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Abstract
In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a 
high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics 
were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.
The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing 
has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder 
has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we 
calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: 
according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the 
microstress value e = 5.62×10–4 in the ferrite structure. 
Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc 
ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured 
S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-
Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic 
permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discovered 
magnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an 
effective absorber of electromagnetic radiation in the range of 2–2.5 GHz.
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1. Introduction
The development of methods for obtaining 

powder metal-oxide magnetic materials is 
currently considered an urgent task. Such 
materials are ferrites, which are solid solutions 
based on iron (III) oxide [1–3]. It is known, that 
zinc-based ferrite spinels are often used in the 
industry. The main ones are manganese-zinc and 
nickel-zinc ferrites with a cubic crystal lattice. 
However, the disadvantage of these ferrites 
is their rather low resonance frequency. The 
substitution of cobalt or nickel by manganese 
allows the magnetic properties to be changed 
significantly, namely, to shift the resonance to 
higher frequencies and, consequently, to increase 
Snoek’s limit [4].

Now, there are various methods for 
obtaining both nano-sized and micro-sized 
ferrite powders using ceramic technologies 
and from salt solutions [5–7]. The production 
method significantly affects the shape and 
size of the particles, which determines the 
microstructural and electromagnetic properties 
of the material [8–10]. For example, one of the 
most widespread methods of obtaining ferrite 
powder is ceramic synthesis [11–14]. However, 
the disadvantage of this method is the long-term 
high-temperature annealing, which leads to an 
inhomogeneity of particles, the manifestation 
of anisotropy, and the poor reproducibility of 
electromagnetic properties; therefore, chemical 
syntheses are promising methods for obtaining 
ferrite materials. When ferrite is obtained by 
chemical synthesis, energy consumption can be 
reduced and the uniformity of particles can be 
significantly improved [15]. The main chemical 
methods for producing ferrites from metal 
nitrates include: nitrate-urea [16, 17], nitrate-
citrate [18, 19], as well as the glycine-nitrate 
method used in this study [20–22], etc. The 
advantage of the glycine-nitrate method is that 
the required temperature of the mixture at which 
the pyrochemical reaction occurs is about 150 °C, 
which is significant lower than that of nitrate-
urea and nitrate-citrate syntheses.

The purpose of this study was the synthesis of 
cobalt-zinc ferrite by the glycine-nitrate method, 
high-temperature annealing at a temperature of 
1300 °C, and research into its microstructural and 
electromagnetic characteristics.

2. Experimental
The following reagents were used for the 

synthesis of Co0.5Zn0.5Fe2O4 ferrite: Co (NO3)2·6H2O 
(chemically pure, RF), Zn(NO3)2·6H2O (chemically 
pure, RF), Fe(NO3)3·9H2O (analytical grade, RF), 
glycine acid (C2H5NO2, chemically pure, RF). The 
metal nitrates and glycine that were used were 
taken in the required stoichiometric quantities 
and then dissolved in bi-distilled water. Then 
the resulting mixture was gradually heated for 
1 h to a temperature of 150 °C with constant 
stirring. After a certain amount of time, after the 
evaporation of the excess volume of bi-distilled 
water, the solution was a viscous gel-like product. 
With further heating, the resulting viscous gel 
ignited spontaneously, followed by combustion 
for 5–6 seconds. In the course of thermolysis, 
a highly porous, weakly magnetic, light brown 
foamy substance was formed. The equation for 
the pyrochemical reaction that took place can be 
represented as follows:

0.5Co(NO3)2·6H2O + 0.5Zn(NO3)2·6H2O +  
+ 2Fe(NO3)3·9H2O + 3C2H5NO2 → Co0.5Zn0.5Fe2O4 + 
+ 5.5N2↑+ 6CO2↑ + 37.5H2O↑ + 0.25O2↑

After the completion of the reaction and sub-
sequent cooling, the ferrite sample was ground in 
a ceramic mortar for 30 minutes. Then, for the re-
moval of the residual impurities, the resulting syn-
thesized powder was heat treated in a “Nabertherm 
Top 16/R + B400” high-temperature furnace at a 
temperature of 1300 °C for 1 hour. Additionally, af-
ter cooling, the calcined ferrite powder was ground 
in a ceramic mortar for 10 minutes in order to ob-
tain a homogeneous micropowder.

Photos of the microstructure of the 
investigated Co0.5Zn0.5Fe2O4 ferrite were obtained 
using a “JEOL JSM-7500F” scanning electron 
microscope and energy dispersive analysis was 
performed using the “INCA X-Sight” attachment.

X-ray diffraction analysis of the cobalt-
zinc ferrite sample was carried out using a 
“Shimadzu XRD-7000” powder diffractometer. 
The sample was investigated at room temperature 
in the angle range of 2q from 3° up to 70° with a 
scanning step of 0.02°.

