glycine-nitrate method, high-temperature annealing at a temperature of 1300 °C, and research into its microstructural and electromagnetic characteristics.

2. Experimental

The following reagents were used for the synthesis of Co0.5Zn0.5Fe2O4 ferrite: Co(NO3)2·6H2O (chemically pure, RF), Zn(NO3)2·6H2O (chemically pure, RF), Fe(NO3)3·9H2O (analytical grade, RF), glycine acid (C2H5NO2, chemically pure, RF). The metal nitrates and glycine that were used were taken in the required stoichiometric quantities and then dissolved in bi-distilled water. Then the resulting mixture was gradually heated for 1 h to a temperature of 150 °C with constant stirring. After a certain amount of time, after the evaporation of the excess volume of bi-distilled water, the solution was a viscous gel-like product. With further heating, the resulting viscous gel ignited spontaneously, followed by combustion for 5–6 seconds. In the course of thermolysis, a highly porous, weakly magnetic, light brown foamy substance was formed. The equation for the pyrochemical reaction that took place can be represented as follows:

\[
0.5\text{Co(NO}_3\text{)}_2\cdot6\text{H}_2\text{O} + 0.5\text{Zn(NO}_3\text{)}_2\cdot6\text{H}_2\text{O} + 2\text{Fe(NO}_3\text{)}_3\cdot9\text{H}_2\text{O} + 3\text{C}_2\text{H}_5\text{NO}_2 \rightarrow \text{Co}_0.5\text{Zn}_0.5\text{Fe}_2\text{O}_4 + 5.5\text{N}_2\uparrow + 6\text{CO}_2\uparrow + 37.5\text{H}_2\text{O}\uparrow + 0.25\text{O}_2\uparrow
\]

After the completion of the reaction and subsequent cooling, the ferrite sample was ground in a ceramic mortar for 50 minutes. Then, for the removal of the residual impurities, the resulting synthesized powder was heat treated in a “Nabertherm Top 16/R + B400” high-temperature furnace at a temperature of 1300 °C for 1 hour. Additionally, after cooling, the calcined ferrite powder was ground in a ceramic mortar for 10 minutes in order to obtain a homogeneous micropowder.

Photos of the microstructure of the investigated Co0.5Zn0.5Fe2O4 ferrite were obtained using a “JEOL JSM-7500F” scanning electron microscope and energy dispersive analysis was performed using the “INCA X-Sight” attachment.

X-ray diffraction analysis of the cobalt-zinc ferrite sample was carried out using a “Shimadzu XRD-7000” powder diffractometer. The sample was investigated at room temperature in the angle range of 20 from 5° up to 70° with a scanning step of 0.02°.

For the study of the electromagnetic properties of cobalt-zinc ferrite, a composite material based on paraffin with a ferrite filler concentration of 50% by weight was made.
The sample was made in the form of a toroid with a thickness of 4 mm, an outer diameter of 7 mm, and an inner diameter of 3.05 mm. Electromagnetic characteristics (magnetic and dielectric constants) were calculated based on experimentally measured S-parameters using a “Deepace KC901V” vector network analyser in the range of 0.015-7 GHz.

3. Results and discussion

The spectrum of energy dispersive X-ray spectroscopy (EDS) with the selected analysis area for the studied Co$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ ferrite micropowder, annealed for 1 hour at a temperature of 1300 °C is shown in Fig. 1. The obtained results of the EDA analysis show the presence of the main elements: Co (12.68%), Zn (12.24%), Fe (45.21%) and O (29.86%) in the composition of the studied micropowder.

The photograph of an annealed Co$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ micropowder is presented in Fig. 2a. Based on the analysis of the obtained photograph, it can be noted that after thermal annealing at a temperature of 1300 °C the studies sample consisted of spherical microparticles. The detailed examination of the microstructure of the powder revealed both individual and fused ferrite particles. Based on the analysis of the micrographs of the studied Co$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$, the histogram of the particle size distribution depending on their number was calculated (Fig. 4b). The histogram of the particle size distribution was obtained based on the analysis of 2700 particles using the “ImageJ” program. For each individual particle, the equivalent diameter was determined based on the results of measurements of its length and width according to the procedure from the study [23]. Based on the data obtained from the histogram of annealed Co$_{0.5}$Zn$_{0.5}$Fe$_2$O ferrite a relatively narrow particle size distribution was revealed. The calculated average particle size of the synthesized cobalt-zinc ferrite is 1.7 ± 1 μm, which indicates a high degree of particle homogeneity in the studied sample.