For the study of the electromagnetic 
properties of cobalt-zinc ferrite, a composite 
material based on paraffin with a ferrite filler 
concentration of 50% by weight was made. 
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The sample was made in the form of a toroid 
with a thickness of 4 mm, an outer diameter 
of 7 mm, and an inner diameter of 3.05 mm. 
Electromagnetic characteristics (magnetic and 
dielectric constants) were calculated based on 
experimentally measured S-parameters using a 
“Deepace KC901V” vector network analyser in 
the range of 0.015-7 GHz.

3. Results and discussion
The spectrum of energy dispersive X-ray 

spectroscopy (EDS) with the selected analysis area 
for the studied Co0.5Zn0.5Fe2O4 ferrite micropowder, 
annealed for 1 hour at a temperature of 1300 °C 
is shown in Fig. 1. The obtained results of the 
EDA analysis show the presence of the main 
elements: Co (12.68%), Zn (12.24%), Fe (45.21%) 
and O (29.86%) in the composition of the studied 
micropowder.

The photograph of an annealed Co0.5Zn0.5Fe2O4. 
micropowder is presented in Fig. 2a. Based on 

the analysis of the obtained photograph, it can 
be noted that after thermal annealing at a tem-
perature of 1300 °C the studies sample consisted 
of spherical microparticles. The detailed exam-
ination of the microstructure of the powder re-
vealed both individual and fused ferrite particles. 
Based on the analysis of the micrographs of the 
stu died Co0.5Zn0.5Fe2O4, the histogram of the par-
ticle size distribution depending on their number 
was calculated (Fig. 4b). The histogram of the par-
ticle size distribution was obtained based on the 
analysis of 2700 particles using the “ImageJ” pro-
gram. For each individual particle, the equi valent 
diameter was determined based on the results of 
measurements of its length and width according 
to the procedure from the study [23]. Based on 
the data obtained from the histogram of annealed 
Co0.5Zn0.5Fe2O ferrite a relatively narrow particle 
size distribution was revealed. The calculated av-
erage particle size of the synthesized cobalt-zinc 
ferrite is 1.7 ± 1 μm, which indicates a high degree 
of particle homogeneity in the studied sample.

The XRD pattern for the investigated 
Co0.5Zn0.5Fe2O4 ferrite micropowder is presented 
in Fig. 3, and the processed data of XRD pattern 
are presented in Table 1. 

Analysis of the obtained data demonstrates 
that the characteristic peaks on the XRD pattern 
correspond to the pure cubic spinel phase [24]. 
Using equation (1), it was determined that 
the annealed ferrite micropowder has a cubic 
structure with a crystal lattice parameter of 
a  =  8.415 Å. The calculated parameter of the 

Fig. 1. EDX spectrum of the studied Co0.5Zn0.5Fe2O4 
ferrite annealed at a temperature of 1300 °С

Fig. 2. SEM micrograph of the studied powder at a magnification of ×5000 (a) and a histogram of the particle 
size (b), for Co0.5Zn0.5Fe2O4 after annealing for 1 hour at a temperature of 1300 °C

Condensed Matter and Interphases, 2020, 22(4), 446–452

A. I. Goryachko et al. Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite



449

crystal lattice for the investigated ferrite agrees 
well to the data of the study [25] demonstrating 
that a = 8.418 Å, for Co0.5Zn0.5Fe2O4 ferrite after 
6-hour annealing at 1000 °C [25].

1
2

2 2 2

2d
h l k

ahkl

= + +( )�
.  (1)

Average size of coherent scattering regions 
(CSR) – D, comparable with the crystallite size, 
was calculated for the sample based on the data 
of X-ray diffraction analysis (XRD) using the 
Scherrer equation (2) [19]:

D
k= l

b qcos
.    (2)

Where k = 0.9  for spherical particles; 
l  =  0.154 – wavelength of CuKa radiation, nm; 
b – half-width at half-heights of integral peaks, 
rad, q –Bragg angle, rad. 

The CSR value calculated according to Scherrer 
for the investigated ferrite is: D = 28.26 nm.

Additionally for the investigated ferrite, the 
CSR values and microstresses were calculated 
using Williamson-Hall method (Fig. 3) according 
to equation (3):

FWHM·cos ·sin ,q l e q= +
D

4  (3)

where FWHM is the half-width at half-height of 
the integral peaks, rad; q — Bragg angle, rad; 
l  =  0.154 – wavelength of CuKa radiation, nm; 
D – the required size of the CSR, nm; e – microst-
ress value. 

Calculation of CSR sizes and microstresses 
for Co0.5Zn0.5Fe2O4 micropowder by Williamson–
Hall method provided the following results: CSR 
size – 33.59 nm, which insignificantly differs 
from the data obtained by the Scherrer method; 
microstress value e = 5.62×10-4.

The values of the magnetic (m = m¢ + im≤) and 
dielectric (e = e¢ + ie≤) permittivity in complex 
form for a composite material based on the 

Fig. 3. XRD pattern of the investigated Co0.5Zn0.5Fe2O4 micropowder after annealing for 1 hour at a temperature 
of 1300 °C
Table 1. XRD data for the investigated Co0.5Zn0.5Fe2O4 ferrite

no. of peak angle, 2q Intensity, [%] d-spacing, [Å] FWHM, rad
1 18.18 9.6 4.876 0.00489
2 29.98 29.6 2.978 0.00471
3 35.36 100 2.536 0.00488
4 36.96 7.6 2.430 0.00488
5 43.00 20.3 2.102 0.00506
6 53.34 8.1 1.716 0.00617
7 56.90 26 1.617 0.00610
8 62.48 34.3 1.485 0.00612
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investigated Co0.5Zn0.5Fe2O4 were calculated from 
the experimentally measured values of S11 and S21 
according to the Nicholson–Ross–Weir algorithm 
[26–29]. The tangents of the angles of magnetic 
and dielectric losses were calculated using the 
following formulas (4):

tgd m
mm = ¢¢

¢
, tgd e

ee = ¢¢
¢

  (4)

Fig. 4a shows the graphs of the dependence of 
m¢ and m≤ for the investigated composite material 
(Co0.5Zn0.5Fe2O4/paraffin = 1/1 by weight) in the 
frequency range of 0.015–7 GHz. A slight decrease 
in m¢ from 1.85 to 1.69 was observed in the low 
frequency range (0.015–0.5 GHz). However, with 
an increase in the frequency of electromagnetic 
radiation (> 0.5 GHz), the significant sharp 
decrease in m¢ value up to 1.041 at frequency of 
7 GHz can be seen on the graph. The analysis of 

m≤ data revealed that the maximum value of the 
magnetic loss was observed at the frequency of 
fr ≈ 2.3 GHz, which is in good agreement with 
the data of [30], where the maximum value of 
magnetic losses is observed in the range of 2.2–
2.4 GHz [30]. Maximal detected m≤, which was 
0.323, corresponded to the resonance frequency 
for the produced composite material. Based on 
the obtained m¢ and m≤ data, tangent of the angle 
of magnetic losses at the resonant frequency was 
calculated and it was tg dm ≈ 0.252.

Dependency graphs of e¢ and e≤ for the 
manufactured composite material based on 
Co0.5Zn0.5Fe2O4 are shown in Fig. 4b. According 
to the experimental data, it can be seen that 
the value for both e¢ and e≤ for the investigated 
composite sample practically does not change 
in the entire investigated frequency range, on 
the basis of which it can be concluded that the 
average value of the dielectric constant for cobalt-
zinc ferrite in the investigated frequency range is 
e¢ ≈ 3.12 and e≤ ≈ 0.014. From the calculated date 
for e¢ and e≤ it follows that the tangent of the angle 
of dielectric losses in the entire measured range 
was tg de ≈ 0.0045. 

Since the values obtained for e¢, e≤ and tg de 
were low and practically did not change in the 
entire investigated frequency range, it can 
be concluded that the dielectric parameters 
insignificantly affect the radio-absorbing (except 
for the resonance frequency shift) or radio-
shielding characteristics of the investigated 
composite material.

Fig. 5. Frequency dependence of complex magnetic permeability (a) and complex dielectric permittivity (b) for 
the fabricated composite material based on Co0.5Zn0.5Fe2O4

Fig. 4. Williamson-Hall plot for the investigated 
Co0.5Zn0.5Fe2O4
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4. Conclusions
The granular ferrite Co0.5Zn0.5Fe2O4 with mi-

cron-sized granules consisting (according to XRD 
data) of nanocrystals with average sizes of ~25–
35 nm was obtained by glycine-nitrate synthesis 
after one-hour thermal annealing at 1300 °C and 
subsequent grinding. The synthesized ferrite af-
ter thermal annealing did not contain impuri-
ties of other elements or side phases as was con-
firmed by EDS and XRD methods. Analysis of XRD 
data showed that investigated Co0.5Zn0.5Fe2O4 fer-
rite has a cubic crystal lattice. The resulting fer-
rite powder after high-temperature annealing 
of Co0.5Zn0.5Fe2O4 at 1300 °C within 1 hour has a 
fairly high uniformity in shape and particle size 
as was established based on the obtained micro-
graphs and histograms of the particle size distri-
bution. The analysis of the graphs of the depen-
dence of magnetic permeability on the frequen-
cy of electromagnetic radiation revealed the mag-
netic resonance at frequency 2.3 GHz. The discov-
ered magnetic resonance in the UHF range allows 
the obtained material to be considered as being 
promising for use as an effective absorber of elect-
romagnetic radiation in the range of 2–2.5 GHz.
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