The XRD pattern for the investigated Co$_{0.5}$Zn$_{0.5}$Fe$_2$O ferrite micropowder is presented in Fig. 3, and the processed data of XRD pattern are presented in Table 1. Analysis of the obtained data demonstrates that the characteristic peaks on the XRD pattern correspond to the pure cubic spinel phase [24]. Using equation (1), it was determined that the annealed ferrite micropowder has a cubic structure with a crystal lattice parameter of $a = 8.415$ Å. The calculated parameter of the
crystal lattice for the investigated ferrite agrees well to the data of the study [25] demonstrating that \(a = 8.418\ \text{Å}\), for \(\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_{2}\text{O}_{4}\) ferrite after 6-hour annealing at 1000 °C [25].

Average size of coherent scattering regions (CSR) – \(D\), comparable with the crystallite size, was calculated for the sample based on the data of X-ray diffraction analysis (XRD) using the Scherrer equation (2) [19]:

\[
\frac{1}{d_{\text{indr}}^2} = \frac{h^2 + l^2 + k^2}{a^2}.
\]

\[
D = \frac{k\lambda}{\beta\cos\theta},
\]

where \(k = 0.9\) for spherical particles; \(\lambda = 0.154\) – wavelength of CuK\(_\alpha\) radiation, nm; \(\beta\) – half-width at half-heights of integral peaks, rad, \(\theta\) – Bragg angle, rad.

The CSR value calculated according to Scherrer for the investigated ferrite is: \(D = 28.26\ \text{nm}\).

Additionally for the investigated ferrite, the CSR values and microstresses were calculated using Williamson-Hall method (Fig. 3) according to equation (3):

\[
\text{FWHM} \cdot \cos\theta = \frac{\lambda}{D} + 4\varepsilon \cdot \sin\theta,
\]

where FWHM is the half-width at half-height of the integral peaks, rad; \(\theta\) – Bragg angle, rad; \(\lambda = 0.154\) – wavelength of CuK\(_\alpha\) radiation, nm; \(D\) – the required size of the CSR, nm; \(\varepsilon\) – microstress value.

Calculation of CSR sizes and microstresses for \(\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_{2}\text{O}_{4}\) micropowder by Williamson-Hall method provided the following results: CSR size – 33.59 nm, which insignificantly differs from the data obtained by the Scherrer method; microstress value \(\varepsilon = 5.62 \times 10^{-4}\).

The values of the magnetic (\(\mu = \mu' + i\mu''\)) and dielectric (\(\varepsilon = \varepsilon' + i\varepsilon''\)) permittivity in complex form for a composite material based on the

Table 1. XRD data for the investigated \(\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_{2}\text{O}_{4}\) ferrite

<table>
<thead>
<tr>
<th>no. of peak</th>
<th>angle, (\theta)</th>
<th>Intensity, [%]</th>
<th>d-spacing, [Å]</th>
<th>FWHM, rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.18</td>
<td>9.6</td>
<td>4.876</td>
<td>0.00489</td>
</tr>
<tr>
<td>2</td>
<td>29.98</td>
<td>29.6</td>
<td>2.978</td>
<td>0.00471</td>
</tr>
<tr>
<td>3</td>
<td>35.36</td>
<td>100</td>
<td>2.536</td>
<td>0.00488</td>
</tr>
<tr>
<td>4</td>
<td>36.96</td>
<td>7.6</td>
<td>2.430</td>
<td>0.00488</td>
</tr>
<tr>
<td>5</td>
<td>43.00</td>
<td>20.3</td>
<td>2.102</td>
<td>0.00506</td>
</tr>
<tr>
<td>6</td>
<td>53.34</td>
<td>8.1</td>
<td>1.716</td>
<td>0.00617</td>
</tr>
<tr>
<td>7</td>
<td>56.90</td>
<td>26</td>
<td>1.617</td>
<td>0.00610</td>
</tr>
<tr>
<td>8</td>
<td>62.48</td>
<td>34.3</td>
<td>1.485</td>
<td>0.00612</td>
</tr>
</tbody>
</table>
investigated $\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ were calculated from the experimentally measured values of S_{11} and S_{21} according to the Nicholson–Ross–Weir algorithm [26–29]. The tangents of the angles of magnetic and dielectric losses were calculated using the following formulas (4):

$$\tan\delta_m = \frac{\mu''}{\mu'}, \quad \tan\delta_e = \frac{\varepsilon''}{\varepsilon'}$$

(4)

Fig. 4a shows the graphs of the dependence of μ' and μ'' for the investigated composite material ($\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$/paraffin = 1/1 by weight) in the frequency range of 0.015–7 GHz. A slight decrease in μ' from 1.85 to 1.69 was observed in the low frequency range (0.015–0.5 GHz). However, with an increase in the frequency of electromagnetic radiation (> 0.5 GHz), the significant sharp decrease in μ' value up to 1.041 at frequency of 7 GHz can be seen on the graph. The analysis of μ'' data revealed that the maximum value of the magnetic loss was observed at the frequency of $f = 2.3$ GHz, which is in good agreement with the data of [30], where the maximum value of magnetic losses is observed in the range of 2.2–2.4 GHz [30]. Maximal detected μ'', which was 0.323, corresponded to the resonance frequency for the produced composite material. Based on the obtained μ' and μ'' data, tangent of the angle of magnetic losses at the resonant frequency was calculated and it was $\tan\delta_m = 0.252$.

Dependency graphs of ε' and ε'' for the manufactured composite material based on $\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ are shown in Fig. 4b. According to the experimental data, it can be seen that the value for both ε' and ε'' for the investigated composite sample practically does not change in the entire investigated frequency range, on the basis of which it can be concluded that the average value of the dielectric constant for cobalt-zinc ferrite in the investigated frequency range is $\varepsilon' = 3.12$ and $\varepsilon'' \approx 0.014$. From the calculated data for ε' and ε'' it follows that the tangent of the angle of dielectric losses in the entire measured range was $\tan\delta_e = 0.0045$.

Since the values obtained for ε', ε'' and $\tan\delta_e$ were low and practically did not change in the entire investigated frequency range, it can be concluded that the dielectric parameters insignificantly affect the radio-absorbing (except for the resonance frequency shift) or radio-shielding characteristics of the investigated composite material.

Fig. 4. Williamson-Hall plot for the investigated $\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$

Fig. 5. Frequency dependence of complex magnetic permeability (a) and complex dielectric permittivity (b) for the fabricated composite material based on $\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$.

A. I. Goryachko et al. Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite
4. Conclusions

The granular ferrite \(\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \) with micron-sized granules consisting (according to XRD data) of nanocrystals with average sizes of \(-25-35 \text{ nm} \) was obtained by glycine-nitrate synthesis after one-hour thermal annealing at \(1300 \text{ °C} \) and subsequent grinding. The synthesized ferrite after thermal annealing did not contain impurities of other elements or side phases as was confirmed by EDS and XRD methods. Analysis of XRD data showed that investigated \(\text{Co}_{0.3}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \) ferrite has a cubic crystal lattice. The resulting ferrite powder after high-temperature annealing of \(\text{Co}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \) at \(1300 \text{ °C} \) within 1 hour has a fairly high uniformity in shape and particle size as was established based on the obtained micrographs and histograms of the particle size distribution. The analysis of the graphs of the dependence of magnetic permeability on the frequency of electromagnetic radiation revealed the magnetic resonance at frequency \(2.3 \text{ GHz} \). The discovered magnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of \(2-2.5 \text{ GHz} \).

Acknowledgements

The work was carried out based on the REC Centre for Collective Use “Diagnostics of the structure and properties of nanomaterials” of the Kuban State University.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

14. Pradhan A. K., Saha S., Nath T. K. AC and DC electrical conductivity, dielectric and magnetic properties of Co\(_{66}\)Zn\(_{33}\)Fe\(_{0.5}\)Mo\(_{0.5}\)O\(_4\) \((x=0.0,0.1\) and 0.2) ferrites. Applied Physics A. 2017;125(11): 715. DOI: https://doi.org/10.1007/s00339-017-1329-z

30. Liu Y. W., Zhang J., Gu L. S., Wang L. X., Zhang Q. T. Preparation and electromagnetic properties of nanosized Co$_{12}$Zn$_{0.5}$Fe$_{2}$O$_{4}$ ferrite. Rare Metals. 2016. DOI: https://doi.org/10.1007/s12598-015-0670-7

Information about the authors

Goryachko Alexander Ivanovich, PhD student, Department of Theoretical Physics and Computer Technologies, Faculty of Physics and Technology, Kuban State University, Krasnodar, Russian Federation; e-mail: Alexandr_g_i@mail.ru. ORCID iD: https://orcid.org/0000-0001-6480-353X.

Ivanin Sergey Nikolaevich, PhD student, Kuban State University, Krasnodar, Russian Federation; e-mail: Ivanin18071995@mail.ru. ORCID iD: https://orcid.org/0000-0001-9352-5970.

Buzko Vladimir Yurievich, PhD in Chemistry, Associate Professor, Department of Radiophysics and Nanotechnology, Faculty of Physics and Technology, Kuban State University, Krasnodar, Russian Federation; e-mail: Buzkonmr@maul.ru. ORCID iD: https://orcid.org/0000-0002-6335-0230.